/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Diff of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.19 by jmc, Mon Aug 30 23:09:20 2010 UTC revision 1.21 by jmc, Thu Apr 21 21:27:16 2011 UTC
# Line 13  Line 13 
13    
14  \bodytext{bgcolor="#FFFFFFFF"}  \bodytext{bgcolor="#FFFFFFFF"}
15    
16    \noindent {\bf WARNING: the description of this experiment is not up-to-date.
17     In particular, most of the parameters description corresponds to an older
18     version of {\it verification/exp2} instead of the current tutorial}\\
19    
20  %\begin{center}  %\begin{center}
21  %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation  %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
22  %At Four Degree Resolution with Asynchronous Time Stepping}  %At Four Degree Resolution with Asynchronous Time Stepping}
# Line 354  shows the depth contours of the model do Line 358  shows the depth contours of the model do
358  \subsubsection{File {\it input/data}}  \subsubsection{File {\it input/data}}
359  %\label{www:tutorials}  %\label{www:tutorials}
360    
361  This file, reproduced completely below, specifies the main parameters  \input{s_examples/global_oce_latlon/inp_data}
 for the experiment. The parameters that are significant for this configuration  
 are  
   
 \begin{itemize}  
   
 \item Lines 7-10 and 11-14  
 \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 ,  \end{verbatim}  
 $\cdots$ \\  
 set reference values for potential  
 temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and  
 ${\rm ppt}$. The entries are ordered from surface to depth.  
 Density is calculated from anomalies at each level evaluated  
 with respect to the reference values set here.\\  
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R INI\_THETA}({\it ini\_theta.F})  
 \end{minipage}  
 }  
   
   
 \item Line 15,  
 \begin{verbatim} viscAz=1.E-3, \end{verbatim}  
 this line sets the vertical Laplacian dissipation coefficient to  
 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions  
 for this operator are specified later. This variable is copied into  
 model general vertical coordinate variable {\bf viscAr}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})  
 \end{minipage}  
 }  
   
 \item Line 16,  
 \begin{verbatim}  
 viscAh=5.E5,  
 \end{verbatim}  
 this line sets the horizontal Laplacian frictional dissipation coefficient to  
 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions  
 for this operator are specified later.  
   
 \item Lines 17,  
 \begin{verbatim}  
 no_slip_sides=.FALSE.  
 \end{verbatim}  
 this line selects a free-slip lateral boundary condition for  
 the horizontal Laplacian friction operator  
 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and  
 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.  
   
 \item Lines 9,  
 \begin{verbatim}  
 no_slip_bottom=.TRUE.  
 \end{verbatim}  
 this line selects a no-slip boundary condition for bottom  
 boundary condition in the vertical Laplacian friction operator  
 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.  
   
 \item Line 19,  
 \begin{verbatim}  
 diffKhT=1.E3,  
 \end{verbatim}  
 this line sets the horizontal diffusion coefficient for temperature  
 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this  
 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on  
 all boundaries.  
   
 \item Line 20,  
 \begin{verbatim}  
 diffKzT=3.E-5,  
 \end{verbatim}  
 this line sets the vertical diffusion coefficient for temperature  
 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary  
 condition on this operator is $\frac{\partial}{\partial z}=0$ at both  
 the upper and lower boundaries.  
   
 \item Line 21,  
 \begin{verbatim}  
 diffKhS=1.E3,  
 \end{verbatim}  
 this line sets the horizontal diffusion coefficient for salinity  
 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this  
 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on  
 all boundaries.  
   
 \item Line 22,  
 \begin{verbatim}  
 diffKzS=3.E-5,  
 \end{verbatim}  
 this line sets the vertical diffusion coefficient for salinity  
 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary  
 condition on this operator is $\frac{\partial}{\partial z}=0$ at both  
 the upper and lower boundaries.  
   
 \item Lines 23-26  
 \begin{verbatim}  
 beta=1.E-11,  
 \end{verbatim}  
 \vspace{-5mm}$\cdots$\\  
 These settings do not apply for this experiment.  
   
 \item Line 27,  
 \begin{verbatim}  
 gravity=9.81,  
 \end{verbatim}  
 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\  
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\  
 {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\  
 {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\  
 {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\  
 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})  
 \end{minipage}  
 }  
   
   
 \item Line 28-29,  
 \begin{verbatim}  
 rigidLid=.FALSE.,  
 implicitFreeSurface=.TRUE.,  
 \end{verbatim}  
 Selects the barotropic pressure equation to be the implicit free surface  
 formulation.  
   
 \item Line 30,  
 \begin{verbatim}  
 eosType='POLY3',  
 \end{verbatim}  
 Selects the third order polynomial form of the equation of state.\\  
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\  
 {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})  
 \end{minipage}  
 }  
   
 \item Line 31,  
 \begin{verbatim}  
 readBinaryPrec=32,  
 \end{verbatim}  
 Sets format for reading binary input datasets holding model fields to  
 use 32-bit representation for floating-point numbers.\\  
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\  
 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})  
 \end{minipage}  
 }  
   
 \item Line 36,  
 \begin{verbatim}  
 cg2dMaxIters=1000,  
 \end{verbatim}  
 Sets maximum number of iterations the two-dimensional, conjugate  
 gradient solver will use, {\bf irrespective of convergence  
 criteria being met}.\\  
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R CG2D}~({\it cg2d.F})  
 \end{minipage}  
 }  
   
 \item Line 37,  
 \begin{verbatim}  
 cg2dTargetResidual=1.E-13,  
 \end{verbatim}  
 Sets the tolerance which the two-dimensional, conjugate  
 gradient solver will use to test for convergence in equation  
 %- note: Description of Conjugate gradient method (& related params) is missing  
 %  in the mean time, substitute this eq ref:  
 \ref{eq:elliptic-backward-free-surface} %\ref{eq:congrad_2d_resid}  
 to $1 \times 10^{-13}$.  
 Solver will iterate until tolerance falls below this value or until the  
 maximum number of solver iterations is reached.\\  
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R CG2D}~({\it cg2d.F})  
 \end{minipage}  
 }  
   
 \item Line 42,  
 \begin{verbatim}  
 startTime=0,  
 \end{verbatim}  
 Sets the starting time for the model internal time counter.  
 When set to non-zero this option implicitly requests a  
 checkpoint file be read for initial state.  
 By default the checkpoint file is named according to  
 the integer number of time steps in the {\bf startTime} value.  
 The internal time counter works in seconds.  
   
 \item Line 43,  
 \begin{verbatim}  
 endTime=2808000.,  
 \end{verbatim}  
 Sets the time (in seconds) at which this simulation will terminate.  
 At the end of a simulation a checkpoint file is automatically  
 written so that a numerical experiment can consist of multiple  
 stages.  
   
 \item Line 44,  
 \begin{verbatim}  
 #endTime=62208000000,  
 \end{verbatim}  
 A commented out setting for endTime for a 2000 year simulation.  
   
 \item Line 45,  
 \begin{verbatim}  
 deltaTmom=2400.0,  
 \end{verbatim}  
 Sets the timestep $\delta t_{v}$ used in the momentum equations to  
 $20~{\rm mins}$.  
 %- note: Distord Physics (using different time-steps) is not described  
 %  in the mean time, put this section ref:  
 See section \ref{sec:time_stepping}. %\ref{sec:mom_time_stepping}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R TIMESTEP}({\it timestep.F})  
 \end{minipage}  
 }  
   
 \item Line 46,  
 \begin{verbatim}  
 tauCD=321428.,  
 \end{verbatim}  
 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$  
 used in the momentum equations.  
 %- note: description of CD-scheme pkg (and related params) is missing;  
 %  in the mean time, comment out this ref.  
 %See section \ref{sec:cd_scheme}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R INI\_PARMS}({\it ini\_parms.F})\\  
 {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F})  
 \end{minipage}  
 }  
   
 \item Line 47,  
 \begin{verbatim}  
 deltaTtracer=108000.,  
 \end{verbatim}  
 Sets the default timestep, $\delta t_{\theta}$, for tracer equations to  
 $30~{\rm hours}$.  
 %- note: Distord Physics (using different time-steps) is not described  
 %  in the mean time, put this section ref:  
 See section \ref{sec:time_stepping}. %\ref{sec:tracer_time_stepping}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})  
 \end{minipage}  
 }  
   
 \item Line 47,  
 \begin{verbatim}  
 bathyFile='topog.box'  
 \end{verbatim}  
 This line specifies the name of the file from which the domain  
 bathymetry is read. This file is a two-dimensional ($x,y$) map of  
 depths. This file is assumed to contain 64-bit binary numbers  
 giving the depth of the model at each grid cell, ordered with the x  
 coordinate varying fastest. The points are ordered from low coordinate  
 to high coordinate for both axes. The units and orientation of the  
 depths in this file are the same as used in the MITgcm code. In this  
 experiment, a depth of $0m$ indicates a solid wall and a depth  
 of $-2000m$ indicates open ocean. The matlab program  
 {\it input/gendata.m} shows an example of how to generate a  
 bathymetry file.  
   
   
 \item Line 50,  
 \begin{verbatim}  
 zonalWindFile='windx.sin_y'  
 \end{verbatim}  
 This line specifies the name of the file from which the x-direction  
 surface wind stress is read. This file is also a two-dimensional  
 ($x,y$) map and is enumerated and formatted in the same manner as the  
 bathymetry file. The matlab program {\it input/gendata.m} includes example  
 code to generate a valid  
 {\bf zonalWindFile}  
 file.    
   
 \end{itemize}  
   
 \noindent other lines in the file {\it input/data} are standard values  
 that are described in the MITgcm Getting Started and MITgcm Parameters  
 notes.  
   
 \begin{small}  
 \input{s_examples/global_oce_latlon/input/data}  
 \end{small}  
362    
363  \subsubsection{File {\it input/data.pkg}}  \subsubsection{File {\it input/data.pkg}}
364  %\label{www:tutorials}  %\label{www:tutorials}

Legend:
Removed from v.1.19  
changed lines
  Added in v.1.21

  ViewVC Help
Powered by ViewVC 1.1.22