/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Contents of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1.1.1 - (show annotations) (download) (as text) (vendor branch)
Wed Aug 8 16:16:05 2001 UTC (23 years, 11 months ago) by adcroft
Branch: dummy
CVS Tags: Import
Changes since 1.1: +0 -0 lines
File MIME type: application/x-tex
Importing model documentation into CVS

1 % $Header: $
2 % $Name: $
3
4 \section{Example: 4$^\circ$ Global Climatological Ocean Simulation}
5
6 \bodytext{bgcolor="#FFFFFFFF"}
7
8 %\begin{center}
9 %{\Large \bf Using MITgcm to Simulate Global Climatalogical Ocean Circulation
10 %At Four Degree Resolution with Asynchronous Time Stepping}
11 %
12 %\vspace*{4mm}
13 %
14 %\vspace*{3mm}
15 %{\large May 2001}
16 %\end{center}
17
18 \subsection{Introduction}
19
20 This document describes the third example MITgcm experiment. The first
21 two examples illustrated how to configure the code for hydrostatic idealised
22 geophysical fluids simulations. This example iilustrates the use of
23 the MITgcm for large scale ocean circulation simulation.
24
25 \subsection{Overview}
26
27 This example experiment demonstrates using the MITgcm to simulate
28 the planetary ocean circulation. The simulation is configured
29 with realistic geography and bathymetry on a
30 $4^{\circ} \times 4^{\circ}$ spherical polar grid.
31 Twenty levels are used in the vertical, ranging in thickness
32 from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
33 giving a maximum model depth of $6\,{\rm km}$.
34 At this resolution, the configuration
35 can be integrated forward for thousands of years on a single
36 processor desktop computer.
37 \\
38
39 The model is forced with climatalogical wind stress data and surface
40 flux data from DaSilva \cite{DaSilva94}. Climatalogical data
41 from Levitus \cite{Levitus94} is used to initialise the model hydrography.
42 Levitus seasonal clmatology data is also used throughout the calculation
43 to provide additional air-sea fluxes.
44 These fluxes are combined with the DaSilva climatalogical estimates of
45 surface heat flux and fresh water, resulting in a mixed boundary
46 condition of the style decribed in Haney \cite{Haney}.
47 Altogether, this yields the following forcing applied
48 in the model surface layer.
49
50 \begin{eqnarray}
51 \label{EQ:global_forcing}
52 \label{EQ:global_forcing_fu}
53 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
54 \\
55 \label{EQ:global_forcing_fv}
56 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
57 \\
58 \label{EQ:global_forcing_ft}
59 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
60 - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
61 \\
62 \label{EQ:global_forcing_fs}
63 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
64 + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
65 \end{eqnarray}
66
67 \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
68 ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
69 momentum and in the potential temperature and salinity
70 equations respectively.
71 The term $\Delta z_{s}$ represents the top ocean layer thickness in
72 meters.
73 It is used in conjunction with a reference density, $\rho_{0}$
74 (here set to $999.8\,{\rm kg\,m^{-3}}$), a
75 reference salinity, $S_{0}$ (here set to 35~ppt),
76 and a specific heat capacity, $C_{p}$ (here set to
77 $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
78 input dataset values into time tendencies of
79 potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
80 salinity (with units ${\rm ppt}~s^{-1}$) and
81 velocity (with units ${\rm m}~{\rm s}^{-2}$).
82 The externally supplied forcing fields used in this
83 experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
84 $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
85 have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
86 ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
87 respectively. The salinity forcing fields ($S^{\ast}$ and
88 $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
89 respectively.
90 \\
91
92
93 Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
94 relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
95 the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
96 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
97 in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
98 also indicate the lateral extent and coastline used in the experiment.
99 Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
100 domain.
101
102
103 \subsection{Discrete Numerical Configuration}
104
105
106 The model is configured in hydrostatic form. The domain is discretised with
107 a uniform grid spacing in latitude and longitude on the sphere
108 $\Delta \phi=\Delta \lambda=4^{\circ}$, so
109 that there are ninety grid cells in the zonal and forty in the
110 meridional direction. The internal model coordinate variables
111 $x$ and $y$ are initialised according to
112 \begin{eqnarray}
113 x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
114 y=r\lambda,~\Delta x &= &r\Delta \lambda
115 \end{eqnarray}
116
117 Arctic polar regions are not
118 included in this experiment. Meridionally the model extends from
119 $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
120 Vertically the model is configured with twenty layers with the
121 following thicknesses
122 $\Delta z_{1} = 50\,{\rm m},\,
123 \Delta z_{2} = 50\,{\rm m},\,
124 \Delta z_{3} = 55\,{\rm m},\,
125 \Delta z_{4} = 60\,{\rm m},\,
126 \Delta z_{5} = 65\,{\rm m},\,
127 $
128 $
129 \Delta z_{6}~=~70\,{\rm m},\,
130 \Delta z_{7}~=~80\,{\rm m},\,
131 \Delta z_{8}~=95\,{\rm m},\,
132 \Delta z_{9}=120\,{\rm m},\,
133 \Delta z_{10}=155\,{\rm m},\,
134 $
135 $
136 \Delta z_{11}=200\,{\rm m},\,
137 \Delta z_{12}=260\,{\rm m},\,
138 \Delta z_{13}=320\,{\rm m},\,
139 \Delta z_{14}=400\,{\rm m},\,
140 \Delta z_{15}=480\,{\rm m},\,
141 $
142 $
143 \Delta z_{16}=570\,{\rm m},\,
144 \Delta z_{17}=655\,{\rm m},\,
145 \Delta z_{18}=725\,{\rm m},\,
146 \Delta z_{19}=775\,{\rm m},\,
147 \Delta z_{20}=815\,{\rm m}
148 $ (here the numeric subscript indicates the model level index number, ${\tt k}$).
149 The implicit free surface form of the pressure equation described in Marshall et. al
150 \cite{Marshall97a} is employed. A laplacian operator, $\nabla^2$, provides viscous
151 dissipation. Thermal and haline diffusion is also represented by a laplacian operator.
152
153 Wind-stress forcing is added to the momentum equations for both
154 the zonal flow, $u$ and the merdional flow $v$, according to equations
155 (\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}).
156 Thermodynamic forcing inputs are added to the equations for
157 potential temperature, $\theta$, and salinity, $S$, according to equations
158 (\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}).
159 This produces a set of equations solved in this configuration as follows:
160
161 \begin{eqnarray}
162 \label{EQ:model_equations}
163 \frac{Du}{Dt} - fv +
164 \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
165 \nabla_{h}\cdot A_{h}\nabla_{h}u -
166 \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
167 & = &
168 \begin{cases}
169 {\cal F}_u & \text{(surface)} \\
170 0 & \text{(interior)}
171 \end{cases}
172 \\
173 \frac{Dv}{Dt} + fu +
174 \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
175 \nabla_{h}\cdot A_{h}\nabla_{h}v -
176 \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
177 & = &
178 \begin{cases}
179 {\cal F}_v & \text{(surface)} \\
180 0 & \text{(interior)}
181 \end{cases}
182 \\
183 \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
184 &=&
185 0
186 \\
187 \frac{D\theta}{Dt} -
188 \nabla_{h}\cdot K_{h}\nabla_{h}\theta
189 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
190 & = &
191 \begin{cases}
192 {\cal F}_\theta & \text{(surface)} \\
193 0 & \text{(interior)}
194 \end{cases}
195 \\
196 \frac{D s}{Dt} -
197 \nabla_{h}\cdot K_{h}\nabla_{h}s
198 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
199 & = &
200 \begin{cases}
201 {\cal F}_s & \text{(surface)} \\
202 0 & \text{(interior)}
203 \end{cases}
204 \\
205 g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
206 \end{eqnarray}
207
208 \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
209 $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
210 are the zonal and meridional components of the
211 flow vector, $\vec{u}$, on the sphere. As described in
212 MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time
213 evolution of potential temperature, $\theta$, equation is solved prognostically.
214 The total pressure, $p$, is diagnosed by summing pressure due to surface
215 elevation $\eta$ and the hydrostatic pressure.
216 \\
217
218 \subsubsection{Numerical Stability Criteria}
219
220 The laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
221 This value is chosen to yield a Munk layer width \cite{Adcroft_thesis},
222 \begin{eqnarray}
223 \label{EQ:munk_layer}
224 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
225 \end{eqnarray}
226
227 \noindent of $\approx 600$km. This is greater than the model
228 resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
229 boundary layer is adequately resolved.
230 \\
231
232 \noindent The model is stepped forward with a
233 time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
234 $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
235 parameter to the horizontal laplacian friction \cite{Adcroft_thesis}
236 \begin{eqnarray}
237 \label{EQ:laplacian_stability}
238 S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
239 \end{eqnarray}
240
241 \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
242 0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
243 $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
244 \\
245
246 \noindent The vertical dissipation coefficient, $A_{z}$, is set to
247 $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
248 \begin{eqnarray}
249 \label{EQ:laplacian_stability_z}
250 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
251 \end{eqnarray}
252
253 \noindent evaluates to $0.015$ for the smallest model
254 level spcing ($\Delta z_{1}=50{\rm m}$) which is again well below
255 the upper stability limit.
256 \\
257
258 The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
259 for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
260 and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
261 related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
262 Here the stability parameter
263 \begin{eqnarray}
264 \label{EQ:laplacian_stability_xtheta}
265 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
266 \end{eqnarray}
267 evaluates to $0.07$, well below the stabilit limit of $S_{l} \approx 0.5$. The
268 stability parameter related to $K_{z}$
269 \begin{eqnarray}
270 \label{EQ:laplacian_stability_ztheta}
271 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
272 \end{eqnarray}
273 evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
274 of $S_{l} \approx 0.5$.
275 \\
276
277 \noindent The numerical stability for inertial oscillations
278 \cite{Adcroft_thesis}
279
280 \begin{eqnarray}
281 \label{EQ:inertial_stability}
282 S_{i} = f^{2} {\delta t_v}^2
283 \end{eqnarray}
284
285 \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
286 the $S_{i} < 1$ upper limit for stability.
287 \\
288
289 \noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum
290 horizontal flow
291 speed of $ | \vec{u} | = 2 ms^{-1}$
292
293 \begin{eqnarray}
294 \label{EQ:cfl_stability}
295 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
296 \end{eqnarray}
297
298 \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
299 limit of 0.5.
300 \\
301
302 \noindent The stability parameter for internal gravity waves propogating
303 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
304 \cite{Adcroft_thesis}
305
306 \begin{eqnarray}
307 \label{EQ:cfl_stability}
308 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
309 \end{eqnarray}
310
311 \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
312 stability limit of 0.5.
313
314 \subsection{Experiment Configuration}
315 \label{SEC:clim_ocn_examp_exp_config}
316
317 The model configuration for this experiment resides under the
318 directory {\it verification/exp2/}. The experiment files
319 \begin{itemize}
320 \item {\it input/data}
321 \item {\it input/data.pkg}
322 \item {\it input/eedata},
323 \item {\it input/windx.bin},
324 \item {\it input/windy.bin},
325 \item {\it input/salt.bin},
326 \item {\it input/theta.bin},
327 \item {\it input/SSS.bin},
328 \item {\it input/SST.bin},
329 \item {\it input/topog.bin},
330 \item {\it code/CPP\_EEOPTIONS.h}
331 \item {\it code/CPP\_OPTIONS.h},
332 \item {\it code/SIZE.h}.
333 \end{itemize}
334 contain the code customisations and parameter settings for these
335 experiements. Below we describe the customisations
336 to these files associated with this experiment.
337
338 \subsubsection{File {\it input/data}}
339
340 This file, reproduced completely below, specifies the main parameters
341 for the experiment. The parameters that are significant for this configuration
342 are
343
344 \begin{itemize}
345
346 \item Lines 7-10 and 11-14
347 \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
348 $\cdots$ \\
349 set reference values for potential
350 temperature and salinity at each model level in units of $^{\circ}$C and
351 ${\rm ppt}$. The entries are ordered from surface to depth.
352 Density is calculated from anomalies at each level evaluated
353 with respect to the reference values set here.\\
354 \fbox{
355 \begin{minipage}{5.0in}
356 {\it S/R INI\_THETA}({\it ini\_theta.F})
357 \end{minipage}
358 }
359
360
361 \item Line 15,
362 \begin{verbatim} viscAz=1.E-3, \end{verbatim}
363 this line sets the vertical laplacian dissipation coefficient to
364 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
365 for this operator are specified later. This variable is copied into
366 model general vertical coordinate variable {\bf viscAr}.
367
368 \fbox{
369 \begin{minipage}{5.0in}
370 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
371 \end{minipage}
372 }
373
374 \item Line 16,
375 \begin{verbatim}
376 viscAh=5.E5,
377 \end{verbatim}
378 this line sets the horizontal laplacian frictional dissipation coefficient to
379 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
380 for this operator are specified later.
381
382 \item Lines 17,
383 \begin{verbatim}
384 no_slip_sides=.FALSE.
385 \end{verbatim}
386 this line selects a free-slip lateral boundary condition for
387 the horizontal laplacian friction operator
388 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
389 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
390
391 \item Lines 9,
392 \begin{verbatim}
393 no_slip_bottom=.TRUE.
394 \end{verbatim}
395 this line selects a no-slip boundary condition for bottom
396 boundary condition in the vertical laplacian friction operator
397 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
398
399 \item Line 19,
400 \begin{verbatim}
401 diffKhT=1.E3,
402 \end{verbatim}
403 this line sets the horizontal diffusion coefficient for temperature
404 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
405 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
406 all boundaries.
407
408 \item Line 20,
409 \begin{verbatim}
410 diffKzT=3.E-5,
411 \end{verbatim}
412 this line sets the vertical diffusion coefficient for temperature
413 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
414 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
415 the upper and lower boundaries.
416
417 \item Line 21,
418 \begin{verbatim}
419 diffKhS=1.E3,
420 \end{verbatim}
421 this line sets the horizontal diffusion coefficient for salinity
422 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
423 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
424 all boundaries.
425
426 \item Line 22,
427 \begin{verbatim}
428 diffKzS=3.E-5,
429 \end{verbatim}
430 this line sets the vertical diffusion coefficient for salinity
431 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
432 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
433 the upper and lower boundaries.
434
435 \item Lines 23-26
436 \begin{verbatim}
437 beta=1.E-11,
438 \end{verbatim}
439 \vspace{-5mm}$\cdots$\\
440 These settings do not apply for this experiment.
441
442 \item Line 27,
443 \begin{verbatim}
444 gravity=9.81,
445 \end{verbatim}
446 Sets the gravitational acceleration coeeficient to $9.81{\rm m}{\rm s}^{-1}$.\\
447 \fbox{
448 \begin{minipage}{5.0in}
449 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
450 {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
451 {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
452 {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
453 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
454 \end{minipage}
455 }
456
457
458 \item Line 28-29,
459 \begin{verbatim}
460 rigidLid=.FALSE.,
461 implicitFreeSurface=.TRUE.,
462 \end{verbatim}
463 Selects the barotropic pressure equation to be the implicit free surface
464 formulation.
465
466 \item Line 30,
467 \begin{verbatim}
468 eosType='POLY3',
469 \end{verbatim}
470 Selects the third order polynomial form of the equation of state.\\
471 \fbox{
472 \begin{minipage}{5.0in}
473 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
474 {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
475 \end{minipage}
476 }
477
478 \item Line 31,
479 \begin{verbatim}
480 readBinaryPrec=32,
481 \end{verbatim}
482 Sets format for reading binary input datasets holding model fields to
483 use 32-bit representation for floating-point numbers.\\
484 \fbox{
485 \begin{minipage}{5.0in}
486 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
487 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
488 \end{minipage}
489 }
490
491 \item Line 36,
492 \begin{verbatim}
493 cg2dMaxIters=1000,
494 \end{verbatim}
495 Sets maximum number of iterations the two-dimensional, conjugate
496 gradient solver will use, {\bf irrespective of convergence
497 criteria being met}.\\
498 \fbox{
499 \begin{minipage}{5.0in}
500 {\it S/R CG2D}~({\it cg2d.F})
501 \end{minipage}
502 }
503
504 \item Line 37,
505 \begin{verbatim}
506 cg2dTargetResidual=1.E-13,
507 \end{verbatim}
508 Sets the tolerance which the two-dimensional, conjugate
509 gradient solver will use to test for convergence in equation
510 \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
511 Solver will iterate until
512 tolerance falls below this value or until the maximum number of
513 solver iterations is reached.\\
514 \fbox{
515 \begin{minipage}{5.0in}
516 {\it S/R CG2D}~({\it cg2d.F})
517 \end{minipage}
518 }
519
520 \item Line 42,
521 \begin{verbatim}
522 startTime=0,
523 \end{verbatim}
524 Sets the starting time for the model internal time counter.
525 When set to non-zero this option implicitly requests a
526 checkpoint file be read for initial state.
527 By default the checkpoint file is named according to
528 the integer number of time steps in the {\bf startTime} value.
529 The internal time counter works in seconds.
530
531 \item Line 43,
532 \begin{verbatim}
533 endTime=2808000.,
534 \end{verbatim}
535 Sets the time (in seconds) at which this simulation will terminate.
536 At the end of a simulation a checkpoint file is automatically
537 written so that a numerical experiment can consist of multiple
538 stages.
539
540 \item Line 44,
541 \begin{verbatim}
542 #endTime=62208000000,
543 \end{verbatim}
544 A commented out setting for endTime for a 2000 year simulation.
545
546 \item Line 45,
547 \begin{verbatim}
548 deltaTmom=2400.0,
549 \end{verbatim}
550 Sets the timestep $\delta t_{v}$ used in the momentum equations to
551 $20~{\rm mins}$.
552 See section \ref{SEC:mom_time_stepping}.
553
554 \fbox{
555 \begin{minipage}{5.0in}
556 {\it S/R TIMESTEP}({\it timestep.F})
557 \end{minipage}
558 }
559
560 \item Line 46,
561 \begin{verbatim}
562 tauCD=321428.,
563 \end{verbatim}
564 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
565 See section \ref{SEC:cd_scheme}.
566
567 \fbox{
568 \begin{minipage}{5.0in}
569 {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
570 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
571 \end{minipage}
572 }
573
574 \item Line 47,
575 \begin{verbatim}
576 deltaTtracer=108000.,
577 \end{verbatim}
578 Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
579 $30~{\rm hours}$.
580 See section \ref{SEC:tracer_time_stepping}.
581
582 \fbox{
583 \begin{minipage}{5.0in}
584 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
585 \end{minipage}
586 }
587
588 \item Line 47,
589 \begin{verbatim}
590 bathyFile='topog.box'
591 \end{verbatim}
592 This line specifies the name of the file from which the domain
593 bathymetry is read. This file is a two-dimensional ($x,y$) map of
594 depths. This file is assumed to contain 64-bit binary numbers
595 giving the depth of the model at each grid cell, ordered with the x
596 coordinate varying fastest. The points are ordered from low coordinate
597 to high coordinate for both axes. The units and orientation of the
598 depths in this file are the same as used in the MITgcm code. In this
599 experiment, a depth of $0m$ indicates a solid wall and a depth
600 of $-2000m$ indicates open ocean. The matlab program
601 {\it input/gendata.m} shows an example of how to generate a
602 bathymetry file.
603
604
605 \item Line 50,
606 \begin{verbatim}
607 zonalWindFile='windx.sin_y'
608 \end{verbatim}
609 This line specifies the name of the file from which the x-direction
610 surface wind stress is read. This file is also a two-dimensional
611 ($x,y$) map and is enumerated and formatted in the same manner as the
612 bathymetry file. The matlab program {\it input/gendata.m} includes example
613 code to generate a valid
614 {\bf zonalWindFile}
615 file.
616
617 \end{itemize}
618
619 \noindent other lines in the file {\it input/data} are standard values
620 that are described in the MITgcm Getting Started and MITgcm Parameters
621 notes.
622
623 \begin{small}
624 \input{part3/case_studies/climatalogical_ogcm/input/data}
625 \end{small}
626
627 \subsubsection{File {\it input/data.pkg}}
628
629 This file uses standard default values and does not contain
630 customisations for this experiment.
631
632 \subsubsection{File {\it input/eedata}}
633
634 This file uses standard default values and does not contain
635 customisations for this experiment.
636
637 \subsubsection{File {\it input/windx.sin\_y}}
638
639 The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
640 map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
641 Although $\tau_{x}$ is only a function of $y$n in this experiment
642 this file must still define a complete two-dimensional map in order
643 to be compatible with the standard code for loading forcing fields
644 in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
645 code for creating the {\it input/windx.sin\_y} file.
646
647 \subsubsection{File {\it input/topog.box}}
648
649
650 The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
651 map of depth values. For this experiment values are either
652 $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
653 ocean. The file contains a raw binary stream of data that is enumerated
654 in the same way as standard MITgcm two-dimensional, horizontal arrays.
655 The included matlab program {\it input/gendata.m} gives a complete
656 code for creating the {\it input/topog.box} file.
657
658 \subsubsection{File {\it code/SIZE.h}}
659
660 Two lines are customized in this file for the current experiment
661
662 \begin{itemize}
663
664 \item Line 39,
665 \begin{verbatim} sNx=60, \end{verbatim} this line sets
666 the lateral domain extent in grid points for the
667 axis aligned with the x-coordinate.
668
669 \item Line 40,
670 \begin{verbatim} sNy=60, \end{verbatim} this line sets
671 the lateral domain extent in grid points for the
672 axis aligned with the y-coordinate.
673
674 \item Line 49,
675 \begin{verbatim} Nr=4, \end{verbatim} this line sets
676 the vertical domain extent in grid points.
677
678 \end{itemize}
679
680 \begin{small}
681 \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
682 \end{small}
683
684 \subsubsection{File {\it code/CPP\_OPTIONS.h}}
685
686 This file uses standard default values and does not contain
687 customisations for this experiment.
688
689
690 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
691
692 This file uses standard default values and does not contain
693 customisations for this experiment.
694
695 \subsubsection{Other Files }
696
697 Other files relevant to this experiment are
698 \begin{itemize}
699 \item {\it model/src/ini\_cori.F}. This file initializes the model
700 coriolis variables {\bf fCorU}.
701 \item {\it model/src/ini\_spherical\_polar\_grid.F}
702 \item {\it model/src/ini\_parms.F},
703 \item {\it input/windx.sin\_y},
704 \end{itemize}
705 contain the code customisations and parameter settings for this
706 experiements. Below we describe the customisations
707 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22