13 |
|
|
14 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
15 |
|
|
16 |
|
\noindent {\bf WARNING: the description of this experiment is not complete. |
17 |
|
In particular, many parameters are not yet described.}\\ |
18 |
|
|
19 |
%\begin{center} |
%\begin{center} |
20 |
%{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation |
%{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation |
21 |
%At Four Degree Resolution with Asynchronous Time Stepping} |
%At Four Degree Resolution with Asynchronous Time Stepping} |
27 |
%\end{center} |
%\end{center} |
28 |
|
|
29 |
|
|
30 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate the |
31 |
the planetary ocean circulation. The simulation is configured |
planetary ocean circulation. The simulation is configured with |
32 |
with realistic geography and bathymetry on a |
realistic geography and bathymetry on a $4^{\circ} \times 4^{\circ}$ |
33 |
$4^{\circ} \times 4^{\circ}$ spherical polar grid. |
spherical polar grid. The files for this experiment are in the |
34 |
The files for this experiment are in the verification directory |
verification directory under tutorial\_global\_oce\_latlon. Fifteen |
35 |
under tutorial\_global\_oce\_latlon. |
levels are used in the vertical, ranging in thickness from $50\,{\rm |
36 |
Twenty levels are used in the vertical, ranging in thickness |
m}$ at the surface to $690\,{\rm m}$ at depth, giving a maximum |
37 |
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, |
model depth of $5200\,{\rm m}$. At this resolution, the configuration |
38 |
giving a maximum model depth of $6\,{\rm km}$. |
can be integrated forward for thousands of years on a single processor |
39 |
At this resolution, the configuration |
desktop computer. |
|
can be integrated forward for thousands of years on a single |
|
|
processor desktop computer. |
|
40 |
\\ |
\\ |
41 |
\subsection{Overview} |
\subsection{Overview} |
42 |
%\label{www:tutorials} |
%\label{www:tutorials} |
43 |
|
|
44 |
The model is forced with climatological wind stress data and surface |
The model is forced with climatological wind stress data from |
45 |
flux data from DaSilva \cite{DaSilva94}. Climatological data |
\citet{trenberth90} and NCEP surface flux data from |
46 |
from Levitus \cite{Levitus94} is used to initialize the model hydrography. |
\citet{kalnay96}. Climatological data \citep{Levitus94} is |
47 |
Levitus seasonal climatology data is also used throughout the calculation |
used to initialize the model hydrography. \citeauthor{Levitus94} seasonal |
48 |
to provide additional air-sea fluxes. |
climatology data is also used throughout the calculation to provide |
49 |
These fluxes are combined with the DaSilva climatological estimates of |
additional air-sea fluxes. These fluxes are combined with the NCEP |
50 |
surface heat flux and fresh water, resulting in a mixed boundary |
climatological estimates of surface heat flux, resulting in a mixed |
51 |
condition of the style described in Haney \cite{Haney}. |
boundary condition of the style described in \citet{Haney}. |
52 |
Altogether, this yields the following forcing applied |
Altogether, this yields the following forcing applied in the model |
53 |
in the model surface layer. |
surface layer. |
54 |
|
|
55 |
\begin{eqnarray} |
\begin{eqnarray} |
56 |
\label{eq:eg-global-global_forcing} |
\label{eq:eg-global-global_forcing} |
100 |
%\label{www:tutorials} |
%\label{www:tutorials} |
101 |
|
|
102 |
|
|
103 |
The model is configured in hydrostatic form. The domain is discretised with |
The model is configured in hydrostatic form. The domain is |
104 |
a uniform grid spacing in latitude and longitude on the sphere |
discretised with a uniform grid spacing in latitude and longitude on |
105 |
$\Delta \phi=\Delta \lambda=4^{\circ}$, so |
the sphere $\Delta \phi=\Delta \lambda=4^{\circ}$, so that there are |
106 |
that there are ninety grid cells in the zonal and forty in the |
ninety grid cells in the zonal and forty in the meridional |
107 |
meridional direction. The internal model coordinate variables |
direction. The internal model coordinate variables $x$ and $y$ are |
108 |
$x$ and $y$ are initialized according to |
initialized according to |
109 |
\begin{eqnarray} |
\begin{eqnarray} |
110 |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
111 |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
114 |
Arctic polar regions are not |
Arctic polar regions are not |
115 |
included in this experiment. Meridionally the model extends from |
included in this experiment. Meridionally the model extends from |
116 |
$80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. |
$80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. |
117 |
Vertically the model is configured with twenty layers with the |
Vertically the model is configured with fifteen layers with the |
118 |
following thicknesses |
following thicknesses |
119 |
$\Delta z_{1} = 50\,{\rm m},\, |
$\Delta z_{1} = 50\,{\rm m},\, |
120 |
\Delta z_{2} = 50\,{\rm m},\, |
\Delta z_{2} = 70\,{\rm m},\, |
121 |
\Delta z_{3} = 55\,{\rm m},\, |
\Delta z_{3} = 100\,{\rm m},\, |
122 |
\Delta z_{4} = 60\,{\rm m},\, |
\Delta z_{4} = 140\,{\rm m},\, |
123 |
\Delta z_{5} = 65\,{\rm m},\, |
\Delta z_{5} = 190\,{\rm m},\, |
124 |
$ |
\Delta z_{6}~=~240\,{\rm m},\, |
125 |
$ |
\Delta z_{7}~=~290\,{\rm m},\, |
126 |
\Delta z_{6}~=~70\,{\rm m},\, |
\Delta z_{8}~=340\,{\rm m},\, |
127 |
\Delta z_{7}~=~80\,{\rm m},\, |
\Delta z_{9}=390\,{\rm m},\, |
128 |
\Delta z_{8}~=95\,{\rm m},\, |
\Delta z_{10}=440\,{\rm m},\, |
129 |
\Delta z_{9}=120\,{\rm m},\, |
\Delta z_{11}=490\,{\rm m},\, |
130 |
\Delta z_{10}=155\,{\rm m},\, |
\Delta z_{12}=540\,{\rm m},\, |
131 |
$ |
\Delta z_{13}=590\,{\rm m},\, |
132 |
$ |
\Delta z_{14}=640\,{\rm m},\, |
133 |
\Delta z_{11}=200\,{\rm m},\, |
\Delta z_{15}=690\,{\rm m} |
|
\Delta z_{12}=260\,{\rm m},\, |
|
|
\Delta z_{13}=320\,{\rm m},\, |
|
|
\Delta z_{14}=400\,{\rm m},\, |
|
|
\Delta z_{15}=480\,{\rm m},\, |
|
|
$ |
|
|
$ |
|
|
\Delta z_{16}=570\,{\rm m},\, |
|
|
\Delta z_{17}=655\,{\rm m},\, |
|
|
\Delta z_{18}=725\,{\rm m},\, |
|
|
\Delta z_{19}=775\,{\rm m},\, |
|
|
\Delta z_{20}=815\,{\rm m} |
|
134 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$) to |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$) to |
135 |
give a total depth, $H$, of $-5450{\rm m}$. |
give a total depth, $H$, of $-5200{\rm m}$. |
136 |
The implicit free surface form of the pressure equation described in Marshall et. al |
The implicit free surface form of the pressure equation described in |
137 |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
\citet{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
138 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
139 |
|
|
140 |
Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations}) |
Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations}) |
207 |
%\label{www:tutorials} |
%\label{www:tutorials} |
208 |
|
|
209 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
210 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
This value is chosen to yield a Munk layer width \citep{adcroft:95}, |
211 |
\begin{eqnarray} |
\begin{eqnarray} |
212 |
\label{eq:eg-global-munk_layer} |
\label{eq:eg-global-munk_layer} |
213 |
&& M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
&& M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
218 |
boundary layer is adequately resolved. |
boundary layer is adequately resolved. |
219 |
\\ |
\\ |
220 |
|
|
221 |
\noindent The model is stepped forward with a |
\noindent The model is stepped forward with a time step $\delta |
222 |
time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and |
t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $\delta |
223 |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
t_{v}=30~{\rm minutes}$ for momentum terms. With this time step, the |
224 |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
stability parameter to the horizontal Laplacian friction |
225 |
|
\citep{adcroft:95} |
226 |
\begin{eqnarray} |
\begin{eqnarray} |
227 |
\label{eq:eg-global-laplacian_stability} |
\label{eq:eg-global-laplacian_stability} |
228 |
&& S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
&& S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
229 |
\end{eqnarray} |
\end{eqnarray} |
230 |
|
|
231 |
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
\noindent evaluates to 0.6 at a latitude of $\phi=80^{\circ}$, which |
232 |
0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at |
is above the 0.3 upper limit for stability, but the zonal grid spacing |
233 |
$\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$. |
$\Delta x$ is smallest at $\phi=80^{\circ}$ where $\Delta |
234 |
\\ |
x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$ and the stability |
235 |
|
criterion is already met 1 grid cell equatorwards (at $\phi=76^{\circ}$). |
236 |
|
|
237 |
|
|
238 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
239 |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
242 |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
243 |
\end{eqnarray} |
\end{eqnarray} |
244 |
|
|
245 |
\noindent evaluates to $0.015$ for the smallest model |
\noindent evaluates to $0.0029$ for the smallest model |
246 |
level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below |
level spacing ($\Delta z_{1}=50{\rm m}$) which is well below |
247 |
the upper stability limit. |
the upper stability limit. |
248 |
\\ |
\\ |
249 |
|
|
250 |
The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients |
% The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients |
251 |
for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ |
% for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ |
252 |
and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit |
% and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit |
253 |
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
% related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
254 |
Here the stability parameter |
% Here the stability parameter |
255 |
\begin{eqnarray} |
% \begin{eqnarray} |
256 |
\label{eq:eg-global-laplacian_stability_xtheta} |
% \label{eq:eg-global-laplacian_stability_xtheta} |
257 |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
% S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
258 |
\end{eqnarray} |
% \end{eqnarray} |
259 |
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
% evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
260 |
stability parameter related to $K_{z}$ |
% stability parameter related to $K_{z}$ |
261 |
\begin{eqnarray} |
% \begin{eqnarray} |
262 |
\label{eq:eg-global-laplacian_stability_ztheta} |
% \label{eq:eg-global-laplacian_stability_ztheta} |
263 |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
% S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
264 |
\end{eqnarray} |
% \end{eqnarray} |
265 |
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
% evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
266 |
of $S_{l} \approx 0.5$. |
% of $S_{l} \approx 0.5$. |
267 |
\\ |
% \\ |
268 |
|
|
269 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
270 |
\cite{adcroft:95} |
\citep{adcroft:95} |
271 |
|
|
272 |
\begin{eqnarray} |
\begin{eqnarray} |
273 |
\label{eq:eg-global-inertial_stability} |
\label{eq:eg-global-inertial_stability} |
274 |
S_{i} = f^{2} {\delta t_v}^2 |
S_{i} = f^{2} {\delta t_v}^2 |
275 |
\end{eqnarray} |
\end{eqnarray} |
276 |
|
|
277 |
\noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to |
\noindent evaluates to $0.07$ for |
278 |
the $S_{i} < 1$ upper limit for stability. |
$f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is |
279 |
|
below the $S_{i} < 1$ upper limit for stability. |
280 |
\\ |
\\ |
281 |
|
|
282 |
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum |
\noindent The advective CFL \citep{adcroft:95} for a extreme maximum |
283 |
horizontal flow |
horizontal flow |
284 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
285 |
|
|
288 |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
289 |
\end{eqnarray} |
\end{eqnarray} |
290 |
|
|
291 |
\noindent evaluates to $6 \times 10^{-2}$. This is well below the stability |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
292 |
limit of 0.5. |
limit of 0.5. |
293 |
\\ |
\\ |
294 |
|
|
295 |
\noindent The stability parameter for internal gravity waves propagating |
\noindent The stability parameter for internal gravity waves propagating |
296 |
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
297 |
\cite{adcroft:95} |
\citep{adcroft:95} |
298 |
|
|
299 |
\begin{eqnarray} |
\begin{eqnarray} |
300 |
\label{eq:eg-global-gfl_stability} |
\label{eq:eg-global-gfl_stability} |
301 |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
302 |
\end{eqnarray} |
\end{eqnarray} |
303 |
|
|
304 |
\noindent evaluates to $3 \times 10^{-1}$. This is close to the linear |
\noindent evaluates to $2.3 \times 10^{-1}$. This is close to the linear |
305 |
stability limit of 0.5. |
stability limit of 0.5. |
306 |
|
|
307 |
\subsection{Experiment Configuration} |
\subsection{Experiment Configuration} |
308 |
%\label{www:tutorials} |
%\label{www:tutorials} |
309 |
\label{sec:eg-global-clim_ocn_examp_exp_config} |
\label{sec:eg-global-clim_ocn_examp_exp_config} |
310 |
|
|
311 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
312 |
directory {\it tutorial\_examples/global\_ocean\_circulation/}. |
directory {\it tutorial\_global\_oce\_latlon/}. The experiment files |
|
The experiment files |
|
313 |
|
|
314 |
\begin{itemize} |
\begin{itemize} |
315 |
\item {\it input/data} |
\item {\it input/data} |
316 |
\item {\it input/data.pkg} |
\item {\it input/data.pkg} |
317 |
\item {\it input/eedata}, |
\item {\it input/eedata}, |
318 |
\item {\it input/windx.bin}, |
\item {\it input/trenberth\_taux.bin}, |
319 |
\item {\it input/windy.bin}, |
\item {\it input/trenberth\_tauy.bin}, |
320 |
\item {\it input/salt.bin}, |
\item {\it input/lev\_s.bin}, |
321 |
\item {\it input/theta.bin}, |
\item {\it input/lev\_t.bin}, |
322 |
\item {\it input/SSS.bin}, |
\item {\it input/lev\_sss.bin}, |
323 |
\item {\it input/SST.bin}, |
\item {\it input/lev\_sst.bin}, |
324 |
\item {\it input/topog.bin}, |
\item {\it input/bathymetry.bin}, |
325 |
\item {\it code/CPP\_EEOPTIONS.h} |
%\item {\it code/CPP\_EEOPTIONS.h} |
326 |
\item {\it code/CPP\_OPTIONS.h}, |
%\item {\it code/CPP\_OPTIONS.h}, |
327 |
\item {\it code/SIZE.h}. |
\item {\it code/SIZE.h}. |
328 |
\end{itemize} |
\end{itemize} |
329 |
contain the code customizations and parameter settings for these |
contain the code customizations and parameter settings for these |
333 |
\subsubsection{Driving Datasets} |
\subsubsection{Driving Datasets} |
334 |
%\label{www:tutorials} |
%\label{www:tutorials} |
335 |
|
|
336 |
Figures ({\it --- missing figures ---}) |
%% New figures are included before |
337 |
|
%% Relaxation temperature |
338 |
|
%\begin{figure} |
339 |
|
%\centering |
340 |
|
%\includegraphics[]{relax_temperature.eps} |
341 |
|
%\caption{Relaxation temperature for January} |
342 |
|
%\label{fig:relax_temperature} |
343 |
|
%\end{figure} |
344 |
|
|
345 |
|
%% Relaxation salinity |
346 |
|
%\begin{figure} |
347 |
|
%\centering |
348 |
|
%\includegraphics[]{relax_salinity.eps} |
349 |
|
%\caption{Relaxation salinity for January} |
350 |
|
%\label{fig:relax_salinity} |
351 |
|
%\end{figure} |
352 |
|
|
353 |
|
%% tau_x |
354 |
|
%\begin{figure} |
355 |
|
%\centering |
356 |
|
%\includegraphics[]{tau_x.eps} |
357 |
|
%\caption{zonal wind stress for January} |
358 |
|
%\label{fig:tau_x} |
359 |
|
%\end{figure} |
360 |
|
|
361 |
|
%% tau_y |
362 |
|
%\begin{figure} |
363 |
|
%\centering |
364 |
|
%\includegraphics[]{tau_y.eps} |
365 |
|
%\caption{meridional wind stress for January} |
366 |
|
%\label{fig:tau_y} |
367 |
|
%\end{figure} |
368 |
|
|
369 |
|
%% Qnet |
370 |
|
%\begin{figure} |
371 |
|
%\centering |
372 |
|
%\includegraphics[]{qnet.eps} |
373 |
|
%\caption{Heat flux for January} |
374 |
|
%\label{fig:qnet} |
375 |
|
%\end{figure} |
376 |
|
|
377 |
|
%% EmPmR |
378 |
|
%\begin{figure} |
379 |
|
%\centering |
380 |
|
%\includegraphics[]{empmr.eps} |
381 |
|
%\caption{Fresh water flux for January} |
382 |
|
%\label{fig:empmr} |
383 |
|
%\end{figure} |
384 |
|
|
385 |
|
%% Bathymetry |
386 |
|
%\begin{figure} |
387 |
|
%\centering |
388 |
|
%\includegraphics[]{bathymetry.eps} |
389 |
|
%\caption{Bathymetry} |
390 |
|
%\label{fig:bathymetry} |
391 |
|
%\end{figure} |
392 |
|
|
393 |
|
|
394 |
|
Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord}) |
395 |
%(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr}) |
%(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr}) |
396 |
show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) |
show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) |
397 |
fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
419 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
420 |
customisations for this experiment. |
customisations for this experiment. |
421 |
|
|
422 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{Files{\it input/trenberth\_taux.bin} and {\it |
423 |
|
input/trenberth\_tauy.bin}} |
424 |
%\label{www:tutorials} |
%\label{www:tutorials} |
425 |
|
|
426 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/trenberth\_taux.bin} and {\it |
427 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
input/trenberth\_tauy.bin} files specify a three-dimensional |
428 |
Although $\tau_{x}$ is only a function of $y$n in this experiment |
($x,y,time$) map of wind stress, $(\tau_{x},\tau_{y})$, values |
429 |
this file must still define a complete two-dimensional map in order |
\citep{trenberth90}. The units used are $Nm^{-2}$. |
|
to be compatible with the standard code for loading forcing fields |
|
|
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
|
|
code for creating the {\it input/windx.sin\_y} file. |
|
430 |
|
|
431 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/bathymetry.bin}} |
432 |
%\label{www:tutorials} |
%\label{www:tutorials} |
433 |
|
|
434 |
|
|
435 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
436 |
map of depth values. For this experiment values are either |
map of depth values. For this experiment values are either |
437 |
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
$0m$ or $-5200\,{\rm m}$, corresponding respectively to a wall or to deep |
438 |
ocean. The file contains a raw binary stream of data that is enumerated |
ocean. The file contains a raw binary stream of data that is enumerated |
439 |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
440 |
The included matlab program {\it input/gendata.m} gives a complete |
The included matlab program {\it input/gendata.m} gives a complete |
443 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
444 |
%\label{www:tutorials} |
%\label{www:tutorials} |
445 |
|
|
446 |
Two lines are customized in this file for the current experiment |
\input{s_examples/global_oce_latlon/cod_SIZE.h} |
|
|
|
|
\begin{itemize} |
|
|
|
|
|
\item Line 39, |
|
|
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
|
|
the lateral domain extent in grid points for the |
|
|
axis aligned with the x-coordinate. |
|
|
|
|
|
\item Line 40, |
|
|
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
|
|
the lateral domain extent in grid points for the |
|
|
axis aligned with the y-coordinate. |
|
|
|
|
|
\item Line 49, |
|
|
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
|
|
the vertical domain extent in grid points. |
|
447 |
|
|
448 |
\end{itemize} |
%\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
|
|
|
|
\begin{small} |
|
|
\input{s_examples/global_oce_latlon/code/SIZE.h} |
|
|
\end{small} |
|
|
|
|
|
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
|
449 |
%\label{www:tutorials} |
%\label{www:tutorials} |
450 |
|
|
451 |
This file uses standard default values and does not contain |
%This file uses standard default values and does not contain |
452 |
customisations for this experiment. |
%customisations for this experiment. |
453 |
|
|
454 |
|
|
455 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
%\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
456 |
%\label{www:tutorials} |
%\label{www:tutorials} |
457 |
|
|
458 |
This file uses standard default values and does not contain |
%This file uses standard default values and does not contain |
459 |
customisations for this experiment. |
%customisations for this experiment. |
460 |
|
|
461 |
\subsubsection{Other Files } |
\subsubsection{Other Files } |
462 |
%\label{www:tutorials} |
%\label{www:tutorials} |
463 |
|
|
464 |
Other files relevant to this experiment are |
% Other files relevant to this experiment are |
465 |
\begin{itemize} |
% \begin{itemize} |
466 |
\item {\it model/src/ini\_cori.F}. This file initializes the model |
% \item {\it model/src/ini\_cori.F}. This file initializes the model |
467 |
coriolis variables {\bf fCorU}. |
% coriolis variables {\bf fCorU}. |
468 |
\item {\it model/src/ini\_spherical\_polar\_grid.F} |
% \item {\it model/src/ini\_spherical\_polar\_grid.F} |
469 |
\item {\it model/src/ini\_parms.F}, |
% \item {\it model/src/ini\_parms.F}, |
470 |
\item {\it input/windx.sin\_y}, |
% \item {\it input/windx.sin\_y}, |
471 |
\end{itemize} |
% \end{itemize} |
472 |
contain the code customisations and parameter settings for this |
% contain the code customisations and parameter settings for this |
473 |
experiments. Below we describe the customisations |
% experiments. Below we describe the customisations |
474 |
to these files associated with this experiment. |
% to these files associated with this experiment. |