1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Global Ocean Simulation at 4$^\circ$ Resolution} |
\section[Global Ocean MITgcm Example]{Global Ocean Simulation at $4^\circ$ Resolution} |
5 |
\label{www:tutorials} |
\label{www:tutorials} |
6 |
\label{sect:eg-global} |
\label{sect:eg-global} |
7 |
|
\begin{rawhtml} |
8 |
|
<!-- CMIREDIR:eg-global: --> |
9 |
|
\end{rawhtml} |
10 |
|
\begin{center} |
11 |
|
(in directory: {\it verification/tutorial\_global\_oce\_latlon/}) |
12 |
|
\end{center} |
13 |
|
|
14 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
15 |
|
|
28 |
the planetary ocean circulation. The simulation is configured |
the planetary ocean circulation. The simulation is configured |
29 |
with realistic geography and bathymetry on a |
with realistic geography and bathymetry on a |
30 |
$4^{\circ} \times 4^{\circ}$ spherical polar grid. |
$4^{\circ} \times 4^{\circ}$ spherical polar grid. |
31 |
|
The files for this experiment are in the verification directory |
32 |
|
under tutorial\_global\_oce\_latlon. |
33 |
Twenty levels are used in the vertical, ranging in thickness |
Twenty levels are used in the vertical, ranging in thickness |
34 |
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, |
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, |
35 |
giving a maximum model depth of $6\,{\rm km}$. |
giving a maximum model depth of $6\,{\rm km}$. |
220 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
221 |
\begin{eqnarray} |
\begin{eqnarray} |
222 |
\label{EQ:eg-global-munk_layer} |
\label{EQ:eg-global-munk_layer} |
223 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
&& M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
224 |
\end{eqnarray} |
\end{eqnarray} |
225 |
|
|
226 |
\noindent of $\approx 600$km. This is greater than the model |
\noindent of $\approx 600$km. This is greater than the model |
234 |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
235 |
\begin{eqnarray} |
\begin{eqnarray} |
236 |
\label{EQ:eg-global-laplacian_stability} |
\label{EQ:eg-global-laplacian_stability} |
237 |
S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
&& S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
238 |
\end{eqnarray} |
\end{eqnarray} |
239 |
|
|
240 |
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
363 |
\begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim} |
\begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim} |
364 |
$\cdots$ \\ |
$\cdots$ \\ |
365 |
set reference values for potential |
set reference values for potential |
366 |
temperature and salinity at each model level in units of $^{\circ}$C and |
temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and |
367 |
${\rm ppt}$. The entries are ordered from surface to depth. |
${\rm ppt}$. The entries are ordered from surface to depth. |
368 |
Density is calculated from anomalies at each level evaluated |
Density is calculated from anomalies at each level evaluated |
369 |
with respect to the reference values set here.\\ |
with respect to the reference values set here.\\ |
583 |
\fbox{ |
\fbox{ |
584 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
585 |
{\it S/R INI\_PARMS}({\it ini\_parms.F})\\ |
{\it S/R INI\_PARMS}({\it ini\_parms.F})\\ |
586 |
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
{\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) |
587 |
\end{minipage} |
\end{minipage} |
588 |
} |
} |
589 |
|
|