1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Example: 4$^\circ$ Global Climatological Ocean Simulation} |
\section{Global Ocean Simulation at 4$^\circ$ Resolution} |
5 |
|
\label{www:tutorials} |
6 |
\label{sect:eg-global} |
\label{sect:eg-global} |
7 |
|
|
8 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
17 |
%{\large May 2001} |
%{\large May 2001} |
18 |
%\end{center} |
%\end{center} |
19 |
|
|
|
\subsection{Introduction} |
|
|
|
|
|
This document describes the third example MITgcm experiment. The first |
|
|
two examples illustrated how to configure the code for hydrostatic idealized |
|
|
geophysical fluids simulations. This example illustrates the use of |
|
|
the MITgcm for large scale ocean circulation simulation. |
|
|
|
|
|
\subsection{Overview} |
|
20 |
|
|
21 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
22 |
the planetary ocean circulation. The simulation is configured |
the planetary ocean circulation. The simulation is configured |
29 |
can be integrated forward for thousands of years on a single |
can be integrated forward for thousands of years on a single |
30 |
processor desktop computer. |
processor desktop computer. |
31 |
\\ |
\\ |
32 |
|
\subsection{Overview} |
33 |
|
\label{www:tutorials} |
34 |
|
|
35 |
The model is forced with climatological wind stress data and surface |
The model is forced with climatological wind stress data and surface |
36 |
flux data from DaSilva \cite{DaSilva94}. Climatological data |
flux data from DaSilva \cite{DaSilva94}. Climatological data |
44 |
in the model surface layer. |
in the model surface layer. |
45 |
|
|
46 |
\begin{eqnarray} |
\begin{eqnarray} |
47 |
\label{EQ:global_forcing} |
\label{EQ:eg-global-global_forcing} |
48 |
\label{EQ:global_forcing_fu} |
\label{EQ:eg-global-global_forcing_fu} |
49 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
50 |
\\ |
\\ |
51 |
\label{EQ:global_forcing_fv} |
\label{EQ:eg-global-global_forcing_fv} |
52 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
53 |
\\ |
\\ |
54 |
\label{EQ:global_forcing_ft} |
\label{EQ:eg-global-global_forcing_ft} |
55 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
56 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
57 |
\\ |
\\ |
58 |
\label{EQ:global_forcing_fs} |
\label{EQ:eg-global-global_forcing_fs} |
59 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
60 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
61 |
\end{eqnarray} |
\end{eqnarray} |
82 |
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
83 |
respectively. The salinity forcing fields ($S^{\ast}$ and |
respectively. The salinity forcing fields ($S^{\ast}$ and |
84 |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
85 |
respectively. |
respectively. The source files and procedures for ingesting this data into the |
86 |
\\ |
simulation are described in the experiment configuration discussion in section |
87 |
|
\ref{SEC:eg-global-clim_ocn_examp_exp_config}. |
|
|
|
|
Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the |
|
|
relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, |
|
|
the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
|
|
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
|
|
in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures |
|
|
also indicate the lateral extent and coastline used in the experiment. |
|
|
Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model |
|
|
domain. |
|
88 |
|
|
89 |
|
|
90 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
91 |
|
\label{www:tutorials} |
92 |
|
|
93 |
|
|
94 |
The model is configured in hydrostatic form. The domain is discretised with |
The model is configured in hydrostatic form. The domain is discretised with |
99 |
$x$ and $y$ are initialized according to |
$x$ and $y$ are initialized according to |
100 |
\begin{eqnarray} |
\begin{eqnarray} |
101 |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
102 |
y=r\lambda,~\Delta x &= &r\Delta \lambda |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
103 |
\end{eqnarray} |
\end{eqnarray} |
104 |
|
|
105 |
Arctic polar regions are not |
Arctic polar regions are not |
133 |
\Delta z_{18}=725\,{\rm m},\, |
\Delta z_{18}=725\,{\rm m},\, |
134 |
\Delta z_{19}=775\,{\rm m},\, |
\Delta z_{19}=775\,{\rm m},\, |
135 |
\Delta z_{20}=815\,{\rm m} |
\Delta z_{20}=815\,{\rm m} |
136 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$) to |
137 |
|
give a total depth, $H$, of $-5450{\rm m}$. |
138 |
The implicit free surface form of the pressure equation described in Marshall et. al |
The implicit free surface form of the pressure equation described in Marshall et. al |
139 |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
140 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
141 |
|
|
142 |
Wind-stress forcing is added to the momentum equations for both |
Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations}) |
143 |
the zonal flow, $u$ and the meridional flow $v$, according to equations |
for both the zonal flow, $u$ and the meridional flow $v$, according to equations |
144 |
(\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}). |
(\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}). |
145 |
Thermodynamic forcing inputs are added to the equations for |
Thermodynamic forcing inputs are added to the equations |
146 |
|
in (\ref{EQ:eg-global-model_equations}) for |
147 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
potential temperature, $\theta$, and salinity, $S$, according to equations |
148 |
(\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}). |
(\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}). |
149 |
This produces a set of equations solved in this configuration as follows: |
This produces a set of equations solved in this configuration as follows: |
150 |
|
|
151 |
\begin{eqnarray} |
\begin{eqnarray} |
152 |
\label{EQ:model_equations} |
\label{EQ:eg-global-model_equations} |
153 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
154 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
155 |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
206 |
\\ |
\\ |
207 |
|
|
208 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
209 |
|
\label{www:tutorials} |
210 |
|
|
211 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
212 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
213 |
\begin{eqnarray} |
\begin{eqnarray} |
214 |
\label{EQ:munk_layer} |
\label{EQ:eg-global-munk_layer} |
215 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
&& M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
216 |
\end{eqnarray} |
\end{eqnarray} |
217 |
|
|
218 |
\noindent of $\approx 600$km. This is greater than the model |
\noindent of $\approx 600$km. This is greater than the model |
225 |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
226 |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
227 |
\begin{eqnarray} |
\begin{eqnarray} |
228 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-global-laplacian_stability} |
229 |
S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
&& S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
230 |
\end{eqnarray} |
\end{eqnarray} |
231 |
|
|
232 |
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
237 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
238 |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
239 |
\begin{eqnarray} |
\begin{eqnarray} |
240 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-global-laplacian_stability_z} |
241 |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
242 |
\end{eqnarray} |
\end{eqnarray} |
243 |
|
|
252 |
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
253 |
Here the stability parameter |
Here the stability parameter |
254 |
\begin{eqnarray} |
\begin{eqnarray} |
255 |
\label{EQ:laplacian_stability_xtheta} |
\label{EQ:eg-global-laplacian_stability_xtheta} |
256 |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
257 |
\end{eqnarray} |
\end{eqnarray} |
258 |
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
259 |
stability parameter related to $K_{z}$ |
stability parameter related to $K_{z}$ |
260 |
\begin{eqnarray} |
\begin{eqnarray} |
261 |
\label{EQ:laplacian_stability_ztheta} |
\label{EQ:eg-global-laplacian_stability_ztheta} |
262 |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
263 |
\end{eqnarray} |
\end{eqnarray} |
264 |
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
269 |
\cite{adcroft:95} |
\cite{adcroft:95} |
270 |
|
|
271 |
\begin{eqnarray} |
\begin{eqnarray} |
272 |
\label{EQ:inertial_stability} |
\label{EQ:eg-global-inertial_stability} |
273 |
S_{i} = f^{2} {\delta t_v}^2 |
S_{i} = f^{2} {\delta t_v}^2 |
274 |
\end{eqnarray} |
\end{eqnarray} |
275 |
|
|
282 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
283 |
|
|
284 |
\begin{eqnarray} |
\begin{eqnarray} |
285 |
\label{EQ:cfl_stability} |
\label{EQ:eg-global-cfl_stability} |
286 |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
287 |
\end{eqnarray} |
\end{eqnarray} |
288 |
|
|
295 |
\cite{adcroft:95} |
\cite{adcroft:95} |
296 |
|
|
297 |
\begin{eqnarray} |
\begin{eqnarray} |
298 |
\label{EQ:cfl_stability} |
\label{EQ:eg-global-gfl_stability} |
299 |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
300 |
\end{eqnarray} |
\end{eqnarray} |
301 |
|
|
303 |
stability limit of 0.5. |
stability limit of 0.5. |
304 |
|
|
305 |
\subsection{Experiment Configuration} |
\subsection{Experiment Configuration} |
306 |
\label{SEC:clim_ocn_examp_exp_config} |
\label{www:tutorials} |
307 |
|
\label{SEC:eg-global-clim_ocn_examp_exp_config} |
308 |
|
|
309 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
310 |
directory {\it verification/exp2/}. The experiment files |
directory {\it tutorial\_examples/global\_ocean\_circulation/}. |
311 |
|
The experiment files |
312 |
|
|
313 |
\begin{itemize} |
\begin{itemize} |
314 |
\item {\it input/data} |
\item {\it input/data} |
315 |
\item {\it input/data.pkg} |
\item {\it input/data.pkg} |
329 |
experiments. Below we describe the customizations |
experiments. Below we describe the customizations |
330 |
to these files associated with this experiment. |
to these files associated with this experiment. |
331 |
|
|
332 |
|
\subsubsection{Driving Datasets} |
333 |
|
\label{www:tutorials} |
334 |
|
|
335 |
|
Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the |
336 |
|
relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, |
337 |
|
the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
338 |
|
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
339 |
|
in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures |
340 |
|
also indicate the lateral extent and coastline used in the experiment. |
341 |
|
Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model |
342 |
|
domain. |
343 |
|
|
344 |
|
|
345 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
346 |
|
\label{www:tutorials} |
347 |
|
|
348 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |
349 |
for the experiment. The parameters that are significant for this configuration |
for the experiment. The parameters that are significant for this configuration |
633 |
\end{small} |
\end{small} |
634 |
|
|
635 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
636 |
|
\label{www:tutorials} |
637 |
|
|
638 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
639 |
customisations for this experiment. |
customisations for this experiment. |
640 |
|
|
641 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
642 |
|
\label{www:tutorials} |
643 |
|
|
644 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
645 |
customisations for this experiment. |
customisations for this experiment. |
646 |
|
|
647 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
648 |
|
\label{www:tutorials} |
649 |
|
|
650 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
651 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
656 |
code for creating the {\it input/windx.sin\_y} file. |
code for creating the {\it input/windx.sin\_y} file. |
657 |
|
|
658 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/topog.box}} |
659 |
|
\label{www:tutorials} |
660 |
|
|
661 |
|
|
662 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
668 |
code for creating the {\it input/topog.box} file. |
code for creating the {\it input/topog.box} file. |
669 |
|
|
670 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
671 |
|
\label{www:tutorials} |
672 |
|
|
673 |
Two lines are customized in this file for the current experiment |
Two lines are customized in this file for the current experiment |
674 |
|
|
695 |
\end{small} |
\end{small} |
696 |
|
|
697 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
698 |
|
\label{www:tutorials} |
699 |
|
|
700 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
701 |
customisations for this experiment. |
customisations for this experiment. |
702 |
|
|
703 |
|
|
704 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
705 |
|
\label{www:tutorials} |
706 |
|
|
707 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
708 |
customisations for this experiment. |
customisations for this experiment. |
709 |
|
|
710 |
\subsubsection{Other Files } |
\subsubsection{Other Files } |
711 |
|
\label{www:tutorials} |
712 |
|
|
713 |
Other files relevant to this experiment are |
Other files relevant to this experiment are |
714 |
\begin{itemize} |
\begin{itemize} |