219 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
220 |
|
|
221 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
222 |
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
223 |
\begin{eqnarray} |
\begin{eqnarray} |
224 |
\label{EQ:munk_layer} |
\label{EQ:munk_layer} |
225 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
233 |
\noindent The model is stepped forward with a |
\noindent The model is stepped forward with a |
234 |
time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and |
time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and |
235 |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
236 |
parameter to the horizontal Laplacian friction \cite{Adcroft_thesis} |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
237 |
\begin{eqnarray} |
\begin{eqnarray} |
238 |
\label{EQ:laplacian_stability} |
\label{EQ:laplacian_stability} |
239 |
S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
276 |
\\ |
\\ |
277 |
|
|
278 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
279 |
\cite{Adcroft_thesis} |
\cite{adcroft:95} |
280 |
|
|
281 |
\begin{eqnarray} |
\begin{eqnarray} |
282 |
\label{EQ:inertial_stability} |
\label{EQ:inertial_stability} |
287 |
the $S_{i} < 1$ upper limit for stability. |
the $S_{i} < 1$ upper limit for stability. |
288 |
\\ |
\\ |
289 |
|
|
290 |
\noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum |
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum |
291 |
horizontal flow |
horizontal flow |
292 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
293 |
|
|
302 |
|
|
303 |
\noindent The stability parameter for internal gravity waves propagating |
\noindent The stability parameter for internal gravity waves propagating |
304 |
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
305 |
\cite{Adcroft_thesis} |
\cite{adcroft:95} |
306 |
|
|
307 |
\begin{eqnarray} |
\begin{eqnarray} |
308 |
\label{EQ:cfl_stability} |
\label{EQ:cfl_stability} |