1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Example: 4$^\circ$ Global Climatological Ocean Simulation} |
\section[Global Ocean MITgcm Example]{Global Ocean Simulation at $4^\circ$ Resolution} |
5 |
\label{sec:eg-global} |
\label{www:tutorials} |
6 |
|
\label{sect:eg-global} |
7 |
|
\begin{rawhtml} |
8 |
|
<!-- CMIREDIR:eg-global: --> |
9 |
|
\end{rawhtml} |
10 |
|
\begin{center} |
11 |
|
(in directory: {\it verification/tutorial\_global\_oce\_latlon/}) |
12 |
|
\end{center} |
13 |
|
|
14 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
15 |
|
|
23 |
%{\large May 2001} |
%{\large May 2001} |
24 |
%\end{center} |
%\end{center} |
25 |
|
|
|
\subsection{Introduction} |
|
|
|
|
|
This document describes the third example MITgcm experiment. The first |
|
|
two examples illustrated how to configure the code for hydrostatic idealized |
|
|
geophysical fluids simulations. This example illustrates the use of |
|
|
the MITgcm for large scale ocean circulation simulation. |
|
|
|
|
|
\subsection{Overview} |
|
26 |
|
|
27 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
28 |
the planetary ocean circulation. The simulation is configured |
the planetary ocean circulation. The simulation is configured |
29 |
with realistic geography and bathymetry on a |
with realistic geography and bathymetry on a |
30 |
$4^{\circ} \times 4^{\circ}$ spherical polar grid. |
$4^{\circ} \times 4^{\circ}$ spherical polar grid. |
31 |
|
The files for this experiment are in the verification directory |
32 |
|
under tutorial\_global\_oce\_latlon. |
33 |
Twenty levels are used in the vertical, ranging in thickness |
Twenty levels are used in the vertical, ranging in thickness |
34 |
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, |
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, |
35 |
giving a maximum model depth of $6\,{\rm km}$. |
giving a maximum model depth of $6\,{\rm km}$. |
37 |
can be integrated forward for thousands of years on a single |
can be integrated forward for thousands of years on a single |
38 |
processor desktop computer. |
processor desktop computer. |
39 |
\\ |
\\ |
40 |
|
\subsection{Overview} |
41 |
|
\label{www:tutorials} |
42 |
|
|
43 |
The model is forced with climatological wind stress data and surface |
The model is forced with climatological wind stress data and surface |
44 |
flux data from DaSilva \cite{DaSilva94}. Climatological data |
flux data from DaSilva \cite{DaSilva94}. Climatological data |
52 |
in the model surface layer. |
in the model surface layer. |
53 |
|
|
54 |
\begin{eqnarray} |
\begin{eqnarray} |
55 |
\label{EQ:global_forcing} |
\label{EQ:eg-global-global_forcing} |
56 |
\label{EQ:global_forcing_fu} |
\label{EQ:eg-global-global_forcing_fu} |
57 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
58 |
\\ |
\\ |
59 |
\label{EQ:global_forcing_fv} |
\label{EQ:eg-global-global_forcing_fv} |
60 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
61 |
\\ |
\\ |
62 |
\label{EQ:global_forcing_ft} |
\label{EQ:eg-global-global_forcing_ft} |
63 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
64 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
65 |
\\ |
\\ |
66 |
\label{EQ:global_forcing_fs} |
\label{EQ:eg-global-global_forcing_fs} |
67 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
68 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
69 |
\end{eqnarray} |
\end{eqnarray} |
90 |
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
91 |
respectively. The salinity forcing fields ($S^{\ast}$ and |
respectively. The salinity forcing fields ($S^{\ast}$ and |
92 |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
93 |
respectively. |
respectively. The source files and procedures for ingesting this data into the |
94 |
\\ |
simulation are described in the experiment configuration discussion in section |
95 |
|
\ref{SEC:eg-global-clim_ocn_examp_exp_config}. |
|
|
|
|
Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the |
|
|
relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, |
|
|
the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
|
|
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
|
|
in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures |
|
|
also indicate the lateral extent and coastline used in the experiment. |
|
|
Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model |
|
|
domain. |
|
96 |
|
|
97 |
|
|
98 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
99 |
|
\label{www:tutorials} |
100 |
|
|
101 |
|
|
102 |
The model is configured in hydrostatic form. The domain is discretised with |
The model is configured in hydrostatic form. The domain is discretised with |
107 |
$x$ and $y$ are initialized according to |
$x$ and $y$ are initialized according to |
108 |
\begin{eqnarray} |
\begin{eqnarray} |
109 |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
110 |
y=r\lambda,~\Delta x &= &r\Delta \lambda |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
111 |
\end{eqnarray} |
\end{eqnarray} |
112 |
|
|
113 |
Arctic polar regions are not |
Arctic polar regions are not |
141 |
\Delta z_{18}=725\,{\rm m},\, |
\Delta z_{18}=725\,{\rm m},\, |
142 |
\Delta z_{19}=775\,{\rm m},\, |
\Delta z_{19}=775\,{\rm m},\, |
143 |
\Delta z_{20}=815\,{\rm m} |
\Delta z_{20}=815\,{\rm m} |
144 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$) to |
145 |
|
give a total depth, $H$, of $-5450{\rm m}$. |
146 |
The implicit free surface form of the pressure equation described in Marshall et. al |
The implicit free surface form of the pressure equation described in Marshall et. al |
147 |
\cite{Marshall97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
148 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
149 |
|
|
150 |
Wind-stress forcing is added to the momentum equations for both |
Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations}) |
151 |
the zonal flow, $u$ and the meridional flow $v$, according to equations |
for both the zonal flow, $u$ and the meridional flow $v$, according to equations |
152 |
(\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}). |
(\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}). |
153 |
Thermodynamic forcing inputs are added to the equations for |
Thermodynamic forcing inputs are added to the equations |
154 |
|
in (\ref{EQ:eg-global-model_equations}) for |
155 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
potential temperature, $\theta$, and salinity, $S$, according to equations |
156 |
(\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}). |
(\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}). |
157 |
This produces a set of equations solved in this configuration as follows: |
This produces a set of equations solved in this configuration as follows: |
158 |
|
|
159 |
\begin{eqnarray} |
\begin{eqnarray} |
160 |
\label{EQ:model_equations} |
\label{EQ:eg-global-model_equations} |
161 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
162 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
163 |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
214 |
\\ |
\\ |
215 |
|
|
216 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
217 |
|
\label{www:tutorials} |
218 |
|
|
219 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
220 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
221 |
\begin{eqnarray} |
\begin{eqnarray} |
222 |
\label{EQ:munk_layer} |
\label{EQ:eg-global-munk_layer} |
223 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
&& M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
224 |
\end{eqnarray} |
\end{eqnarray} |
225 |
|
|
226 |
\noindent of $\approx 600$km. This is greater than the model |
\noindent of $\approx 600$km. This is greater than the model |
233 |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
234 |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
235 |
\begin{eqnarray} |
\begin{eqnarray} |
236 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-global-laplacian_stability} |
237 |
S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
&& S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
238 |
\end{eqnarray} |
\end{eqnarray} |
239 |
|
|
240 |
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
245 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
246 |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
247 |
\begin{eqnarray} |
\begin{eqnarray} |
248 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-global-laplacian_stability_z} |
249 |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
250 |
\end{eqnarray} |
\end{eqnarray} |
251 |
|
|
260 |
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
261 |
Here the stability parameter |
Here the stability parameter |
262 |
\begin{eqnarray} |
\begin{eqnarray} |
263 |
\label{EQ:laplacian_stability_xtheta} |
\label{EQ:eg-global-laplacian_stability_xtheta} |
264 |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
265 |
\end{eqnarray} |
\end{eqnarray} |
266 |
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
267 |
stability parameter related to $K_{z}$ |
stability parameter related to $K_{z}$ |
268 |
\begin{eqnarray} |
\begin{eqnarray} |
269 |
\label{EQ:laplacian_stability_ztheta} |
\label{EQ:eg-global-laplacian_stability_ztheta} |
270 |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
271 |
\end{eqnarray} |
\end{eqnarray} |
272 |
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
277 |
\cite{adcroft:95} |
\cite{adcroft:95} |
278 |
|
|
279 |
\begin{eqnarray} |
\begin{eqnarray} |
280 |
\label{EQ:inertial_stability} |
\label{EQ:eg-global-inertial_stability} |
281 |
S_{i} = f^{2} {\delta t_v}^2 |
S_{i} = f^{2} {\delta t_v}^2 |
282 |
\end{eqnarray} |
\end{eqnarray} |
283 |
|
|
290 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
291 |
|
|
292 |
\begin{eqnarray} |
\begin{eqnarray} |
293 |
\label{EQ:cfl_stability} |
\label{EQ:eg-global-cfl_stability} |
294 |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
295 |
\end{eqnarray} |
\end{eqnarray} |
296 |
|
|
303 |
\cite{adcroft:95} |
\cite{adcroft:95} |
304 |
|
|
305 |
\begin{eqnarray} |
\begin{eqnarray} |
306 |
\label{EQ:cfl_stability} |
\label{EQ:eg-global-gfl_stability} |
307 |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
308 |
\end{eqnarray} |
\end{eqnarray} |
309 |
|
|
311 |
stability limit of 0.5. |
stability limit of 0.5. |
312 |
|
|
313 |
\subsection{Experiment Configuration} |
\subsection{Experiment Configuration} |
314 |
\label{SEC:clim_ocn_examp_exp_config} |
\label{www:tutorials} |
315 |
|
\label{SEC:eg-global-clim_ocn_examp_exp_config} |
316 |
|
|
317 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
318 |
directory {\it verification/exp2/}. The experiment files |
directory {\it tutorial\_examples/global\_ocean\_circulation/}. |
319 |
|
The experiment files |
320 |
|
|
321 |
\begin{itemize} |
\begin{itemize} |
322 |
\item {\it input/data} |
\item {\it input/data} |
323 |
\item {\it input/data.pkg} |
\item {\it input/data.pkg} |
337 |
experiments. Below we describe the customizations |
experiments. Below we describe the customizations |
338 |
to these files associated with this experiment. |
to these files associated with this experiment. |
339 |
|
|
340 |
|
\subsubsection{Driving Datasets} |
341 |
|
\label{www:tutorials} |
342 |
|
|
343 |
|
Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the |
344 |
|
relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, |
345 |
|
the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
346 |
|
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
347 |
|
in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures |
348 |
|
also indicate the lateral extent and coastline used in the experiment. |
349 |
|
Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model |
350 |
|
domain. |
351 |
|
|
352 |
|
|
353 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
354 |
|
\label{www:tutorials} |
355 |
|
|
356 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |
357 |
for the experiment. The parameters that are significant for this configuration |
for the experiment. The parameters that are significant for this configuration |
363 |
\begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim} |
\begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim} |
364 |
$\cdots$ \\ |
$\cdots$ \\ |
365 |
set reference values for potential |
set reference values for potential |
366 |
temperature and salinity at each model level in units of $^{\circ}$C and |
temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and |
367 |
${\rm ppt}$. The entries are ordered from surface to depth. |
${\rm ppt}$. The entries are ordered from surface to depth. |
368 |
Density is calculated from anomalies at each level evaluated |
Density is calculated from anomalies at each level evaluated |
369 |
with respect to the reference values set here.\\ |
with respect to the reference values set here.\\ |
583 |
\fbox{ |
\fbox{ |
584 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
585 |
{\it S/R INI\_PARMS}({\it ini\_parms.F})\\ |
{\it S/R INI\_PARMS}({\it ini\_parms.F})\\ |
586 |
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
{\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) |
587 |
\end{minipage} |
\end{minipage} |
588 |
} |
} |
589 |
|
|
637 |
notes. |
notes. |
638 |
|
|
639 |
\begin{small} |
\begin{small} |
640 |
\input{part3/case_studies/climatalogical_ogcm/input/data} |
\input{s_examples/global_oce_latlon/input/data} |
641 |
\end{small} |
\end{small} |
642 |
|
|
643 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
644 |
|
\label{www:tutorials} |
645 |
|
|
646 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
647 |
customisations for this experiment. |
customisations for this experiment. |
648 |
|
|
649 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
650 |
|
\label{www:tutorials} |
651 |
|
|
652 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
653 |
customisations for this experiment. |
customisations for this experiment. |
654 |
|
|
655 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
656 |
|
\label{www:tutorials} |
657 |
|
|
658 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
659 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
664 |
code for creating the {\it input/windx.sin\_y} file. |
code for creating the {\it input/windx.sin\_y} file. |
665 |
|
|
666 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/topog.box}} |
667 |
|
\label{www:tutorials} |
668 |
|
|
669 |
|
|
670 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
676 |
code for creating the {\it input/topog.box} file. |
code for creating the {\it input/topog.box} file. |
677 |
|
|
678 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
679 |
|
\label{www:tutorials} |
680 |
|
|
681 |
Two lines are customized in this file for the current experiment |
Two lines are customized in this file for the current experiment |
682 |
|
|
699 |
\end{itemize} |
\end{itemize} |
700 |
|
|
701 |
\begin{small} |
\begin{small} |
702 |
\input{part3/case_studies/climatalogical_ogcm/code/SIZE.h} |
\input{s_examples/global_oce_latlon/code/SIZE.h} |
703 |
\end{small} |
\end{small} |
704 |
|
|
705 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
706 |
|
\label{www:tutorials} |
707 |
|
|
708 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
709 |
customisations for this experiment. |
customisations for this experiment. |
710 |
|
|
711 |
|
|
712 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
713 |
|
\label{www:tutorials} |
714 |
|
|
715 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
716 |
customisations for this experiment. |
customisations for this experiment. |
717 |
|
|
718 |
\subsubsection{Other Files } |
\subsubsection{Other Files } |
719 |
|
\label{www:tutorials} |
720 |
|
|
721 |
Other files relevant to this experiment are |
Other files relevant to this experiment are |
722 |
\begin{itemize} |
\begin{itemize} |