1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Example: 4$^\circ$ Global Climatological Ocean Simulation} |
\section{Global Ocean Simulation at 4$^\circ$ Resolution} |
5 |
\label{sec:eg-global} |
\label{sect:eg-global} |
6 |
|
|
7 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
8 |
|
|
16 |
%{\large May 2001} |
%{\large May 2001} |
17 |
%\end{center} |
%\end{center} |
18 |
|
|
|
\subsection{Introduction} |
|
|
|
|
|
This document describes the third example MITgcm experiment. The first |
|
|
two examples illustrated how to configure the code for hydrostatic idealized |
|
|
geophysical fluids simulations. This example illustrates the use of |
|
|
the MITgcm for large scale ocean circulation simulation. |
|
|
|
|
|
\subsection{Overview} |
|
19 |
|
|
20 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
21 |
the planetary ocean circulation. The simulation is configured |
the planetary ocean circulation. The simulation is configured |
28 |
can be integrated forward for thousands of years on a single |
can be integrated forward for thousands of years on a single |
29 |
processor desktop computer. |
processor desktop computer. |
30 |
\\ |
\\ |
31 |
|
\subsection{Overview} |
32 |
|
|
33 |
The model is forced with climatological wind stress data and surface |
The model is forced with climatological wind stress data and surface |
34 |
flux data from DaSilva \cite{DaSilva94}. Climatological data |
flux data from DaSilva \cite{DaSilva94}. Climatological data |
42 |
in the model surface layer. |
in the model surface layer. |
43 |
|
|
44 |
\begin{eqnarray} |
\begin{eqnarray} |
45 |
\label{EQ:global_forcing} |
\label{EQ:eg-global-global_forcing} |
46 |
\label{EQ:global_forcing_fu} |
\label{EQ:eg-global-global_forcing_fu} |
47 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
48 |
\\ |
\\ |
49 |
\label{EQ:global_forcing_fv} |
\label{EQ:eg-global-global_forcing_fv} |
50 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
51 |
\\ |
\\ |
52 |
\label{EQ:global_forcing_ft} |
\label{EQ:eg-global-global_forcing_ft} |
53 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
54 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
55 |
\\ |
\\ |
56 |
\label{EQ:global_forcing_fs} |
\label{EQ:eg-global-global_forcing_fs} |
57 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
58 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
59 |
\end{eqnarray} |
\end{eqnarray} |
80 |
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
81 |
respectively. The salinity forcing fields ($S^{\ast}$ and |
respectively. The salinity forcing fields ($S^{\ast}$ and |
82 |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
83 |
respectively. |
respectively. The source files and procedures for ingesting this data into the |
84 |
\\ |
simulation are described in the experiment configuration discussion in section |
85 |
|
\ref{SEC:eg-global-clim_ocn_examp_exp_config}. |
|
|
|
|
Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the |
|
|
relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, |
|
|
the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
|
|
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
|
|
in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures |
|
|
also indicate the lateral extent and coastline used in the experiment. |
|
|
Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model |
|
|
domain. |
|
86 |
|
|
87 |
|
|
88 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
96 |
$x$ and $y$ are initialized according to |
$x$ and $y$ are initialized according to |
97 |
\begin{eqnarray} |
\begin{eqnarray} |
98 |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
99 |
y=r\lambda,~\Delta x &= &r\Delta \lambda |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
100 |
\end{eqnarray} |
\end{eqnarray} |
101 |
|
|
102 |
Arctic polar regions are not |
Arctic polar regions are not |
130 |
\Delta z_{18}=725\,{\rm m},\, |
\Delta z_{18}=725\,{\rm m},\, |
131 |
\Delta z_{19}=775\,{\rm m},\, |
\Delta z_{19}=775\,{\rm m},\, |
132 |
\Delta z_{20}=815\,{\rm m} |
\Delta z_{20}=815\,{\rm m} |
133 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$) to |
134 |
|
give a total depth, $H$, of $-5450{\rm m}$. |
135 |
The implicit free surface form of the pressure equation described in Marshall et. al |
The implicit free surface form of the pressure equation described in Marshall et. al |
136 |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
137 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
138 |
|
|
139 |
Wind-stress forcing is added to the momentum equations for both |
Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations}) |
140 |
the zonal flow, $u$ and the meridional flow $v$, according to equations |
for both the zonal flow, $u$ and the meridional flow $v$, according to equations |
141 |
(\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}). |
(\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}). |
142 |
Thermodynamic forcing inputs are added to the equations for |
Thermodynamic forcing inputs are added to the equations |
143 |
|
in (\ref{EQ:eg-global-model_equations}) for |
144 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
potential temperature, $\theta$, and salinity, $S$, according to equations |
145 |
(\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}). |
(\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}). |
146 |
This produces a set of equations solved in this configuration as follows: |
This produces a set of equations solved in this configuration as follows: |
147 |
|
|
148 |
\begin{eqnarray} |
\begin{eqnarray} |
149 |
\label{EQ:model_equations} |
\label{EQ:eg-global-model_equations} |
150 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
151 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
152 |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
207 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
208 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
209 |
\begin{eqnarray} |
\begin{eqnarray} |
210 |
\label{EQ:munk_layer} |
\label{EQ:eg-global-munk_layer} |
211 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
212 |
\end{eqnarray} |
\end{eqnarray} |
213 |
|
|
221 |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
222 |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
223 |
\begin{eqnarray} |
\begin{eqnarray} |
224 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-global-laplacian_stability} |
225 |
S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
226 |
\end{eqnarray} |
\end{eqnarray} |
227 |
|
|
233 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
234 |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
235 |
\begin{eqnarray} |
\begin{eqnarray} |
236 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-global-laplacian_stability_z} |
237 |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
238 |
\end{eqnarray} |
\end{eqnarray} |
239 |
|
|
248 |
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
249 |
Here the stability parameter |
Here the stability parameter |
250 |
\begin{eqnarray} |
\begin{eqnarray} |
251 |
\label{EQ:laplacian_stability_xtheta} |
\label{EQ:eg-global-laplacian_stability_xtheta} |
252 |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
253 |
\end{eqnarray} |
\end{eqnarray} |
254 |
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
255 |
stability parameter related to $K_{z}$ |
stability parameter related to $K_{z}$ |
256 |
\begin{eqnarray} |
\begin{eqnarray} |
257 |
\label{EQ:laplacian_stability_ztheta} |
\label{EQ:eg-global-laplacian_stability_ztheta} |
258 |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
259 |
\end{eqnarray} |
\end{eqnarray} |
260 |
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
265 |
\cite{adcroft:95} |
\cite{adcroft:95} |
266 |
|
|
267 |
\begin{eqnarray} |
\begin{eqnarray} |
268 |
\label{EQ:inertial_stability} |
\label{EQ:eg-global-inertial_stability} |
269 |
S_{i} = f^{2} {\delta t_v}^2 |
S_{i} = f^{2} {\delta t_v}^2 |
270 |
\end{eqnarray} |
\end{eqnarray} |
271 |
|
|
278 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
279 |
|
|
280 |
\begin{eqnarray} |
\begin{eqnarray} |
281 |
\label{EQ:cfl_stability} |
\label{EQ:eg-global-cfl_stability} |
282 |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
283 |
\end{eqnarray} |
\end{eqnarray} |
284 |
|
|
291 |
\cite{adcroft:95} |
\cite{adcroft:95} |
292 |
|
|
293 |
\begin{eqnarray} |
\begin{eqnarray} |
294 |
\label{EQ:cfl_stability} |
\label{EQ:eg-global-gfl_stability} |
295 |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
296 |
\end{eqnarray} |
\end{eqnarray} |
297 |
|
|
299 |
stability limit of 0.5. |
stability limit of 0.5. |
300 |
|
|
301 |
\subsection{Experiment Configuration} |
\subsection{Experiment Configuration} |
302 |
\label{SEC:clim_ocn_examp_exp_config} |
\label{SEC:eg-global-clim_ocn_examp_exp_config} |
303 |
|
|
304 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
305 |
directory {\it verification/exp2/}. The experiment files |
directory {\it tutorial\_examples/global\_ocean\_circulation/}. |
306 |
|
The experiment files |
307 |
|
|
308 |
\begin{itemize} |
\begin{itemize} |
309 |
\item {\it input/data} |
\item {\it input/data} |
310 |
\item {\it input/data.pkg} |
\item {\it input/data.pkg} |
324 |
experiments. Below we describe the customizations |
experiments. Below we describe the customizations |
325 |
to these files associated with this experiment. |
to these files associated with this experiment. |
326 |
|
|
327 |
|
\subsubsection{Driving Datasets} |
328 |
|
|
329 |
|
Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the |
330 |
|
relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, |
331 |
|
the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
332 |
|
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
333 |
|
in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures |
334 |
|
also indicate the lateral extent and coastline used in the experiment. |
335 |
|
Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model |
336 |
|
domain. |
337 |
|
|
338 |
|
|
339 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
340 |
|
|
341 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |