/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Diff of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by cnh, Mon Oct 22 11:55:48 2001 UTC revision 1.12 by edhill, Sat Oct 16 03:40:13 2004 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  \section{Example: 4$^\circ$ Global Climatological Ocean Simulation}  \section[Global Ocean MITgcm Exmaple]{Global Ocean Simulation at 4$^\circ$ Resolution}
5  \label{sec:eg-global}  \label{www:tutorials}
6    \label{sect:eg-global}
7    \begin{rawhtml}
8    <!-- CMIREDIR:eg-global: -->
9    \end{rawhtml}
10    
11  \bodytext{bgcolor="#FFFFFFFF"}  \bodytext{bgcolor="#FFFFFFFF"}
12    
13  %\begin{center}  %\begin{center}
14  %{\Large \bf Using MITgcm to Simulate Global Climatalogical Ocean Circulation  %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
15  %At Four Degree Resolution with Asynchronous Time Stepping}  %At Four Degree Resolution with Asynchronous Time Stepping}
16  %  %
17  %\vspace*{4mm}  %\vspace*{4mm}
# Line 16  Line 20 
20  %{\large May 2001}  %{\large May 2001}
21  %\end{center}  %\end{center}
22    
 \subsection{Introduction}  
   
 This document describes the third example MITgcm experiment. The first  
 two examples illustrated how to configure the code for hydrostatic idealised  
 geophysical fluids simulations. This example iilustrates the use of  
 the MITgcm for large scale ocean circulation simulation.  
   
 \subsection{Overview}  
23    
24  This example experiment demonstrates using the MITgcm to simulate  This example experiment demonstrates using the MITgcm to simulate
25  the planetary ocean circulation. The simulation is configured  the planetary ocean circulation. The simulation is configured
# Line 36  At this resolution, the configuration Line 32  At this resolution, the configuration
32  can be integrated forward for thousands of years on a single  can be integrated forward for thousands of years on a single
33  processor desktop computer.  processor desktop computer.
34  \\  \\
35    \subsection{Overview}
36    \label{www:tutorials}
37    
38  The model is forced with climatalogical wind stress data and surface  The model is forced with climatological wind stress data and surface
39  flux data from DaSilva \cite{DaSilva94}. Climatalogical data  flux data from DaSilva \cite{DaSilva94}. Climatological data
40  from Levitus \cite{Levitus94} is used to initialise the model hydrography.  from Levitus \cite{Levitus94} is used to initialize the model hydrography.
41  Levitus seasonal clmatology data is also used throughout the calculation  Levitus seasonal climatology data is also used throughout the calculation
42  to provide additional air-sea fluxes.  to provide additional air-sea fluxes.
43  These fluxes are combined with the DaSilva climatalogical estimates of  These fluxes are combined with the DaSilva climatological estimates of
44  surface heat flux and fresh water, resulting in a mixed boundary  surface heat flux and fresh water, resulting in a mixed boundary
45  condition of the style decribed in Haney \cite{Haney}.  condition of the style described in Haney \cite{Haney}.
46  Altogether, this yields the following forcing applied  Altogether, this yields the following forcing applied
47  in the model surface layer.  in the model surface layer.
48    
49  \begin{eqnarray}  \begin{eqnarray}
50  \label{EQ:global_forcing}  \label{EQ:eg-global-global_forcing}
51  \label{EQ:global_forcing_fu}  \label{EQ:eg-global-global_forcing_fu}
52  {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}  {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
53  \\  \\
54  \label{EQ:global_forcing_fv}  \label{EQ:eg-global-global_forcing_fv}
55  {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}  {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
56  \\  \\
57  \label{EQ:global_forcing_ft}  \label{EQ:eg-global-global_forcing_ft}
58  {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )  {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
59   - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}   - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
60  \\  \\
61  \label{EQ:global_forcing_fs}  \label{EQ:eg-global-global_forcing_fs}
62  {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )  {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
63   + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})   + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
64  \end{eqnarray}  \end{eqnarray}
# Line 87  have units of ${\rm N}~{\rm m}^{-2}$. Th Line 85  have units of ${\rm N}~{\rm m}^{-2}$. Th
85  ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$  ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
86  respectively. The salinity forcing fields ($S^{\ast}$ and  respectively. The salinity forcing fields ($S^{\ast}$ and
87  $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$  $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
88  respectively.  respectively. The source files and procedures for ingesting this data into the
89  \\  simulation are described in the experiment configuration discussion in section
90    \ref{SEC:eg-global-clim_ocn_examp_exp_config}.
   
 Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the  
 relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,  
 the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)  
 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used  
 in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures  
 also indicate the lateral extent and coastline used in the experiment.  
 Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model  
 domain.  
91    
92    
93  \subsection{Discrete Numerical Configuration}  \subsection{Discrete Numerical Configuration}
94    \label{www:tutorials}
95    
96    
97   The model is configured in hydrostatic form.  The domain is discretised with   The model is configured in hydrostatic form.  The domain is discretised with
# Line 109  a uniform grid spacing in latitude and l Line 99  a uniform grid spacing in latitude and l
99   $\Delta \phi=\Delta \lambda=4^{\circ}$, so   $\Delta \phi=\Delta \lambda=4^{\circ}$, so
100  that there are ninety grid cells in the zonal and forty in the  that there are ninety grid cells in the zonal and forty in the
101  meridional direction. The internal model coordinate variables  meridional direction. The internal model coordinate variables
102  $x$ and $y$ are initialised according to  $x$ and $y$ are initialized according to
103  \begin{eqnarray}  \begin{eqnarray}
104  x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\  x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
105  y=r\lambda,~\Delta x &= &r\Delta \lambda  y=r\lambda,~\Delta y &= &r\Delta \lambda
106  \end{eqnarray}  \end{eqnarray}
107    
108  Arctic polar regions are not  Arctic polar regions are not
# Line 146  $ Line 136  $
136   \Delta z_{18}=725\,{\rm m},\,   \Delta z_{18}=725\,{\rm m},\,
137   \Delta z_{19}=775\,{\rm m},\,   \Delta z_{19}=775\,{\rm m},\,
138   \Delta z_{20}=815\,{\rm m}   \Delta z_{20}=815\,{\rm m}
139  $ (here the numeric subscript indicates the model level index number, ${\tt k}$).  $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
140    give a total depth, $H$, of $-5450{\rm m}$.
141  The implicit free surface form of the pressure equation described in Marshall et. al  The implicit free surface form of the pressure equation described in Marshall et. al
142  \cite{Marshall97a} is employed. A laplacian operator, $\nabla^2$, provides viscous  \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
143  dissipation. Thermal and haline diffusion is also represented by a laplacian operator.  dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
144    
145  Wind-stress forcing is added to the momentum equations for both  Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations})
146  the zonal flow, $u$ and the merdional flow $v$, according to equations  for both the zonal flow, $u$ and the meridional flow $v$, according to equations
147  (\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}).  (\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}).
148  Thermodynamic forcing inputs are added to the equations for  Thermodynamic forcing inputs are added to the equations
149    in (\ref{EQ:eg-global-model_equations}) for
150  potential temperature, $\theta$, and salinity, $S$, according to equations  potential temperature, $\theta$, and salinity, $S$, according to equations
151  (\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}).  (\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}).
152  This produces a set of equations solved in this configuration as follows:  This produces a set of equations solved in this configuration as follows:
153    
154  \begin{eqnarray}  \begin{eqnarray}
155  \label{EQ:model_equations}  \label{EQ:eg-global-model_equations}
156  \frac{Du}{Dt} - fv +  \frac{Du}{Dt} - fv +
157    \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -    \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
158    \nabla_{h}\cdot A_{h}\nabla_{h}u -    \nabla_{h}\cdot A_{h}\nabla_{h}u -
# Line 210  g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} d Line 202  g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} d
202  $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$  $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
203  are the zonal and meridional components of the  are the zonal and meridional components of the
204  flow vector, $\vec{u}$, on the sphere. As described in  flow vector, $\vec{u}$, on the sphere. As described in
205  MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time  MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
206  evolution of potential temperature, $\theta$, equation is solved prognostically.  evolution of potential temperature, $\theta$, equation is solved prognostically.
207  The total pressure, $p$, is diagnosed by summing pressure due to surface  The total pressure, $p$, is diagnosed by summing pressure due to surface
208  elevation $\eta$ and the hydrostatic pressure.  elevation $\eta$ and the hydrostatic pressure.
209  \\  \\
210    
211  \subsubsection{Numerical Stability Criteria}  \subsubsection{Numerical Stability Criteria}
212    \label{www:tutorials}
213    
214  The laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.  The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
215  This value is chosen to yield a Munk layer width \cite{Adcroft_thesis},  This value is chosen to yield a Munk layer width \cite{adcroft:95},
216  \begin{eqnarray}  \begin{eqnarray}
217  \label{EQ:munk_layer}  \label{EQ:eg-global-munk_layer}
218  M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}  && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
219  \end{eqnarray}  \end{eqnarray}
220    
221  \noindent  of $\approx 600$km. This is greater than the model  \noindent  of $\approx 600$km. This is greater than the model
# Line 233  boundary layer is adequately resolved. Line 226  boundary layer is adequately resolved.
226  \noindent The model is stepped forward with a  \noindent The model is stepped forward with a
227  time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and  time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
228  $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability  $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
229  parameter to the horizontal laplacian friction \cite{Adcroft_thesis}  parameter to the horizontal Laplacian friction \cite{adcroft:95}
230  \begin{eqnarray}  \begin{eqnarray}
231  \label{EQ:laplacian_stability}  \label{EQ:eg-global-laplacian_stability}
232  S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}  && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
233  \end{eqnarray}  \end{eqnarray}
234    
235  \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the  \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
# Line 247  $\phi=80^{\circ}$ where $\Delta x=r\cos( Line 240  $\phi=80^{\circ}$ where $\Delta x=r\cos(
240  \noindent The vertical dissipation coefficient, $A_{z}$, is set to  \noindent The vertical dissipation coefficient, $A_{z}$, is set to
241  $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit  $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
242  \begin{eqnarray}  \begin{eqnarray}
243  \label{EQ:laplacian_stability_z}  \label{EQ:eg-global-laplacian_stability_z}
244  S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}  S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
245  \end{eqnarray}  \end{eqnarray}
246    
247  \noindent evaluates to $0.015$ for the smallest model  \noindent evaluates to $0.015$ for the smallest model
248  level spcing ($\Delta z_{1}=50{\rm m}$) which is again well below  level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
249  the upper stability limit.  the upper stability limit.
250  \\  \\
251    
# Line 262  and $3 \times 10^{-5}~{\rm m}^{2}{\rm s} Line 255  and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}
255  related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.  related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
256  Here the stability parameter  Here the stability parameter
257  \begin{eqnarray}  \begin{eqnarray}
258  \label{EQ:laplacian_stability_xtheta}  \label{EQ:eg-global-laplacian_stability_xtheta}
259  S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}  S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
260  \end{eqnarray}  \end{eqnarray}
261  evaluates to $0.07$, well below the stabilit limit of $S_{l} \approx 0.5$. The  evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
262  stability parameter related to $K_{z}$  stability parameter related to $K_{z}$
263  \begin{eqnarray}  \begin{eqnarray}
264  \label{EQ:laplacian_stability_ztheta}  \label{EQ:eg-global-laplacian_stability_ztheta}
265  S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}  S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
266  \end{eqnarray}  \end{eqnarray}
267  evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit  evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
# Line 276  of $S_{l} \approx 0.5$. Line 269  of $S_{l} \approx 0.5$.
269  \\  \\
270    
271  \noindent The numerical stability for inertial oscillations  \noindent The numerical stability for inertial oscillations
272  \cite{Adcroft_thesis}  \cite{adcroft:95}
273    
274  \begin{eqnarray}  \begin{eqnarray}
275  \label{EQ:inertial_stability}  \label{EQ:eg-global-inertial_stability}
276  S_{i} = f^{2} {\delta t_v}^2  S_{i} = f^{2} {\delta t_v}^2
277  \end{eqnarray}  \end{eqnarray}
278    
# Line 287  S_{i} = f^{2} {\delta t_v}^2 Line 280  S_{i} = f^{2} {\delta t_v}^2
280  the $S_{i} < 1$ upper limit for stability.  the $S_{i} < 1$ upper limit for stability.
281  \\  \\
282    
283  \noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum  \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
284  horizontal flow  horizontal flow
285  speed of $ | \vec{u} | = 2 ms^{-1}$  speed of $ | \vec{u} | = 2 ms^{-1}$
286    
287  \begin{eqnarray}  \begin{eqnarray}
288  \label{EQ:cfl_stability}  \label{EQ:eg-global-cfl_stability}
289  S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}  S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
290  \end{eqnarray}  \end{eqnarray}
291    
# Line 300  S_{a} = \frac{| \vec{u} | \delta t_{v}}{ Line 293  S_{a} = \frac{| \vec{u} | \delta t_{v}}{
293  limit of 0.5.  limit of 0.5.
294  \\  \\
295    
296  \noindent The stability parameter for internal gravity waves propogating  \noindent The stability parameter for internal gravity waves propagating
297  with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$  with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
298  \cite{Adcroft_thesis}  \cite{adcroft:95}
299    
300  \begin{eqnarray}  \begin{eqnarray}
301  \label{EQ:cfl_stability}  \label{EQ:eg-global-gfl_stability}
302  S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}  S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
303  \end{eqnarray}  \end{eqnarray}
304    
# Line 313  S_{c} = \frac{c_{g} \delta t_{v}}{ \Delt Line 306  S_{c} = \frac{c_{g} \delta t_{v}}{ \Delt
306  stability limit of 0.5.  stability limit of 0.5.
307        
308  \subsection{Experiment Configuration}  \subsection{Experiment Configuration}
309  \label{SEC:clim_ocn_examp_exp_config}  \label{www:tutorials}
310    \label{SEC:eg-global-clim_ocn_examp_exp_config}
311    
312  The model configuration for this experiment resides under the  The model configuration for this experiment resides under the
313  directory {\it verification/exp2/}.  The experiment files  directory {\it tutorial\_examples/global\_ocean\_circulation/}.  
314    The experiment files
315    
316  \begin{itemize}  \begin{itemize}
317  \item {\it input/data}  \item {\it input/data}
318  \item {\it input/data.pkg}  \item {\it input/data.pkg}
# Line 332  directory {\it verification/exp2/}.  The Line 328  directory {\it verification/exp2/}.  The
328  \item {\it code/CPP\_OPTIONS.h},  \item {\it code/CPP\_OPTIONS.h},
329  \item {\it code/SIZE.h}.  \item {\it code/SIZE.h}.
330  \end{itemize}  \end{itemize}
331  contain the code customisations and parameter settings for these  contain the code customizations and parameter settings for these
332  experiements. Below we describe the customisations  experiments. Below we describe the customizations
333  to these files associated with this experiment.  to these files associated with this experiment.
334    
335    \subsubsection{Driving Datasets}
336    \label{www:tutorials}
337    
338    Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
339    relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
340    the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
341    and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
342    in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
343    also indicate the lateral extent and coastline used in the experiment.
344    Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
345    domain.
346    
347    
348  \subsubsection{File {\it input/data}}  \subsubsection{File {\it input/data}}
349    \label{www:tutorials}
350    
351  This file, reproduced completely below, specifies the main parameters  This file, reproduced completely below, specifies the main parameters
352  for the experiment. The parameters that are significant for this configuration  for the experiment. The parameters that are significant for this configuration
# Line 361  with respect to the reference values set Line 371  with respect to the reference values set
371    
372  \item Line 15,  \item Line 15,
373  \begin{verbatim} viscAz=1.E-3, \end{verbatim}  \begin{verbatim} viscAz=1.E-3, \end{verbatim}
374  this line sets the vertical laplacian dissipation coefficient to  this line sets the vertical Laplacian dissipation coefficient to
375  $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions  $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
376  for this operator are specified later. This variable is copied into  for this operator are specified later. This variable is copied into
377  model general vertical coordinate variable {\bf viscAr}.  model general vertical coordinate variable {\bf viscAr}.
# Line 376  model general vertical coordinate variab Line 386  model general vertical coordinate variab
386  \begin{verbatim}  \begin{verbatim}
387  viscAh=5.E5,  viscAh=5.E5,
388  \end{verbatim}  \end{verbatim}
389  this line sets the horizontal laplacian frictional dissipation coefficient to  this line sets the horizontal Laplacian frictional dissipation coefficient to
390  $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions  $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
391  for this operator are specified later.  for this operator are specified later.
392    
# Line 385  for this operator are specified later. Line 395  for this operator are specified later.
395  no_slip_sides=.FALSE.  no_slip_sides=.FALSE.
396  \end{verbatim}  \end{verbatim}
397  this line selects a free-slip lateral boundary condition for  this line selects a free-slip lateral boundary condition for
398  the horizontal laplacian friction operator  the horizontal Laplacian friction operator
399  e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and  e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
400  $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.  $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
401    
# Line 394  $\frac{\partial v}{\partial x}$=0 along Line 404  $\frac{\partial v}{\partial x}$=0 along
404  no_slip_bottom=.TRUE.  no_slip_bottom=.TRUE.
405  \end{verbatim}  \end{verbatim}
406  this line selects a no-slip boundary condition for bottom  this line selects a no-slip boundary condition for bottom
407  boundary condition in the vertical laplacian friction operator  boundary condition in the vertical Laplacian friction operator
408  e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.  e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
409    
410  \item Line 19,  \item Line 19,
# Line 444  These settings do not apply for this exp Line 454  These settings do not apply for this exp
454  \begin{verbatim}  \begin{verbatim}
455  gravity=9.81,  gravity=9.81,
456  \end{verbatim}  \end{verbatim}
457  Sets the gravitational acceleration coeeficient to $9.81{\rm m}{\rm s}^{-1}$.\\  Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
458  \fbox{  \fbox{
459  \begin{minipage}{5.0in}  \begin{minipage}{5.0in}
460  {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\  {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
# Line 626  notes. Line 636  notes.
636  \end{small}  \end{small}
637    
638  \subsubsection{File {\it input/data.pkg}}  \subsubsection{File {\it input/data.pkg}}
639    \label{www:tutorials}
640    
641  This file uses standard default values and does not contain  This file uses standard default values and does not contain
642  customisations for this experiment.  customisations for this experiment.
643    
644  \subsubsection{File {\it input/eedata}}  \subsubsection{File {\it input/eedata}}
645    \label{www:tutorials}
646    
647  This file uses standard default values and does not contain  This file uses standard default values and does not contain
648  customisations for this experiment.  customisations for this experiment.
649    
650  \subsubsection{File {\it input/windx.sin\_y}}  \subsubsection{File {\it input/windx.sin\_y}}
651    \label{www:tutorials}
652    
653  The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)  The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
654  map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.  map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
# Line 646  in MITgcm. The included matlab program { Line 659  in MITgcm. The included matlab program {
659  code for creating the {\it input/windx.sin\_y} file.  code for creating the {\it input/windx.sin\_y} file.
660    
661  \subsubsection{File {\it input/topog.box}}  \subsubsection{File {\it input/topog.box}}
662    \label{www:tutorials}
663    
664    
665  The {\it input/topog.box} file specifies a two-dimensional ($x,y$)  The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
# Line 657  The included matlab program {\it input/g Line 671  The included matlab program {\it input/g
671  code for creating the {\it input/topog.box} file.  code for creating the {\it input/topog.box} file.
672    
673  \subsubsection{File {\it code/SIZE.h}}  \subsubsection{File {\it code/SIZE.h}}
674    \label{www:tutorials}
675    
676  Two lines are customized in this file for the current experiment  Two lines are customized in this file for the current experiment
677    
# Line 683  the vertical domain extent in grid point Line 698  the vertical domain extent in grid point
698  \end{small}  \end{small}
699    
700  \subsubsection{File {\it code/CPP\_OPTIONS.h}}  \subsubsection{File {\it code/CPP\_OPTIONS.h}}
701    \label{www:tutorials}
702    
703  This file uses standard default values and does not contain  This file uses standard default values and does not contain
704  customisations for this experiment.  customisations for this experiment.
705    
706    
707  \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}  \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
708    \label{www:tutorials}
709    
710  This file uses standard default values and does not contain  This file uses standard default values and does not contain
711  customisations for this experiment.  customisations for this experiment.
712    
713  \subsubsection{Other Files }  \subsubsection{Other Files }
714    \label{www:tutorials}
715    
716  Other files relevant to this experiment are  Other files relevant to this experiment are
717  \begin{itemize}  \begin{itemize}
# Line 704  coriolis variables {\bf fCorU}. Line 722  coriolis variables {\bf fCorU}.
722  \item {\it input/windx.sin\_y},  \item {\it input/windx.sin\_y},
723  \end{itemize}  \end{itemize}
724  contain the code customisations and parameter settings for this  contain the code customisations and parameter settings for this
725  experiements. Below we describe the customisations  experiments. Below we describe the customisations
726  to these files associated with this experiment.  to these files associated with this experiment.

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.12

  ViewVC Help
Powered by ViewVC 1.1.22