16 |
\noindent {\bf WARNING: the description of this experiment is not complete. |
\noindent {\bf WARNING: the description of this experiment is not complete. |
17 |
In particular, many parameters are not yet described.}\\ |
In particular, many parameters are not yet described.}\\ |
18 |
|
|
19 |
%\begin{center} |
%\begin{center} |
20 |
%{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation |
%{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation |
21 |
%At Four Degree Resolution with Asynchronous Time Stepping} |
%At Four Degree Resolution with Asynchronous Time Stepping} |
22 |
% |
% |
26 |
%{\large May 2001} |
%{\large May 2001} |
27 |
%\end{center} |
%\end{center} |
28 |
|
|
|
|
|
29 |
This example experiment demonstrates using the MITgcm to simulate the |
This example experiment demonstrates using the MITgcm to simulate the |
30 |
planetary ocean circulation. The simulation is configured with |
planetary ocean circulation. The simulation is configured with |
31 |
realistic geography and bathymetry on a $4^{\circ} \times 4^{\circ}$ |
realistic geography and bathymetry on a $4^{\circ} \times 4^{\circ}$ |
33 |
verification directory under tutorial\_global\_oce\_latlon. Fifteen |
verification directory under tutorial\_global\_oce\_latlon. Fifteen |
34 |
levels are used in the vertical, ranging in thickness from $50\,{\rm |
levels are used in the vertical, ranging in thickness from $50\,{\rm |
35 |
m}$ at the surface to $690\,{\rm m}$ at depth, giving a maximum |
m}$ at the surface to $690\,{\rm m}$ at depth, giving a maximum |
36 |
model depth of $5200\,{\rm m}$. At this resolution, the configuration |
model depth of $5200\,{\rm m}$. |
37 |
can be integrated forward for thousands of years on a single processor |
Different time-steps are used to accelerate the convergence to |
38 |
desktop computer. |
equilibrium \cite[]{bryan:84} so that, at this resolution, |
39 |
|
the configuration can be integrated forward for thousands of years |
40 |
|
on a single processor desktop computer. |
41 |
\\ |
\\ |
42 |
\subsection{Overview} |
\subsection{Overview} |
43 |
%\label{www:tutorials} |
%\label{www:tutorials} |
62 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
63 |
\\ |
\\ |
64 |
\label{eq:eg-global-global_forcing_ft} |
\label{eq:eg-global-global_forcing_ft} |
65 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
66 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
67 |
\\ |
\\ |
68 |
\label{eq:eg-global-global_forcing_fs} |
\label{eq:eg-global-global_forcing_fs} |
69 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
70 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
71 |
\end{eqnarray} |
\end{eqnarray} |
72 |
|
|
90 |
$\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$) |
$\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$) |
91 |
have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields |
have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields |
92 |
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
93 |
respectively. The salinity forcing fields ($S^{\ast}$ and |
respectively. The salinity forcing fields ($S^{\ast}$ and |
94 |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
95 |
respectively. The source files and procedures for ingesting this data into the |
respectively. The source files and procedures for ingesting this data into the |
96 |
simulation are described in the experiment configuration discussion in section |
simulation are described in the experiment configuration discussion in section |
109 |
initialized according to |
initialized according to |
110 |
\begin{eqnarray} |
\begin{eqnarray} |
111 |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
112 |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
113 |
\end{eqnarray} |
\end{eqnarray} |
114 |
|
|
115 |
Arctic polar regions are not |
Arctic polar regions are not |
116 |
included in this experiment. Meridionally the model extends from |
included in this experiment. Meridionally the model extends from |
117 |
$80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. |
$80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. |
118 |
Vertically the model is configured with fifteen layers with the |
Vertically the model is configured with fifteen layers with the |
119 |
following thicknesses |
following thicknesses: |
120 |
$\Delta z_{1} = 50\,{\rm m},\, |
$\Delta z_{1} = 50\,{\rm m},$\\ |
121 |
\Delta z_{2} = 70\,{\rm m},\, |
$\Delta z_{2} = 70\,{\rm m},\, |
122 |
\Delta z_{3} = 100\,{\rm m},\, |
\Delta z_{3} = 100\,{\rm m},\, |
123 |
\Delta z_{4} = 140\,{\rm m},\, |
\Delta z_{4} = 140\,{\rm m},\, |
124 |
\Delta z_{5} = 190\,{\rm m},\, |
\Delta z_{5} = 190\,{\rm m},\, |
125 |
\Delta z_{6}~=~240\,{\rm m},\, |
\Delta z_{6} = 240\,{\rm m},\, |
126 |
\Delta z_{7}~=~290\,{\rm m},\, |
\Delta z_{7} = 290\,{\rm m},\, |
127 |
\Delta z_{8}~=340\,{\rm m},\, |
\Delta z_{8} = 340\,{\rm m},$\\ |
128 |
\Delta z_{9}=390\,{\rm m},\, |
$\Delta z_{9} = 390\,{\rm m},\, |
129 |
\Delta z_{10}=440\,{\rm m},\, |
\Delta z_{10}= 440\,{\rm m},\, |
130 |
\Delta z_{11}=490\,{\rm m},\, |
\Delta z_{11}= 490\,{\rm m},\, |
131 |
\Delta z_{12}=540\,{\rm m},\, |
\Delta z_{12}= 540\,{\rm m},\, |
132 |
\Delta z_{13}=590\,{\rm m},\, |
\Delta z_{13}= 590\,{\rm m},\, |
133 |
\Delta z_{14}=640\,{\rm m},\, |
\Delta z_{14}= 640\,{\rm m},\, |
134 |
\Delta z_{15}=690\,{\rm m} |
\Delta z_{15}= 690\,{\rm m}$\\ |
135 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$) to |
(here the numeric subscript indicates the model level index number, ${\tt k}$) to |
136 |
give a total depth, $H$, of $-5200{\rm m}$. |
give a total depth, $H$, of $-5200{\rm m}$. |
137 |
The implicit free surface form of the pressure equation described in |
The implicit free surface form of the pressure equation described in |
138 |
\citet{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
\citet{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
139 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
140 |
|
|
141 |
Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations}) |
Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations}) |
142 |
for both the zonal flow, $u$ and the meridional flow $v$, according to equations |
for both the zonal flow, $u$ and the meridional flow $v$, according to equations |
143 |
(\ref{eq:eg-global-global_forcing_fu}) and (\ref{eq:eg-global-global_forcing_fv}). |
(\ref{eq:eg-global-global_forcing_fu}) and (\ref{eq:eg-global-global_forcing_fv}). |
144 |
Thermodynamic forcing inputs are added to the equations |
Thermodynamic forcing inputs are added to the equations |
145 |
in (\ref{eq:eg-global-model_equations}) for |
in (\ref{eq:eg-global-model_equations}) for |
146 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
potential temperature, $\theta$, and salinity, $S$, according to equations |
147 |
(\ref{eq:eg-global-global_forcing_ft}) and (\ref{eq:eg-global-global_forcing_fs}). |
(\ref{eq:eg-global-global_forcing_ft}) and (\ref{eq:eg-global-global_forcing_fs}). |
148 |
This produces a set of equations solved in this configuration as follows: |
This produces a set of equations solved in this configuration as follows: |
149 |
|
|
150 |
\begin{eqnarray} |
\begin{eqnarray} |
151 |
\label{eq:eg-global-model_equations} |
\label{eq:eg-global-model_equations} |
152 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
153 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
154 |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
155 |
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} |
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} |
156 |
& = & |
& = & |
157 |
\begin{cases} |
\begin{cases} |
158 |
{\cal F}_u & \text{(surface)} \\ |
{\cal F}_u & \text{(surface)} \\ |
159 |
0 & \text{(interior)} |
0 & \text{(interior)} |
160 |
\end{cases} |
\end{cases} |
161 |
\\ |
\\ |
162 |
\frac{Dv}{Dt} + fu + |
\frac{Dv}{Dt} + fu + |
163 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
164 |
\nabla_{h}\cdot A_{h}\nabla_{h}v - |
\nabla_{h}\cdot A_{h}\nabla_{h}v - |
165 |
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} |
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} |
166 |
& = & |
& = & |
167 |
\begin{cases} |
\begin{cases} |
168 |
{\cal F}_v & \text{(surface)} \\ |
{\cal F}_v & \text{(surface)} \\ |
175 |
\\ |
\\ |
176 |
\frac{D\theta}{Dt} - |
\frac{D\theta}{Dt} - |
177 |
\nabla_{h}\cdot K_{h}\nabla_{h}\theta |
\nabla_{h}\cdot K_{h}\nabla_{h}\theta |
178 |
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z} |
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z} |
179 |
& = & |
& = & |
180 |
\begin{cases} |
\begin{cases} |
181 |
{\cal F}_\theta & \text{(surface)} \\ |
{\cal F}_\theta & \text{(surface)} \\ |
184 |
\\ |
\\ |
185 |
\frac{D s}{Dt} - |
\frac{D s}{Dt} - |
186 |
\nabla_{h}\cdot K_{h}\nabla_{h}s |
\nabla_{h}\cdot K_{h}\nabla_{h}s |
187 |
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z} |
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z} |
188 |
& = & |
& = & |
189 |
\begin{cases} |
\begin{cases} |
190 |
{\cal F}_s & \text{(surface)} \\ |
{\cal F}_s & \text{(surface)} \\ |
194 |
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
195 |
\end{eqnarray} |
\end{eqnarray} |
196 |
|
|
197 |
\noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and |
\noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and |
198 |
$v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ |
$v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ |
199 |
are the zonal and meridional components of the |
are the zonal and meridional components of the |
200 |
flow vector, $\vec{u}$, on the sphere. As described in |
flow vector, $\vec{u}$, on the sphere. As described in |
201 |
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
202 |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
203 |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
204 |
elevation $\eta$ and the hydrostatic pressure. |
elevation $\eta$ and the hydrostatic pressure. |
205 |
\\ |
\\ |
206 |
|
|
215 |
\end{eqnarray} |
\end{eqnarray} |
216 |
|
|
217 |
\noindent of $\approx 600$km. This is greater than the model |
\noindent of $\approx 600$km. This is greater than the model |
218 |
resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional |
resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional |
219 |
boundary layer is adequately resolved. |
boundary layer is adequately resolved. |
220 |
\\ |
\\ |
221 |
|
|
222 |
\noindent The model is stepped forward with a time step $\delta |
\noindent The model is stepped forward with a time step $\Delta |
223 |
t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $\delta |
t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $\Delta |
224 |
t_{v}=30~{\rm minutes}$ for momentum terms. With this time step, the |
t_{v}=30~{\rm minutes}$ for momentum terms. With this time step, |
225 |
stability parameter to the horizontal Laplacian friction |
the stability parameter to the horizontal Laplacian friction |
226 |
\citep{adcroft:95} |
\citep{adcroft:95} |
227 |
\begin{eqnarray} |
\begin{eqnarray} |
228 |
\label{eq:eg-global-laplacian_stability} |
\label{eq:eg-global-laplacian_stability} |
229 |
&& S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
&& S_{l} = 4 \frac{A_{h} \Delta t_{v}}{{\Delta x}^2} |
230 |
\end{eqnarray} |
\end{eqnarray} |
231 |
|
|
232 |
\noindent evaluates to 0.6 at a latitude of $\phi=80^{\circ}$, which |
\noindent evaluates to 0.6 at a latitude of $\phi=80^{\circ}$, which |
236 |
criterion is already met 1 grid cell equatorwards (at $\phi=76^{\circ}$). |
criterion is already met 1 grid cell equatorwards (at $\phi=76^{\circ}$). |
237 |
|
|
238 |
|
|
239 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
240 |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
241 |
\begin{eqnarray} |
\begin{eqnarray} |
242 |
\label{eq:eg-global-laplacian_stability_z} |
\label{eq:eg-global-laplacian_stability_z} |
243 |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
&& S_{l} = 4 \frac{A_{z} \Delta t_{v}}{{\Delta z}^2} |
244 |
\end{eqnarray} |
\end{eqnarray} |
245 |
|
|
246 |
\noindent evaluates to $0.0029$ for the smallest model |
\noindent evaluates to $0.0029$ for the smallest model |
248 |
the upper stability limit. |
the upper stability limit. |
249 |
\\ |
\\ |
250 |
|
|
251 |
% The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients |
% The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients |
252 |
% for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ |
% for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ |
253 |
% and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit |
% and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit |
254 |
% related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
% related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
255 |
% Here the stability parameter |
% Here the stability parameter |
256 |
% \begin{eqnarray} |
% \begin{eqnarray} |
257 |
% \label{eq:eg-global-laplacian_stability_xtheta} |
% \label{eq:eg-global-laplacian_stability_xtheta} |
258 |
% S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
% S_{l} = \frac{4 K_{h} \Delta t_{\theta}}{{\Delta x}^2} |
259 |
% \end{eqnarray} |
% \end{eqnarray} |
260 |
% evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
% evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
261 |
% stability parameter related to $K_{z}$ |
% stability parameter related to $K_{z}$ |
262 |
% \begin{eqnarray} |
% \begin{eqnarray} |
263 |
% \label{eq:eg-global-laplacian_stability_ztheta} |
% \label{eq:eg-global-laplacian_stability_ztheta} |
264 |
% S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
% S_{l} = \frac{4 K_{z} \Delta t_{\theta}}{{\Delta z}^2} |
265 |
% \end{eqnarray} |
% \end{eqnarray} |
266 |
% evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
% evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
267 |
% of $S_{l} \approx 0.5$. |
% of $S_{l} \approx 0.5$. |
268 |
% \\ |
% \\ |
269 |
|
|
270 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
271 |
\citep{adcroft:95} |
\citep{adcroft:95} |
272 |
|
|
273 |
\begin{eqnarray} |
\begin{eqnarray} |
274 |
\label{eq:eg-global-inertial_stability} |
\label{eq:eg-global-inertial_stability} |
275 |
S_{i} = f^{2} {\delta t_v}^2 |
&& S_{i} = f^{2} {\Delta t_v}^2 |
276 |
\end{eqnarray} |
\end{eqnarray} |
277 |
|
|
278 |
\noindent evaluates to $0.07$ for |
\noindent evaluates to $0.07$ for |
280 |
below the $S_{i} < 1$ upper limit for stability. |
below the $S_{i} < 1$ upper limit for stability. |
281 |
\\ |
\\ |
282 |
|
|
283 |
\noindent The advective CFL \citep{adcroft:95} for a extreme maximum |
\noindent The advective CFL \citep{adcroft:95} for a extreme maximum |
284 |
horizontal flow |
horizontal flow |
285 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
286 |
|
|
287 |
\begin{eqnarray} |
\begin{eqnarray} |
288 |
\label{eq:eg-global-cfl_stability} |
\label{eq:eg-global-cfl_stability} |
289 |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
&& S_{a} = \frac{| \vec{u} | \Delta t_{v}}{ \Delta x} |
290 |
\end{eqnarray} |
\end{eqnarray} |
291 |
|
|
292 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
293 |
limit of 0.5. |
limit of 0.5. |
294 |
\\ |
\\ |
295 |
|
|
299 |
|
|
300 |
\begin{eqnarray} |
\begin{eqnarray} |
301 |
\label{eq:eg-global-gfl_stability} |
\label{eq:eg-global-gfl_stability} |
302 |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
&& S_{c} = \frac{c_{g} \Delta t_{v}}{ \Delta x} |
303 |
\end{eqnarray} |
\end{eqnarray} |
304 |
|
|
305 |
\noindent evaluates to $2.3 \times 10^{-1}$. This is close to the linear |
\noindent evaluates to $2.3 \times 10^{-1}$. This is close to the linear |
306 |
stability limit of 0.5. |
stability limit of 0.5. |
307 |
|
|
308 |
\subsection{Experiment Configuration} |
\subsection{Experiment Configuration} |
309 |
%\label{www:tutorials} |
%\label{www:tutorials} |
310 |
\label{sec:eg-global-clim_ocn_examp_exp_config} |
\label{sec:eg-global-clim_ocn_examp_exp_config} |
323 |
\item {\it input/lev\_sss.bin}, |
\item {\it input/lev\_sss.bin}, |
324 |
\item {\it input/lev\_sst.bin}, |
\item {\it input/lev\_sst.bin}, |
325 |
\item {\it input/bathymetry.bin}, |
\item {\it input/bathymetry.bin}, |
326 |
\item {\it code/CPP\_EEOPTIONS.h} |
%\item {\it code/CPP\_EEOPTIONS.h} |
327 |
\item {\it code/CPP\_OPTIONS.h}, |
%\item {\it code/CPP\_OPTIONS.h}, |
328 |
\item {\it code/SIZE.h}. |
\item {\it code/SIZE.h}. |
329 |
\end{itemize} |
\end{itemize} |
330 |
contain the code customizations and parameter settings for these |
contain the code customizations and parameter settings for these |
331 |
experiments. Below we describe the customizations |
experiments. Below we describe the customizations |
394 |
|
|
395 |
Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord}) |
Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord}) |
396 |
%(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr}) |
%(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr}) |
397 |
show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) |
show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) |
398 |
fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
399 |
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
400 |
in equations |
in equations |
401 |
(\ref{eq:eg-global-global_forcing_fu}-\ref{eq:eg-global-global_forcing_fs}). |
(\ref{eq:eg-global-global_forcing_fu}-\ref{eq:eg-global-global_forcing_fs}). |
402 |
The figures also indicate the lateral extent and coastline used in the |
The figures also indicate the lateral extent and coastline used in the |
403 |
experiment. Figure ({\it --- missing figure --- }) %ref{fig:model_bathymetry}) |
experiment. Figure ({\it --- missing figure --- }) %ref{fig:model_bathymetry}) |
404 |
shows the depth contours of the model domain. |
shows the depth contours of the model domain. |
405 |
|
|
406 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
433 |
%\label{www:tutorials} |
%\label{www:tutorials} |
434 |
|
|
435 |
|
|
436 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
437 |
map of depth values. For this experiment values are either |
map of depth values. For this experiment values are either |
438 |
$0m$ or $-5200\,{\rm m}$, corresponding respectively to a wall or to deep |
$0m$ or $-5200\,{\rm m}$, corresponding respectively to a wall or to deep |
439 |
ocean. The file contains a raw binary stream of data that is enumerated |
ocean. The file contains a raw binary stream of data that is enumerated |
444 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
445 |
%\label{www:tutorials} |
%\label{www:tutorials} |
446 |
|
|
447 |
Two lines are customized in this file for the current experiment |
\input{s_examples/global_oce_latlon/cod_SIZE.h} |
448 |
|
|
449 |
\begin{itemize} |
%\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
|
|
|
|
\item Line 39, |
|
|
\begin{verbatim} sNx=45, \end{verbatim} this line sets |
|
|
the lateral domain extent in grid points for the |
|
|
axis aligned with the x-coordinate. |
|
|
|
|
|
\item Line 40, |
|
|
\begin{verbatim} sNy=40, \end{verbatim} this line sets |
|
|
the lateral domain extent in grid points for the |
|
|
axis aligned with the y-coordinate. |
|
|
|
|
|
\item Line 49, |
|
|
\begin{verbatim} |
|
|
Nr=15, |
|
|
\end{verbatim} this line sets |
|
|
the vertical domain extent in grid points. |
|
|
|
|
|
\end{itemize} |
|
|
|
|
|
\begin{small} |
|
|
\input{s_examples/global_oce_latlon/code/SIZE.h} |
|
|
\end{small} |
|
|
|
|
|
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
|
450 |
%\label{www:tutorials} |
%\label{www:tutorials} |
451 |
|
|
452 |
This file uses standard default values and does not contain |
%This file uses standard default values and does not contain |
453 |
customisations for this experiment. |
%customisations for this experiment. |
454 |
|
|
455 |
|
|
456 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
%\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
457 |
%\label{www:tutorials} |
%\label{www:tutorials} |
458 |
|
|
459 |
This file uses standard default values and does not contain |
%This file uses standard default values and does not contain |
460 |
customisations for this experiment. |
%customisations for this experiment. |
461 |
|
|
462 |
\subsubsection{Other Files } |
\subsubsection{Other Files } |
463 |
%\label{www:tutorials} |
%\label{www:tutorials} |
470 |
% \item {\it model/src/ini\_parms.F}, |
% \item {\it model/src/ini\_parms.F}, |
471 |
% \item {\it input/windx.sin\_y}, |
% \item {\it input/windx.sin\_y}, |
472 |
% \end{itemize} |
% \end{itemize} |
473 |
% contain the code customisations and parameter settings for this |
% contain the code customisations and parameter settings for this |
474 |
% experiments. Below we describe the customisations |
% experiments. Below we describe the customisations |
475 |
% to these files associated with this experiment. |
% to these files associated with this experiment. |