1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Example: 4$^\circ$ Global Climatological Ocean Simulation} |
\section[Global Ocean MITgcm Exmaple]{Global Ocean Simulation at $4^\circ$ Resolution} |
5 |
\label{sec:eg-global} |
\label{www:tutorials} |
6 |
|
\label{sect:eg-global} |
7 |
|
\begin{rawhtml} |
8 |
|
<!-- CMIREDIR:eg-global: --> |
9 |
|
\end{rawhtml} |
10 |
|
|
11 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
12 |
|
|
20 |
%{\large May 2001} |
%{\large May 2001} |
21 |
%\end{center} |
%\end{center} |
22 |
|
|
|
\subsection{Introduction} |
|
|
|
|
|
This document describes the third example MITgcm experiment. The first |
|
|
two examples illustrated how to configure the code for hydrostatic idealized |
|
|
geophysical fluids simulations. This example illustrates the use of |
|
|
the MITgcm for large scale ocean circulation simulation. |
|
|
|
|
|
\subsection{Overview} |
|
23 |
|
|
24 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
25 |
the planetary ocean circulation. The simulation is configured |
the planetary ocean circulation. The simulation is configured |
32 |
can be integrated forward for thousands of years on a single |
can be integrated forward for thousands of years on a single |
33 |
processor desktop computer. |
processor desktop computer. |
34 |
\\ |
\\ |
35 |
|
\subsection{Overview} |
36 |
|
\label{www:tutorials} |
37 |
|
|
38 |
The model is forced with climatological wind stress data and surface |
The model is forced with climatological wind stress data and surface |
39 |
flux data from DaSilva \cite{DaSilva94}. Climatological data |
flux data from DaSilva \cite{DaSilva94}. Climatological data |
47 |
in the model surface layer. |
in the model surface layer. |
48 |
|
|
49 |
\begin{eqnarray} |
\begin{eqnarray} |
50 |
\label{EQ:global_forcing} |
\label{EQ:eg-global-global_forcing} |
51 |
\label{EQ:global_forcing_fu} |
\label{EQ:eg-global-global_forcing_fu} |
52 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
53 |
\\ |
\\ |
54 |
\label{EQ:global_forcing_fv} |
\label{EQ:eg-global-global_forcing_fv} |
55 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
56 |
\\ |
\\ |
57 |
\label{EQ:global_forcing_ft} |
\label{EQ:eg-global-global_forcing_ft} |
58 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
59 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
60 |
\\ |
\\ |
61 |
\label{EQ:global_forcing_fs} |
\label{EQ:eg-global-global_forcing_fs} |
62 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
63 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
64 |
\end{eqnarray} |
\end{eqnarray} |
85 |
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
86 |
respectively. The salinity forcing fields ($S^{\ast}$ and |
respectively. The salinity forcing fields ($S^{\ast}$ and |
87 |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
88 |
respectively. |
respectively. The source files and procedures for ingesting this data into the |
89 |
\\ |
simulation are described in the experiment configuration discussion in section |
90 |
|
\ref{SEC:eg-global-clim_ocn_examp_exp_config}. |
|
|
|
|
Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the |
|
|
relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, |
|
|
the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
|
|
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
|
|
in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures |
|
|
also indicate the lateral extent and coastline used in the experiment. |
|
|
Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model |
|
|
domain. |
|
91 |
|
|
92 |
|
|
93 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
94 |
|
\label{www:tutorials} |
95 |
|
|
96 |
|
|
97 |
The model is configured in hydrostatic form. The domain is discretised with |
The model is configured in hydrostatic form. The domain is discretised with |
102 |
$x$ and $y$ are initialized according to |
$x$ and $y$ are initialized according to |
103 |
\begin{eqnarray} |
\begin{eqnarray} |
104 |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
105 |
y=r\lambda,~\Delta x &= &r\Delta \lambda |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
106 |
\end{eqnarray} |
\end{eqnarray} |
107 |
|
|
108 |
Arctic polar regions are not |
Arctic polar regions are not |
136 |
\Delta z_{18}=725\,{\rm m},\, |
\Delta z_{18}=725\,{\rm m},\, |
137 |
\Delta z_{19}=775\,{\rm m},\, |
\Delta z_{19}=775\,{\rm m},\, |
138 |
\Delta z_{20}=815\,{\rm m} |
\Delta z_{20}=815\,{\rm m} |
139 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$) to |
140 |
|
give a total depth, $H$, of $-5450{\rm m}$. |
141 |
The implicit free surface form of the pressure equation described in Marshall et. al |
The implicit free surface form of the pressure equation described in Marshall et. al |
142 |
\cite{Marshall97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
143 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
144 |
|
|
145 |
Wind-stress forcing is added to the momentum equations for both |
Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations}) |
146 |
the zonal flow, $u$ and the meridional flow $v$, according to equations |
for both the zonal flow, $u$ and the meridional flow $v$, according to equations |
147 |
(\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}). |
(\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}). |
148 |
Thermodynamic forcing inputs are added to the equations for |
Thermodynamic forcing inputs are added to the equations |
149 |
|
in (\ref{EQ:eg-global-model_equations}) for |
150 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
potential temperature, $\theta$, and salinity, $S$, according to equations |
151 |
(\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}). |
(\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}). |
152 |
This produces a set of equations solved in this configuration as follows: |
This produces a set of equations solved in this configuration as follows: |
153 |
|
|
154 |
\begin{eqnarray} |
\begin{eqnarray} |
155 |
\label{EQ:model_equations} |
\label{EQ:eg-global-model_equations} |
156 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
157 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
158 |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
202 |
$v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ |
$v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ |
203 |
are the zonal and meridional components of the |
are the zonal and meridional components of the |
204 |
flow vector, $\vec{u}$, on the sphere. As described in |
flow vector, $\vec{u}$, on the sphere. As described in |
205 |
MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time |
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
206 |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
207 |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
208 |
elevation $\eta$ and the hydrostatic pressure. |
elevation $\eta$ and the hydrostatic pressure. |
209 |
\\ |
\\ |
210 |
|
|
211 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
212 |
|
\label{www:tutorials} |
213 |
|
|
214 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
215 |
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
216 |
\begin{eqnarray} |
\begin{eqnarray} |
217 |
\label{EQ:munk_layer} |
\label{EQ:eg-global-munk_layer} |
218 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
&& M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
219 |
\end{eqnarray} |
\end{eqnarray} |
220 |
|
|
221 |
\noindent of $\approx 600$km. This is greater than the model |
\noindent of $\approx 600$km. This is greater than the model |
226 |
\noindent The model is stepped forward with a |
\noindent The model is stepped forward with a |
227 |
time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and |
time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and |
228 |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
229 |
parameter to the horizontal Laplacian friction \cite{Adcroft_thesis} |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
230 |
\begin{eqnarray} |
\begin{eqnarray} |
231 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-global-laplacian_stability} |
232 |
S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
&& S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
233 |
\end{eqnarray} |
\end{eqnarray} |
234 |
|
|
235 |
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
240 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
241 |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
242 |
\begin{eqnarray} |
\begin{eqnarray} |
243 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-global-laplacian_stability_z} |
244 |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
245 |
\end{eqnarray} |
\end{eqnarray} |
246 |
|
|
255 |
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
256 |
Here the stability parameter |
Here the stability parameter |
257 |
\begin{eqnarray} |
\begin{eqnarray} |
258 |
\label{EQ:laplacian_stability_xtheta} |
\label{EQ:eg-global-laplacian_stability_xtheta} |
259 |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
260 |
\end{eqnarray} |
\end{eqnarray} |
261 |
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
262 |
stability parameter related to $K_{z}$ |
stability parameter related to $K_{z}$ |
263 |
\begin{eqnarray} |
\begin{eqnarray} |
264 |
\label{EQ:laplacian_stability_ztheta} |
\label{EQ:eg-global-laplacian_stability_ztheta} |
265 |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
266 |
\end{eqnarray} |
\end{eqnarray} |
267 |
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
269 |
\\ |
\\ |
270 |
|
|
271 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
272 |
\cite{Adcroft_thesis} |
\cite{adcroft:95} |
273 |
|
|
274 |
\begin{eqnarray} |
\begin{eqnarray} |
275 |
\label{EQ:inertial_stability} |
\label{EQ:eg-global-inertial_stability} |
276 |
S_{i} = f^{2} {\delta t_v}^2 |
S_{i} = f^{2} {\delta t_v}^2 |
277 |
\end{eqnarray} |
\end{eqnarray} |
278 |
|
|
280 |
the $S_{i} < 1$ upper limit for stability. |
the $S_{i} < 1$ upper limit for stability. |
281 |
\\ |
\\ |
282 |
|
|
283 |
\noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum |
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum |
284 |
horizontal flow |
horizontal flow |
285 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
286 |
|
|
287 |
\begin{eqnarray} |
\begin{eqnarray} |
288 |
\label{EQ:cfl_stability} |
\label{EQ:eg-global-cfl_stability} |
289 |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
290 |
\end{eqnarray} |
\end{eqnarray} |
291 |
|
|
295 |
|
|
296 |
\noindent The stability parameter for internal gravity waves propagating |
\noindent The stability parameter for internal gravity waves propagating |
297 |
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
298 |
\cite{Adcroft_thesis} |
\cite{adcroft:95} |
299 |
|
|
300 |
\begin{eqnarray} |
\begin{eqnarray} |
301 |
\label{EQ:cfl_stability} |
\label{EQ:eg-global-gfl_stability} |
302 |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
303 |
\end{eqnarray} |
\end{eqnarray} |
304 |
|
|
306 |
stability limit of 0.5. |
stability limit of 0.5. |
307 |
|
|
308 |
\subsection{Experiment Configuration} |
\subsection{Experiment Configuration} |
309 |
\label{SEC:clim_ocn_examp_exp_config} |
\label{www:tutorials} |
310 |
|
\label{SEC:eg-global-clim_ocn_examp_exp_config} |
311 |
|
|
312 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
313 |
directory {\it verification/exp2/}. The experiment files |
directory {\it tutorial\_examples/global\_ocean\_circulation/}. |
314 |
|
The experiment files |
315 |
|
|
316 |
\begin{itemize} |
\begin{itemize} |
317 |
\item {\it input/data} |
\item {\it input/data} |
318 |
\item {\it input/data.pkg} |
\item {\it input/data.pkg} |
332 |
experiments. Below we describe the customizations |
experiments. Below we describe the customizations |
333 |
to these files associated with this experiment. |
to these files associated with this experiment. |
334 |
|
|
335 |
|
\subsubsection{Driving Datasets} |
336 |
|
\label{www:tutorials} |
337 |
|
|
338 |
|
Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the |
339 |
|
relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, |
340 |
|
the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
341 |
|
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
342 |
|
in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures |
343 |
|
also indicate the lateral extent and coastline used in the experiment. |
344 |
|
Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model |
345 |
|
domain. |
346 |
|
|
347 |
|
|
348 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
349 |
|
\label{www:tutorials} |
350 |
|
|
351 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |
352 |
for the experiment. The parameters that are significant for this configuration |
for the experiment. The parameters that are significant for this configuration |
358 |
\begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim} |
\begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim} |
359 |
$\cdots$ \\ |
$\cdots$ \\ |
360 |
set reference values for potential |
set reference values for potential |
361 |
temperature and salinity at each model level in units of $^{\circ}$C and |
temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and |
362 |
${\rm ppt}$. The entries are ordered from surface to depth. |
${\rm ppt}$. The entries are ordered from surface to depth. |
363 |
Density is calculated from anomalies at each level evaluated |
Density is calculated from anomalies at each level evaluated |
364 |
with respect to the reference values set here.\\ |
with respect to the reference values set here.\\ |
636 |
\end{small} |
\end{small} |
637 |
|
|
638 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
639 |
|
\label{www:tutorials} |
640 |
|
|
641 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
642 |
customisations for this experiment. |
customisations for this experiment. |
643 |
|
|
644 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
645 |
|
\label{www:tutorials} |
646 |
|
|
647 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
648 |
customisations for this experiment. |
customisations for this experiment. |
649 |
|
|
650 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
651 |
|
\label{www:tutorials} |
652 |
|
|
653 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
654 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
659 |
code for creating the {\it input/windx.sin\_y} file. |
code for creating the {\it input/windx.sin\_y} file. |
660 |
|
|
661 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/topog.box}} |
662 |
|
\label{www:tutorials} |
663 |
|
|
664 |
|
|
665 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
671 |
code for creating the {\it input/topog.box} file. |
code for creating the {\it input/topog.box} file. |
672 |
|
|
673 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
674 |
|
\label{www:tutorials} |
675 |
|
|
676 |
Two lines are customized in this file for the current experiment |
Two lines are customized in this file for the current experiment |
677 |
|
|
698 |
\end{small} |
\end{small} |
699 |
|
|
700 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
701 |
|
\label{www:tutorials} |
702 |
|
|
703 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
704 |
customisations for this experiment. |
customisations for this experiment. |
705 |
|
|
706 |
|
|
707 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
708 |
|
\label{www:tutorials} |
709 |
|
|
710 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
711 |
customisations for this experiment. |
customisations for this experiment. |
712 |
|
|
713 |
\subsubsection{Other Files } |
\subsubsection{Other Files } |
714 |
|
\label{www:tutorials} |
715 |
|
|
716 |
Other files relevant to this experiment are |
Other files relevant to this experiment are |
717 |
\begin{itemize} |
\begin{itemize} |