/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Diff of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.22 by mlosch, Mon May 2 10:46:28 2011 UTC revision 1.24 by jmc, Wed May 15 22:47:12 2013 UTC
# Line 16  Line 16 
16  \noindent {\bf WARNING: the description of this experiment is not complete.  \noindent {\bf WARNING: the description of this experiment is not complete.
17   In particular, many parameters are not yet described.}\\   In particular, many parameters are not yet described.}\\
18    
19  %\begin{center}  %\begin{center}
20  %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation  %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
21  %At Four Degree Resolution with Asynchronous Time Stepping}  %At Four Degree Resolution with Asynchronous Time Stepping}
22  %  %
# Line 26  Line 26 
26  %{\large May 2001}  %{\large May 2001}
27  %\end{center}  %\end{center}
28    
   
29  This example experiment demonstrates using the MITgcm to simulate the  This example experiment demonstrates using the MITgcm to simulate the
30  planetary ocean circulation. The simulation is configured with  planetary ocean circulation. The simulation is configured with
31  realistic geography and bathymetry on a $4^{\circ} \times 4^{\circ}$  realistic geography and bathymetry on a $4^{\circ} \times 4^{\circ}$
# Line 34  spherical polar grid. The files for this Line 33  spherical polar grid. The files for this
33  verification directory under tutorial\_global\_oce\_latlon. Fifteen  verification directory under tutorial\_global\_oce\_latlon. Fifteen
34  levels are used in the vertical, ranging in thickness from $50\,{\rm  levels are used in the vertical, ranging in thickness from $50\,{\rm
35    m}$ at the surface to $690\,{\rm m}$ at depth, giving a maximum    m}$ at the surface to $690\,{\rm m}$ at depth, giving a maximum
36  model depth of $5200\,{\rm m}$.  At this resolution, the configuration  model depth of $5200\,{\rm m}$.
37  can be integrated forward for thousands of years on a single processor  Different time-steps are used to accelerate the convergence to
38  desktop computer.  equilibrium \cite[]{bryan:84} so that, at this resolution,
39    the configuration can be integrated forward for thousands of years
40    on a single processor desktop computer.
41  \\  \\
42  \subsection{Overview}  \subsection{Overview}
43  %\label{www:tutorials}  %\label{www:tutorials}
# Line 61  surface layer. Line 62  surface layer.
62  {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}  {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
63  \\  \\
64  \label{eq:eg-global-global_forcing_ft}  \label{eq:eg-global-global_forcing_ft}
65  {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )  {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
66   - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}   - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
67  \\  \\
68  \label{eq:eg-global-global_forcing_fs}  \label{eq:eg-global-global_forcing_fs}
69  {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )  {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
70   + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})   + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
71  \end{eqnarray}  \end{eqnarray}
72    
# Line 89  experiment are $\tau_{x}$, $\tau_{y}$, $ Line 90  experiment are $\tau_{x}$, $\tau_{y}$, $
90  $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)  $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
91  have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields  have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
92  ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$  ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
93  respectively. The salinity forcing fields ($S^{\ast}$ and  respectively. The salinity forcing fields ($S^{\ast}$ and
94  $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$  $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
95  respectively. The source files and procedures for ingesting this data into the  respectively. The source files and procedures for ingesting this data into the
96  simulation are described in the experiment configuration discussion in section  simulation are described in the experiment configuration discussion in section
# Line 108  direction. The internal model coordinate Line 109  direction. The internal model coordinate
109  initialized according to  initialized according to
110  \begin{eqnarray}  \begin{eqnarray}
111  x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\  x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
112  y=r\lambda,~\Delta y &= &r\Delta \lambda  y=r\lambda,~\Delta y &= &r\Delta \lambda
113  \end{eqnarray}  \end{eqnarray}
114    
115  Arctic polar regions are not  Arctic polar regions are not
116  included in this experiment. Meridionally the model extends from  included in this experiment. Meridionally the model extends from
117  $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.  $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
118  Vertically the model is configured with fifteen layers with the  Vertically the model is configured with fifteen layers with the
119  following thicknesses  following thicknesses:
120  $\Delta z_{1} = 50\,{\rm m},\,  $\Delta z_{1} = 50\,{\rm m},$\\
121   \Delta z_{2} = 70\,{\rm m},\,  $\Delta z_{2} = 70\,{\rm m},\,
122   \Delta z_{3} = 100\,{\rm m},\,   \Delta z_{3} = 100\,{\rm m},\,
123   \Delta z_{4} = 140\,{\rm m},\,   \Delta z_{4} = 140\,{\rm m},\,
124   \Delta z_{5} = 190\,{\rm m},\,   \Delta z_{5} = 190\,{\rm m},\,
125   \Delta z_{6}~=~240\,{\rm m},\,   \Delta z_{6} = 240\,{\rm m},\,
126   \Delta z_{7}~=~290\,{\rm m},\,   \Delta z_{7} = 290\,{\rm m},\,
127   \Delta z_{8}~=340\,{\rm m},\,   \Delta z_{8} = 340\,{\rm m},$\\
128   \Delta z_{9}=390\,{\rm m},\,  $\Delta z_{9} = 390\,{\rm m},\,
129   \Delta z_{10}=440\,{\rm m},\,   \Delta z_{10}= 440\,{\rm m},\,
130   \Delta z_{11}=490\,{\rm m},\,   \Delta z_{11}= 490\,{\rm m},\,
131   \Delta z_{12}=540\,{\rm m},\,   \Delta z_{12}= 540\,{\rm m},\,
132   \Delta z_{13}=590\,{\rm m},\,   \Delta z_{13}= 590\,{\rm m},\,
133   \Delta z_{14}=640\,{\rm m},\,   \Delta z_{14}= 640\,{\rm m},\,
134   \Delta z_{15}=690\,{\rm m}   \Delta z_{15}= 690\,{\rm m}$\\
135  $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to  (here the numeric subscript indicates the model level index number, ${\tt k}$) to
136  give a total depth, $H$, of $-5200{\rm m}$.  give a total depth, $H$, of $-5200{\rm m}$.
137  The implicit free surface form of the pressure equation described in  The implicit free surface form of the pressure equation described in
138  \citet{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous  \citet{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
139  dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.  dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
140    
141  Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations})  Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations})
142  for both the zonal flow, $u$ and the meridional flow $v$, according to equations  for both the zonal flow, $u$ and the meridional flow $v$, according to equations
143  (\ref{eq:eg-global-global_forcing_fu}) and (\ref{eq:eg-global-global_forcing_fv}).  (\ref{eq:eg-global-global_forcing_fu}) and (\ref{eq:eg-global-global_forcing_fv}).
144  Thermodynamic forcing inputs are added to the equations  Thermodynamic forcing inputs are added to the equations
145  in (\ref{eq:eg-global-model_equations}) for  in (\ref{eq:eg-global-model_equations}) for
146  potential temperature, $\theta$, and salinity, $S$, according to equations  potential temperature, $\theta$, and salinity, $S$, according to equations
147  (\ref{eq:eg-global-global_forcing_ft}) and (\ref{eq:eg-global-global_forcing_fs}).  (\ref{eq:eg-global-global_forcing_ft}) and (\ref{eq:eg-global-global_forcing_fs}).
148  This produces a set of equations solved in this configuration as follows:  This produces a set of equations solved in this configuration as follows:
149    
150  \begin{eqnarray}  \begin{eqnarray}
151  \label{eq:eg-global-model_equations}  \label{eq:eg-global-model_equations}
152  \frac{Du}{Dt} - fv +  \frac{Du}{Dt} - fv +
153    \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -    \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
154    \nabla_{h}\cdot A_{h}\nabla_{h}u -    \nabla_{h}\cdot A_{h}\nabla_{h}u -
155    \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}    \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
156   & = &   & = &
157  \begin{cases}  \begin{cases}
158  {\cal F}_u & \text{(surface)} \\  {\cal F}_u & \text{(surface)} \\
159  0 & \text{(interior)}  0 & \text{(interior)}
160  \end{cases}  \end{cases}
161  \\  \\
162  \frac{Dv}{Dt} + fu +  \frac{Dv}{Dt} + fu +
163    \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -    \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
164    \nabla_{h}\cdot A_{h}\nabla_{h}v -    \nabla_{h}\cdot A_{h}\nabla_{h}v -
165    \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}    \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
166  & = &  & = &
167  \begin{cases}  \begin{cases}
168  {\cal F}_v & \text{(surface)} \\  {\cal F}_v & \text{(surface)} \\
# Line 174  This produces a set of equations solved Line 175  This produces a set of equations solved
175  \\  \\
176  \frac{D\theta}{Dt} -  \frac{D\theta}{Dt} -
177   \nabla_{h}\cdot K_{h}\nabla_{h}\theta   \nabla_{h}\cdot K_{h}\nabla_{h}\theta
178   - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}   - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
179  & = &  & = &
180  \begin{cases}  \begin{cases}
181  {\cal F}_\theta & \text{(surface)} \\  {\cal F}_\theta & \text{(surface)} \\
# Line 183  This produces a set of equations solved Line 184  This produces a set of equations solved
184  \\  \\
185  \frac{D s}{Dt} -  \frac{D s}{Dt} -
186   \nabla_{h}\cdot K_{h}\nabla_{h}s   \nabla_{h}\cdot K_{h}\nabla_{h}s
187   - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}   - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
188  & = &  & = &
189  \begin{cases}  \begin{cases}
190  {\cal F}_s & \text{(surface)} \\  {\cal F}_s & \text{(surface)} \\
# Line 193  This produces a set of equations solved Line 194  This produces a set of equations solved
194  g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}  g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
195  \end{eqnarray}  \end{eqnarray}
196    
197  \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and  \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
198  $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$  $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
199  are the zonal and meridional components of the  are the zonal and meridional components of the
200  flow vector, $\vec{u}$, on the sphere. As described in  flow vector, $\vec{u}$, on the sphere. As described in
201  MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time  MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
202  evolution of potential temperature, $\theta$, equation is solved prognostically.  evolution of potential temperature, $\theta$, equation is solved prognostically.
203  The total pressure, $p$, is diagnosed by summing pressure due to surface  The total pressure, $p$, is diagnosed by summing pressure due to surface
204  elevation $\eta$ and the hydrostatic pressure.  elevation $\eta$ and the hydrostatic pressure.
205  \\  \\
206    
# Line 214  This value is chosen to yield a Munk lay Line 215  This value is chosen to yield a Munk lay
215  \end{eqnarray}  \end{eqnarray}
216    
217  \noindent  of $\approx 600$km. This is greater than the model  \noindent  of $\approx 600$km. This is greater than the model
218  resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional  resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
219  boundary layer is adequately resolved.  boundary layer is adequately resolved.
220  \\  \\
221    
222  \noindent The model is stepped forward with a time step $\delta  \noindent The model is stepped forward with a time step $\Delta
223  t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $\delta  t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $\Delta
224  t_{v}=30~{\rm minutes}$ for momentum terms. With this time step, the  t_{v}=30~{\rm minutes}$ for momentum terms. With this time step,
225  stability parameter to the horizontal Laplacian friction  the stability parameter to the horizontal Laplacian friction
226  \citep{adcroft:95}  \citep{adcroft:95}
227  \begin{eqnarray}  \begin{eqnarray}
228  \label{eq:eg-global-laplacian_stability}  \label{eq:eg-global-laplacian_stability}
229  && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}  && S_{l} = 4 \frac{A_{h} \Delta t_{v}}{{\Delta x}^2}
230  \end{eqnarray}  \end{eqnarray}
231    
232  \noindent evaluates to 0.6 at a latitude of $\phi=80^{\circ}$, which  \noindent evaluates to 0.6 at a latitude of $\phi=80^{\circ}$, which
# Line 235  x=r\cos(\phi)\Delta \phi\approx 77{\rm k Line 236  x=r\cos(\phi)\Delta \phi\approx 77{\rm k
236  criterion is already met 1 grid cell equatorwards (at $\phi=76^{\circ}$).  criterion is already met 1 grid cell equatorwards (at $\phi=76^{\circ}$).
237    
238    
239  \noindent The vertical dissipation coefficient, $A_{z}$, is set to  \noindent The vertical dissipation coefficient, $A_{z}$, is set to
240  $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit  $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
241  \begin{eqnarray}  \begin{eqnarray}
242  \label{eq:eg-global-laplacian_stability_z}  \label{eq:eg-global-laplacian_stability_z}
243  S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}  && S_{l} = 4 \frac{A_{z} \Delta t_{v}}{{\Delta z}^2}
244  \end{eqnarray}  \end{eqnarray}
245    
246  \noindent evaluates to $0.0029$ for the smallest model  \noindent evaluates to $0.0029$ for the smallest model
# Line 247  level spacing ($\Delta z_{1}=50{\rm m}$) Line 248  level spacing ($\Delta z_{1}=50{\rm m}$)
248  the upper stability limit.  the upper stability limit.
249  \\  \\
250    
251  % The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients  % The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
252  % for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$  % for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
253  % and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit  % and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
254  % related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.  % related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
255  % Here the stability parameter  % Here the stability parameter
256  % \begin{eqnarray}  % \begin{eqnarray}
257  % \label{eq:eg-global-laplacian_stability_xtheta}  % \label{eq:eg-global-laplacian_stability_xtheta}
258  % S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}  % S_{l} = \frac{4 K_{h} \Delta t_{\theta}}{{\Delta x}^2}
259  % \end{eqnarray}  % \end{eqnarray}
260  % evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The  % evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
261  % stability parameter related to $K_{z}$  % stability parameter related to $K_{z}$
262  % \begin{eqnarray}  % \begin{eqnarray}
263  % \label{eq:eg-global-laplacian_stability_ztheta}  % \label{eq:eg-global-laplacian_stability_ztheta}
264  % S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}  % S_{l} = \frac{4 K_{z} \Delta t_{\theta}}{{\Delta z}^2}
265  % \end{eqnarray}  % \end{eqnarray}
266  % evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit  % evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
267  % of $S_{l} \approx 0.5$.  % of $S_{l} \approx 0.5$.
268  % \\  % \\
269    
270  \noindent The numerical stability for inertial oscillations  \noindent The numerical stability for inertial oscillations
271  \citep{adcroft:95}  \citep{adcroft:95}
272    
273  \begin{eqnarray}  \begin{eqnarray}
274  \label{eq:eg-global-inertial_stability}  \label{eq:eg-global-inertial_stability}
275  S_{i} = f^{2} {\delta t_v}^2  && S_{i} = f^{2} {\Delta t_v}^2
276  \end{eqnarray}  \end{eqnarray}
277    
278  \noindent evaluates to $0.07$ for  \noindent evaluates to $0.07$ for
# Line 279  $f=2\omega\sin(80^{\circ})=1.43\times10^ Line 280  $f=2\omega\sin(80^{\circ})=1.43\times10^
280  below the $S_{i} < 1$ upper limit for stability.  below the $S_{i} < 1$ upper limit for stability.
281  \\  \\
282    
283  \noindent The advective CFL \citep{adcroft:95} for a extreme maximum  \noindent The advective CFL \citep{adcroft:95} for a extreme maximum
284  horizontal flow  horizontal flow
285  speed of $ | \vec{u} | = 2 ms^{-1}$  speed of $ | \vec{u} | = 2 ms^{-1}$
286    
287  \begin{eqnarray}  \begin{eqnarray}
288  \label{eq:eg-global-cfl_stability}  \label{eq:eg-global-cfl_stability}
289  S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}  && S_{a} = \frac{| \vec{u} | \Delta t_{v}}{ \Delta x}
290  \end{eqnarray}  \end{eqnarray}
291    
292  \noindent evaluates to $5 \times 10^{-2}$. This is well below the stability  \noindent evaluates to $5 \times 10^{-2}$. This is well below the stability
293  limit of 0.5.  limit of 0.5.
294  \\  \\
295    
# Line 298  limit of 0.5. Line 299  limit of 0.5.
299    
300  \begin{eqnarray}  \begin{eqnarray}
301  \label{eq:eg-global-gfl_stability}  \label{eq:eg-global-gfl_stability}
302  S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}  && S_{c} = \frac{c_{g} \Delta t_{v}}{ \Delta x}
303  \end{eqnarray}  \end{eqnarray}
304    
305  \noindent evaluates to $2.3 \times 10^{-1}$. This is close to the linear  \noindent evaluates to $2.3 \times 10^{-1}$. This is close to the linear
306  stability limit of 0.5.  stability limit of 0.5.
307      
308  \subsection{Experiment Configuration}  \subsection{Experiment Configuration}
309  %\label{www:tutorials}  %\label{www:tutorials}
310  \label{sec:eg-global-clim_ocn_examp_exp_config}  \label{sec:eg-global-clim_ocn_examp_exp_config}
# Line 322  directory {\it tutorial\_global\_oce\_la Line 323  directory {\it tutorial\_global\_oce\_la
323  \item {\it input/lev\_sss.bin},  \item {\it input/lev\_sss.bin},
324  \item {\it input/lev\_sst.bin},  \item {\it input/lev\_sst.bin},
325  \item {\it input/bathymetry.bin},  \item {\it input/bathymetry.bin},
326  \item {\it code/CPP\_EEOPTIONS.h}  %\item {\it code/CPP\_EEOPTIONS.h}
327  \item {\it code/CPP\_OPTIONS.h},  %\item {\it code/CPP\_OPTIONS.h},
328  \item {\it code/SIZE.h}.  \item {\it code/SIZE.h}.
329  \end{itemize}  \end{itemize}
330  contain the code customizations and parameter settings for these  contain the code customizations and parameter settings for these
331  experiments. Below we describe the customizations  experiments. Below we describe the customizations
# Line 393  to these files associated with this expe Line 394  to these files associated with this expe
394    
395  Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord})  Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord})
396  %(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr})  %(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr})
397  show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$)  show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$)
398  fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)  fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
399  and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used  and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
400  in equations  in equations
401  (\ref{eq:eg-global-global_forcing_fu}-\ref{eq:eg-global-global_forcing_fs}).  (\ref{eq:eg-global-global_forcing_fu}-\ref{eq:eg-global-global_forcing_fs}).
402  The figures also indicate the lateral extent and coastline used in the  The figures also indicate the lateral extent and coastline used in the
403  experiment. Figure ({\it --- missing figure --- }) %ref{fig:model_bathymetry})  experiment. Figure ({\it --- missing figure --- }) %ref{fig:model_bathymetry})
404  shows the depth contours of the model domain.  shows the depth contours of the model domain.
405    
406  \subsubsection{File {\it input/data}}  \subsubsection{File {\it input/data}}
# Line 432  The {\it input/trenberth\_taux.bin} and Line 433  The {\it input/trenberth\_taux.bin} and
433  %\label{www:tutorials}  %\label{www:tutorials}
434    
435    
436  The {\it input/topog.box} file specifies a two-dimensional ($x,y$)  The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
437  map of depth values. For this experiment values are either  map of depth values. For this experiment values are either
438  $0m$ or $-5200\,{\rm m}$, corresponding respectively to a wall or to deep  $0m$ or $-5200\,{\rm m}$, corresponding respectively to a wall or to deep
439  ocean. The file contains a raw binary stream of data that is enumerated  ocean. The file contains a raw binary stream of data that is enumerated
# Line 443  code for creating the {\it input/topog.b Line 444  code for creating the {\it input/topog.b
444  \subsubsection{File {\it code/SIZE.h}}  \subsubsection{File {\it code/SIZE.h}}
445  %\label{www:tutorials}  %\label{www:tutorials}
446    
447  Two lines are customized in this file for the current experiment  \input{s_examples/global_oce_latlon/cod_SIZE.h}
448    
449  \begin{itemize}  %\subsubsection{File {\it code/CPP\_OPTIONS.h}}
   
 \item Line 39,  
 \begin{verbatim} sNx=45, \end{verbatim} this line sets  
 the lateral domain extent in grid points for the  
 axis aligned with the x-coordinate.  
   
 \item Line 40,  
 \begin{verbatim} sNy=40, \end{verbatim} this line sets  
 the lateral domain extent in grid points for the  
 axis aligned with the y-coordinate.  
   
 \item Line 49,  
 \begin{verbatim}  
 Nr=15,  
 \end{verbatim} this line sets  
 the vertical domain extent in grid points.  
   
 \end{itemize}  
   
 \begin{small}  
 \input{s_examples/global_oce_latlon/code/SIZE.h}  
 \end{small}  
   
 \subsubsection{File {\it code/CPP\_OPTIONS.h}}  
450  %\label{www:tutorials}  %\label{www:tutorials}
451    
452  This file uses standard default values and does not contain  %This file uses standard default values and does not contain
453  customisations for this experiment.  %customisations for this experiment.
454    
455    
456  \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}  %\subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
457  %\label{www:tutorials}  %\label{www:tutorials}
458    
459  This file uses standard default values and does not contain  %This file uses standard default values and does not contain
460  customisations for this experiment.  %customisations for this experiment.
461    
462  \subsubsection{Other Files }  \subsubsection{Other Files }
463  %\label{www:tutorials}  %\label{www:tutorials}
# Line 493  customisations for this experiment. Line 470  customisations for this experiment.
470  % \item {\it model/src/ini\_parms.F},  % \item {\it model/src/ini\_parms.F},
471  % \item {\it input/windx.sin\_y},  % \item {\it input/windx.sin\_y},
472  % \end{itemize}  % \end{itemize}
473  % contain the code customisations and parameter settings for this  % contain the code customisations and parameter settings for this
474  % experiments. Below we describe the customisations  % experiments. Below we describe the customisations
475  % to these files associated with this experiment.  % to these files associated with this experiment.

Legend:
Removed from v.1.22  
changed lines
  Added in v.1.24

  ViewVC Help
Powered by ViewVC 1.1.22