/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Diff of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.20 by jmc, Thu Apr 21 20:05:12 2011 UTC revision 1.23 by jmc, Sun May 8 16:24:24 2011 UTC
# Line 13  Line 13 
13    
14  \bodytext{bgcolor="#FFFFFFFF"}  \bodytext{bgcolor="#FFFFFFFF"}
15    
16    \noindent {\bf WARNING: the description of this experiment is not complete.
17     In particular, many parameters are not yet described.}\\
18    
19  %\begin{center}  %\begin{center}
20  %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation  %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
21  %At Four Degree Resolution with Asynchronous Time Stepping}  %At Four Degree Resolution with Asynchronous Time Stepping}
# Line 24  Line 27 
27  %\end{center}  %\end{center}
28    
29    
30  This example experiment demonstrates using the MITgcm to simulate  This example experiment demonstrates using the MITgcm to simulate the
31  the planetary ocean circulation. The simulation is configured  planetary ocean circulation. The simulation is configured with
32  with realistic geography and bathymetry on a  realistic geography and bathymetry on a $4^{\circ} \times 4^{\circ}$
33  $4^{\circ} \times 4^{\circ}$ spherical polar grid.  spherical polar grid. The files for this experiment are in the
34  The files for this experiment are in the verification directory  verification directory under tutorial\_global\_oce\_latlon. Fifteen
35  under tutorial\_global\_oce\_latlon.  levels are used in the vertical, ranging in thickness from $50\,{\rm
36  Twenty levels are used in the vertical, ranging in thickness    m}$ at the surface to $690\,{\rm m}$ at depth, giving a maximum
37  from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,  model depth of $5200\,{\rm m}$.  At this resolution, the configuration
38  giving a maximum model depth of $6\,{\rm km}$.  can be integrated forward for thousands of years on a single processor
39  At this resolution, the configuration  desktop computer.
 can be integrated forward for thousands of years on a single  
 processor desktop computer.  
40  \\  \\
41  \subsection{Overview}  \subsection{Overview}
42  %\label{www:tutorials}  %\label{www:tutorials}
43    
44  The model is forced with climatological wind stress data and surface  The model is forced with climatological wind stress data from
45  flux data from DaSilva \cite{DaSilva94}. Climatological data  \citet{trenberth90} and NCEP surface flux data from
46  from Levitus \cite{Levitus94} is used to initialize the model hydrography.  \citet{kalnay96}. Climatological data \citep{Levitus94} is
47  Levitus seasonal climatology data is also used throughout the calculation  used to initialize the model hydrography. \citeauthor{Levitus94} seasonal
48  to provide additional air-sea fluxes.  climatology data is also used throughout the calculation to provide
49  These fluxes are combined with the DaSilva climatological estimates of  additional air-sea fluxes.  These fluxes are combined with the NCEP
50  surface heat flux and fresh water, resulting in a mixed boundary  climatological estimates of surface heat flux, resulting in a mixed
51  condition of the style described in Haney \cite{Haney}.  boundary condition of the style described in \citet{Haney}.
52  Altogether, this yields the following forcing applied  Altogether, this yields the following forcing applied in the model
53  in the model surface layer.  surface layer.
54    
55  \begin{eqnarray}  \begin{eqnarray}
56  \label{eq:eg-global-global_forcing}  \label{eq:eg-global-global_forcing}
# Line 99  simulation are described in the experime Line 100  simulation are described in the experime
100  %\label{www:tutorials}  %\label{www:tutorials}
101    
102    
103   The model is configured in hydrostatic form.  The domain is discretised with  The model is configured in hydrostatic form.  The domain is
104  a uniform grid spacing in latitude and longitude on the sphere  discretised with a uniform grid spacing in latitude and longitude on
105   $\Delta \phi=\Delta \lambda=4^{\circ}$, so  the sphere $\Delta \phi=\Delta \lambda=4^{\circ}$, so that there are
106  that there are ninety grid cells in the zonal and forty in the  ninety grid cells in the zonal and forty in the meridional
107  meridional direction. The internal model coordinate variables  direction. The internal model coordinate variables $x$ and $y$ are
108  $x$ and $y$ are initialized according to  initialized according to
109  \begin{eqnarray}  \begin{eqnarray}
110  x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\  x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
111  y=r\lambda,~\Delta y &= &r\Delta \lambda  y=r\lambda,~\Delta y &= &r\Delta \lambda
# Line 113  y=r\lambda,~\Delta y &= &r\Delta \lambda Line 114  y=r\lambda,~\Delta y &= &r\Delta \lambda
114  Arctic polar regions are not  Arctic polar regions are not
115  included in this experiment. Meridionally the model extends from  included in this experiment. Meridionally the model extends from
116  $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.  $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
117  Vertically the model is configured with twenty layers with the  Vertically the model is configured with fifteen layers with the
118  following thicknesses  following thicknesses
119  $\Delta z_{1} = 50\,{\rm m},\,  $\Delta z_{1} = 50\,{\rm m},\,
120   \Delta z_{2} = 50\,{\rm m},\,   \Delta z_{2} = 70\,{\rm m},\,
121   \Delta z_{3} = 55\,{\rm m},\,   \Delta z_{3} = 100\,{\rm m},\,
122   \Delta z_{4} = 60\,{\rm m},\,   \Delta z_{4} = 140\,{\rm m},\,
123   \Delta z_{5} = 65\,{\rm m},\,   \Delta z_{5} = 190\,{\rm m},\,
124  $   \Delta z_{6}~=~240\,{\rm m},\,
125  $   \Delta z_{7}~=~290\,{\rm m},\,
126   \Delta z_{6}~=~70\,{\rm m},\,   \Delta z_{8}~=340\,{\rm m},\,
127   \Delta z_{7}~=~80\,{\rm m},\,   \Delta z_{9}=390\,{\rm m},\,
128   \Delta z_{8}~=95\,{\rm m},\,   \Delta z_{10}=440\,{\rm m},\,
129   \Delta z_{9}=120\,{\rm m},\,   \Delta z_{11}=490\,{\rm m},\,
130   \Delta z_{10}=155\,{\rm m},\,   \Delta z_{12}=540\,{\rm m},\,
131  $   \Delta z_{13}=590\,{\rm m},\,
132  $   \Delta z_{14}=640\,{\rm m},\,
133   \Delta z_{11}=200\,{\rm m},\,   \Delta z_{15}=690\,{\rm m}
  \Delta z_{12}=260\,{\rm m},\,  
  \Delta z_{13}=320\,{\rm m},\,  
  \Delta z_{14}=400\,{\rm m},\,  
  \Delta z_{15}=480\,{\rm m},\,  
 $  
 $  
  \Delta z_{16}=570\,{\rm m},\,  
  \Delta z_{17}=655\,{\rm m},\,  
  \Delta z_{18}=725\,{\rm m},\,  
  \Delta z_{19}=775\,{\rm m},\,  
  \Delta z_{20}=815\,{\rm m}  
134  $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to  $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
135  give a total depth, $H$, of $-5450{\rm m}$.  give a total depth, $H$, of $-5200{\rm m}$.
136  The implicit free surface form of the pressure equation described in Marshall et. al  The implicit free surface form of the pressure equation described in
137  \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous  \citet{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
138  dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.  dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
139    
140  Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations})  Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations})
# Line 217  elevation $\eta$ and the hydrostatic pre Line 207  elevation $\eta$ and the hydrostatic pre
207  %\label{www:tutorials}  %\label{www:tutorials}
208    
209  The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.  The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
210  This value is chosen to yield a Munk layer width \cite{adcroft:95},  This value is chosen to yield a Munk layer width \citep{adcroft:95},
211  \begin{eqnarray}  \begin{eqnarray}
212  \label{eq:eg-global-munk_layer}  \label{eq:eg-global-munk_layer}
213  && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}  && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
# Line 228  resolution in low-latitudes, $\Delta x \ Line 218  resolution in low-latitudes, $\Delta x \
218  boundary layer is adequately resolved.  boundary layer is adequately resolved.
219  \\  \\
220    
221  \noindent The model is stepped forward with a  \noindent The model is stepped forward with a time step $\delta
222  time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and  t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $\delta
223  $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability  t_{v}=30~{\rm minutes}$ for momentum terms. With this time step, the
224  parameter to the horizontal Laplacian friction \cite{adcroft:95}  stability parameter to the horizontal Laplacian friction
225    \citep{adcroft:95}
226  \begin{eqnarray}  \begin{eqnarray}
227  \label{eq:eg-global-laplacian_stability}  \label{eq:eg-global-laplacian_stability}
228  && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}  && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
229  \end{eqnarray}  \end{eqnarray}
230    
231  \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the  \noindent evaluates to 0.6 at a latitude of $\phi=80^{\circ}$, which
232  0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at  is above the 0.3 upper limit for stability, but the zonal grid spacing
233  $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.  $\Delta x$ is smallest at $\phi=80^{\circ}$ where $\Delta
234  \\  x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$ and the stability
235    criterion is already met 1 grid cell equatorwards (at $\phi=76^{\circ}$).
236    
237    
238  \noindent The vertical dissipation coefficient, $A_{z}$, is set to  \noindent The vertical dissipation coefficient, $A_{z}$, is set to
239  $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit  $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
# Line 249  $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. Line 242  $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$.
242  S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}  S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
243  \end{eqnarray}  \end{eqnarray}
244    
245  \noindent evaluates to $0.015$ for the smallest model  \noindent evaluates to $0.0029$ for the smallest model
246  level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below  level spacing ($\Delta z_{1}=50{\rm m}$) which is well below
247  the upper stability limit.  the upper stability limit.
248  \\  \\
249    
250  The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients  % The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
251  for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$  % for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
252  and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit  % and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
253  related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.  % related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
254  Here the stability parameter  % Here the stability parameter
255  \begin{eqnarray}  % \begin{eqnarray}
256  \label{eq:eg-global-laplacian_stability_xtheta}  % \label{eq:eg-global-laplacian_stability_xtheta}
257  S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}  % S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
258  \end{eqnarray}  % \end{eqnarray}
259  evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The  % evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
260  stability parameter related to $K_{z}$  % stability parameter related to $K_{z}$
261  \begin{eqnarray}  % \begin{eqnarray}
262  \label{eq:eg-global-laplacian_stability_ztheta}  % \label{eq:eg-global-laplacian_stability_ztheta}
263  S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}  % S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
264  \end{eqnarray}  % \end{eqnarray}
265  evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit  % evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
266  of $S_{l} \approx 0.5$.  % of $S_{l} \approx 0.5$.
267  \\  % \\
268    
269  \noindent The numerical stability for inertial oscillations  \noindent The numerical stability for inertial oscillations
270  \cite{adcroft:95}  \citep{adcroft:95}
271    
272  \begin{eqnarray}  \begin{eqnarray}
273  \label{eq:eg-global-inertial_stability}  \label{eq:eg-global-inertial_stability}
274  S_{i} = f^{2} {\delta t_v}^2  S_{i} = f^{2} {\delta t_v}^2
275  \end{eqnarray}  \end{eqnarray}
276    
277  \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to  \noindent evaluates to $0.07$ for
278  the $S_{i} < 1$ upper limit for stability.  $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is
279    below the $S_{i} < 1$ upper limit for stability.
280  \\  \\
281    
282  \noindent The advective CFL \cite{adcroft:95} for a extreme maximum  \noindent The advective CFL \citep{adcroft:95} for a extreme maximum
283  horizontal flow  horizontal flow
284  speed of $ | \vec{u} | = 2 ms^{-1}$  speed of $ | \vec{u} | = 2 ms^{-1}$
285    
# Line 294  speed of $ | \vec{u} | = 2 ms^{-1}$ Line 288  speed of $ | \vec{u} | = 2 ms^{-1}$
288  S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}  S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
289  \end{eqnarray}  \end{eqnarray}
290    
291  \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability  \noindent evaluates to $5 \times 10^{-2}$. This is well below the stability
292  limit of 0.5.  limit of 0.5.
293  \\  \\
294    
295  \noindent The stability parameter for internal gravity waves propagating  \noindent The stability parameter for internal gravity waves propagating
296  with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$   with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
297  \cite{adcroft:95}  \citep{adcroft:95}
298    
299  \begin{eqnarray}  \begin{eqnarray}
300  \label{eq:eg-global-gfl_stability}  \label{eq:eg-global-gfl_stability}
301  S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}  S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
302  \end{eqnarray}  \end{eqnarray}
303    
304  \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear  \noindent evaluates to $2.3 \times 10^{-1}$. This is close to the linear
305  stability limit of 0.5.  stability limit of 0.5.
306        
307  \subsection{Experiment Configuration}  \subsection{Experiment Configuration}
308  %\label{www:tutorials}  %\label{www:tutorials}
309  \label{sec:eg-global-clim_ocn_examp_exp_config}  \label{sec:eg-global-clim_ocn_examp_exp_config}
310    
311  The model configuration for this experiment resides under the  The model configuration for this experiment resides under the
312  directory {\it tutorial\_examples/global\_ocean\_circulation/}.    directory {\it tutorial\_global\_oce\_latlon/}. The experiment files
 The experiment files  
313    
314  \begin{itemize}  \begin{itemize}
315  \item {\it input/data}  \item {\it input/data}
316  \item {\it input/data.pkg}  \item {\it input/data.pkg}
317  \item {\it input/eedata},  \item {\it input/eedata},
318  \item {\it input/windx.bin},  \item {\it input/trenberth\_taux.bin},
319  \item {\it input/windy.bin},  \item {\it input/trenberth\_tauy.bin},
320  \item {\it input/salt.bin},  \item {\it input/lev\_s.bin},
321  \item {\it input/theta.bin},  \item {\it input/lev\_t.bin},
322  \item {\it input/SSS.bin},  \item {\it input/lev\_sss.bin},
323  \item {\it input/SST.bin},  \item {\it input/lev\_sst.bin},
324  \item {\it input/topog.bin},  \item {\it input/bathymetry.bin},
325  \item {\it code/CPP\_EEOPTIONS.h}  %\item {\it code/CPP\_EEOPTIONS.h}
326  \item {\it code/CPP\_OPTIONS.h},  %\item {\it code/CPP\_OPTIONS.h},
327  \item {\it code/SIZE.h}.  \item {\it code/SIZE.h}.
328  \end{itemize}  \end{itemize}
329  contain the code customizations and parameter settings for these  contain the code customizations and parameter settings for these
# Line 340  to these files associated with this expe Line 333  to these files associated with this expe
333  \subsubsection{Driving Datasets}  \subsubsection{Driving Datasets}
334  %\label{www:tutorials}  %\label{www:tutorials}
335    
336  Figures ({\it --- missing figures ---})  %% New figures are included before
337    %% Relaxation temperature
338    %\begin{figure}
339    %\centering
340    %\includegraphics[]{relax_temperature.eps}
341    %\caption{Relaxation temperature for January}
342    %\label{fig:relax_temperature}
343    %\end{figure}
344    
345    %% Relaxation salinity
346    %\begin{figure}
347    %\centering
348    %\includegraphics[]{relax_salinity.eps}
349    %\caption{Relaxation salinity for January}
350    %\label{fig:relax_salinity}
351    %\end{figure}
352    
353    %% tau_x
354    %\begin{figure}
355    %\centering
356    %\includegraphics[]{tau_x.eps}
357    %\caption{zonal wind stress for January}
358    %\label{fig:tau_x}
359    %\end{figure}
360    
361    %% tau_y
362    %\begin{figure}
363    %\centering
364    %\includegraphics[]{tau_y.eps}
365    %\caption{meridional wind stress for January}
366    %\label{fig:tau_y}
367    %\end{figure}
368    
369    %% Qnet
370    %\begin{figure}
371    %\centering
372    %\includegraphics[]{qnet.eps}
373    %\caption{Heat flux for January}
374    %\label{fig:qnet}
375    %\end{figure}
376    
377    %% EmPmR
378    %\begin{figure}
379    %\centering
380    %\includegraphics[]{empmr.eps}
381    %\caption{Fresh water flux for January}
382    %\label{fig:empmr}
383    %\end{figure}
384    
385    %% Bathymetry
386    %\begin{figure}
387    %\centering
388    %\includegraphics[]{bathymetry.eps}
389    %\caption{Bathymetry}
390    %\label{fig:bathymetry}
391    %\end{figure}
392    
393    
394    Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord})
395  %(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr})  %(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr})
396  show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$)  show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$)
397  fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)  fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
# Line 368  customisations for this experiment. Line 419  customisations for this experiment.
419  This file uses standard default values and does not contain  This file uses standard default values and does not contain
420  customisations for this experiment.  customisations for this experiment.
421    
422  \subsubsection{File {\it input/windx.sin\_y}}  \subsubsection{Files{\it input/trenberth\_taux.bin} and {\it
423      input/trenberth\_tauy.bin}}
424  %\label{www:tutorials}  %\label{www:tutorials}
425    
426  The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)  The {\it input/trenberth\_taux.bin} and {\it
427  map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.    input/trenberth\_tauy.bin} files specify a three-dimensional
428  Although $\tau_{x}$ is only a function of $y$n in this experiment  ($x,y,time$) map of wind stress, $(\tau_{x},\tau_{y})$, values
429  this file must still define a complete two-dimensional map in order  \citep{trenberth90}. The units used are $Nm^{-2}$.
 to be compatible with the standard code for loading forcing fields  
 in MITgcm. The included matlab program {\it input/gendata.m} gives a complete  
 code for creating the {\it input/windx.sin\_y} file.  
430    
431  \subsubsection{File {\it input/topog.box}}  \subsubsection{File {\it input/bathymetry.bin}}
432  %\label{www:tutorials}  %\label{www:tutorials}
433    
434    
435  The {\it input/topog.box} file specifies a two-dimensional ($x,y$)  The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
436  map of depth values. For this experiment values are either  map of depth values. For this experiment values are either
437  $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep  $0m$ or $-5200\,{\rm m}$, corresponding respectively to a wall or to deep
438  ocean. The file contains a raw binary stream of data that is enumerated  ocean. The file contains a raw binary stream of data that is enumerated
439  in the same way as standard MITgcm two-dimensional, horizontal arrays.  in the same way as standard MITgcm two-dimensional, horizontal arrays.
440  The included matlab program {\it input/gendata.m} gives a complete  The included matlab program {\it input/gendata.m} gives a complete
# Line 394  code for creating the {\it input/topog.b Line 443  code for creating the {\it input/topog.b
443  \subsubsection{File {\it code/SIZE.h}}  \subsubsection{File {\it code/SIZE.h}}
444  %\label{www:tutorials}  %\label{www:tutorials}
445    
446  Two lines are customized in this file for the current experiment  \input{s_examples/global_oce_latlon/cod_SIZE.h}
   
 \begin{itemize}  
   
 \item Line 39,  
 \begin{verbatim} sNx=60, \end{verbatim} this line sets  
 the lateral domain extent in grid points for the  
 axis aligned with the x-coordinate.  
   
 \item Line 40,  
 \begin{verbatim} sNy=60, \end{verbatim} this line sets  
 the lateral domain extent in grid points for the  
 axis aligned with the y-coordinate.  
   
 \item Line 49,  
 \begin{verbatim} Nr=4,   \end{verbatim} this line sets  
 the vertical domain extent in grid points.  
447    
448  \end{itemize}  %\subsubsection{File {\it code/CPP\_OPTIONS.h}}
   
 \begin{small}  
 \input{s_examples/global_oce_latlon/code/SIZE.h}  
 \end{small}  
   
 \subsubsection{File {\it code/CPP\_OPTIONS.h}}  
449  %\label{www:tutorials}  %\label{www:tutorials}
450    
451  This file uses standard default values and does not contain  %This file uses standard default values and does not contain
452  customisations for this experiment.  %customisations for this experiment.
453    
454    
455  \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}  %\subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
456  %\label{www:tutorials}  %\label{www:tutorials}
457    
458  This file uses standard default values and does not contain  %This file uses standard default values and does not contain
459  customisations for this experiment.  %customisations for this experiment.
460    
461  \subsubsection{Other Files }  \subsubsection{Other Files }
462  %\label{www:tutorials}  %\label{www:tutorials}
463    
464  Other files relevant to this experiment are  % Other files relevant to this experiment are
465  \begin{itemize}  % \begin{itemize}
466  \item {\it model/src/ini\_cori.F}. This file initializes the model  % \item {\it model/src/ini\_cori.F}. This file initializes the model
467  coriolis variables {\bf fCorU}.  % coriolis variables {\bf fCorU}.
468  \item {\it model/src/ini\_spherical\_polar\_grid.F}  % \item {\it model/src/ini\_spherical\_polar\_grid.F}
469  \item {\it model/src/ini\_parms.F},  % \item {\it model/src/ini\_parms.F},
470  \item {\it input/windx.sin\_y},  % \item {\it input/windx.sin\_y},
471  \end{itemize}  % \end{itemize}
472  contain the code customisations and parameter settings for this  % contain the code customisations and parameter settings for this
473  experiments. Below we describe the customisations  % experiments. Below we describe the customisations
474  to these files associated with this experiment.  % to these files associated with this experiment.

Legend:
Removed from v.1.20  
changed lines
  Added in v.1.23

  ViewVC Help
Powered by ViewVC 1.1.22