1 |
% $Header: $ |
2 |
% $Name: $ |
3 |
|
4 |
\section{Example: 4$^\circ$ Global Climatological Ocean Simulation} |
5 |
|
6 |
\bodytext{bgcolor="#FFFFFFFF"} |
7 |
|
8 |
%\begin{center} |
9 |
%{\Large \bf Using MITgcm to Simulate Global Climatalogical Ocean Circulation |
10 |
%At Four Degree Resolution with Asynchronous Time Stepping} |
11 |
% |
12 |
%\vspace*{4mm} |
13 |
% |
14 |
%\vspace*{3mm} |
15 |
%{\large May 2001} |
16 |
%\end{center} |
17 |
|
18 |
\subsection{Introduction} |
19 |
|
20 |
This document describes the third example MITgcm experiment. The first |
21 |
two examples illustrated how to configure the code for hydrostatic idealised |
22 |
geophysical fluids simulations. This example iilustrates the use of |
23 |
the MITgcm for large scale ocean circulation simulation. |
24 |
|
25 |
\subsection{Overview} |
26 |
|
27 |
This example experiment demonstrates using the MITgcm to simulate |
28 |
the planetary ocean circulation. The simulation is configured |
29 |
with realistic geography and bathymetry on a |
30 |
$4^{\circ} \times 4^{\circ}$ spherical polar grid. |
31 |
Twenty levels are used in the vertical, ranging in thickness |
32 |
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, |
33 |
giving a maximum model depth of $6\,{\rm km}$. |
34 |
At this resolution, the configuration |
35 |
can be integrated forward for thousands of years on a single |
36 |
processor desktop computer. |
37 |
\\ |
38 |
|
39 |
The model is forced with climatalogical wind stress data and surface |
40 |
flux data from DaSilva \cite{DaSilva94}. Climatalogical data |
41 |
from Levitus \cite{Levitus94} is used to initialise the model hydrography. |
42 |
Levitus seasonal clmatology data is also used throughout the calculation |
43 |
to provide additional air-sea fluxes. |
44 |
These fluxes are combined with the DaSilva climatalogical estimates of |
45 |
surface heat flux and fresh water, resulting in a mixed boundary |
46 |
condition of the style decribed in Haney \cite{Haney}. |
47 |
Altogether, this yields the following forcing applied |
48 |
in the model surface layer. |
49 |
|
50 |
\begin{eqnarray} |
51 |
\label{EQ:global_forcing} |
52 |
\label{EQ:global_forcing_fu} |
53 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
54 |
\\ |
55 |
\label{EQ:global_forcing_fv} |
56 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
57 |
\\ |
58 |
\label{EQ:global_forcing_ft} |
59 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
60 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
61 |
\\ |
62 |
\label{EQ:global_forcing_fs} |
63 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
64 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
65 |
\end{eqnarray} |
66 |
|
67 |
\noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, |
68 |
${\cal F}_{s}$ are the forcing terms in the zonal and meridional |
69 |
momentum and in the potential temperature and salinity |
70 |
equations respectively. |
71 |
The term $\Delta z_{s}$ represents the top ocean layer thickness in |
72 |
meters. |
73 |
It is used in conjunction with a reference density, $\rho_{0}$ |
74 |
(here set to $999.8\,{\rm kg\,m^{-3}}$), a |
75 |
reference salinity, $S_{0}$ (here set to 35~ppt), |
76 |
and a specific heat capacity, $C_{p}$ (here set to |
77 |
$4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert |
78 |
input dataset values into time tendencies of |
79 |
potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$), |
80 |
salinity (with units ${\rm ppt}~s^{-1}$) and |
81 |
velocity (with units ${\rm m}~{\rm s}^{-2}$). |
82 |
The externally supplied forcing fields used in this |
83 |
experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$, |
84 |
$\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$) |
85 |
have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields |
86 |
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
87 |
respectively. The salinity forcing fields ($S^{\ast}$ and |
88 |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
89 |
respectively. |
90 |
\\ |
91 |
|
92 |
|
93 |
Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the |
94 |
relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, |
95 |
the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
96 |
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
97 |
in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures |
98 |
also indicate the lateral extent and coastline used in the experiment. |
99 |
Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model |
100 |
domain. |
101 |
|
102 |
|
103 |
\subsection{Discrete Numerical Configuration} |
104 |
|
105 |
|
106 |
The model is configured in hydrostatic form. The domain is discretised with |
107 |
a uniform grid spacing in latitude and longitude on the sphere |
108 |
$\Delta \phi=\Delta \lambda=4^{\circ}$, so |
109 |
that there are ninety grid cells in the zonal and forty in the |
110 |
meridional direction. The internal model coordinate variables |
111 |
$x$ and $y$ are initialised according to |
112 |
\begin{eqnarray} |
113 |
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
114 |
y=r\lambda,~\Delta x &= &r\Delta \lambda |
115 |
\end{eqnarray} |
116 |
|
117 |
Arctic polar regions are not |
118 |
included in this experiment. Meridionally the model extends from |
119 |
$80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. |
120 |
Vertically the model is configured with twenty layers with the |
121 |
following thicknesses |
122 |
$\Delta z_{1} = 50\,{\rm m},\, |
123 |
\Delta z_{2} = 50\,{\rm m},\, |
124 |
\Delta z_{3} = 55\,{\rm m},\, |
125 |
\Delta z_{4} = 60\,{\rm m},\, |
126 |
\Delta z_{5} = 65\,{\rm m},\, |
127 |
$ |
128 |
$ |
129 |
\Delta z_{6}~=~70\,{\rm m},\, |
130 |
\Delta z_{7}~=~80\,{\rm m},\, |
131 |
\Delta z_{8}~=95\,{\rm m},\, |
132 |
\Delta z_{9}=120\,{\rm m},\, |
133 |
\Delta z_{10}=155\,{\rm m},\, |
134 |
$ |
135 |
$ |
136 |
\Delta z_{11}=200\,{\rm m},\, |
137 |
\Delta z_{12}=260\,{\rm m},\, |
138 |
\Delta z_{13}=320\,{\rm m},\, |
139 |
\Delta z_{14}=400\,{\rm m},\, |
140 |
\Delta z_{15}=480\,{\rm m},\, |
141 |
$ |
142 |
$ |
143 |
\Delta z_{16}=570\,{\rm m},\, |
144 |
\Delta z_{17}=655\,{\rm m},\, |
145 |
\Delta z_{18}=725\,{\rm m},\, |
146 |
\Delta z_{19}=775\,{\rm m},\, |
147 |
\Delta z_{20}=815\,{\rm m} |
148 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
149 |
The implicit free surface form of the pressure equation described in Marshall et. al |
150 |
\cite{Marshall97a} is employed. A laplacian operator, $\nabla^2$, provides viscous |
151 |
dissipation. Thermal and haline diffusion is also represented by a laplacian operator. |
152 |
|
153 |
Wind-stress forcing is added to the momentum equations for both |
154 |
the zonal flow, $u$ and the merdional flow $v$, according to equations |
155 |
(\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}). |
156 |
Thermodynamic forcing inputs are added to the equations for |
157 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
158 |
(\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}). |
159 |
This produces a set of equations solved in this configuration as follows: |
160 |
|
161 |
\begin{eqnarray} |
162 |
\label{EQ:model_equations} |
163 |
\frac{Du}{Dt} - fv + |
164 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
165 |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
166 |
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} |
167 |
& = & |
168 |
\begin{cases} |
169 |
{\cal F}_u & \text{(surface)} \\ |
170 |
0 & \text{(interior)} |
171 |
\end{cases} |
172 |
\\ |
173 |
\frac{Dv}{Dt} + fu + |
174 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
175 |
\nabla_{h}\cdot A_{h}\nabla_{h}v - |
176 |
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} |
177 |
& = & |
178 |
\begin{cases} |
179 |
{\cal F}_v & \text{(surface)} \\ |
180 |
0 & \text{(interior)} |
181 |
\end{cases} |
182 |
\\ |
183 |
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} |
184 |
&=& |
185 |
0 |
186 |
\\ |
187 |
\frac{D\theta}{Dt} - |
188 |
\nabla_{h}\cdot K_{h}\nabla_{h}\theta |
189 |
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z} |
190 |
& = & |
191 |
\begin{cases} |
192 |
{\cal F}_\theta & \text{(surface)} \\ |
193 |
0 & \text{(interior)} |
194 |
\end{cases} |
195 |
\\ |
196 |
\frac{D s}{Dt} - |
197 |
\nabla_{h}\cdot K_{h}\nabla_{h}s |
198 |
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z} |
199 |
& = & |
200 |
\begin{cases} |
201 |
{\cal F}_s & \text{(surface)} \\ |
202 |
0 & \text{(interior)} |
203 |
\end{cases} |
204 |
\\ |
205 |
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
206 |
\end{eqnarray} |
207 |
|
208 |
\noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and |
209 |
$v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ |
210 |
are the zonal and meridional components of the |
211 |
flow vector, $\vec{u}$, on the sphere. As described in |
212 |
MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time |
213 |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
214 |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
215 |
elevation $\eta$ and the hydrostatic pressure. |
216 |
\\ |
217 |
|
218 |
\subsubsection{Numerical Stability Criteria} |
219 |
|
220 |
The laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
221 |
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
222 |
\begin{eqnarray} |
223 |
\label{EQ:munk_layer} |
224 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
225 |
\end{eqnarray} |
226 |
|
227 |
\noindent of $\approx 600$km. This is greater than the model |
228 |
resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional |
229 |
boundary layer is adequately resolved. |
230 |
\\ |
231 |
|
232 |
\noindent The model is stepped forward with a |
233 |
time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and |
234 |
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
235 |
parameter to the horizontal laplacian friction \cite{Adcroft_thesis} |
236 |
\begin{eqnarray} |
237 |
\label{EQ:laplacian_stability} |
238 |
S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
239 |
\end{eqnarray} |
240 |
|
241 |
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
242 |
0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at |
243 |
$\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$. |
244 |
\\ |
245 |
|
246 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
247 |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
248 |
\begin{eqnarray} |
249 |
\label{EQ:laplacian_stability_z} |
250 |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
251 |
\end{eqnarray} |
252 |
|
253 |
\noindent evaluates to $0.015$ for the smallest model |
254 |
level spcing ($\Delta z_{1}=50{\rm m}$) which is again well below |
255 |
the upper stability limit. |
256 |
\\ |
257 |
|
258 |
The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients |
259 |
for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ |
260 |
and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit |
261 |
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
262 |
Here the stability parameter |
263 |
\begin{eqnarray} |
264 |
\label{EQ:laplacian_stability_xtheta} |
265 |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
266 |
\end{eqnarray} |
267 |
evaluates to $0.07$, well below the stabilit limit of $S_{l} \approx 0.5$. The |
268 |
stability parameter related to $K_{z}$ |
269 |
\begin{eqnarray} |
270 |
\label{EQ:laplacian_stability_ztheta} |
271 |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
272 |
\end{eqnarray} |
273 |
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
274 |
of $S_{l} \approx 0.5$. |
275 |
\\ |
276 |
|
277 |
\noindent The numerical stability for inertial oscillations |
278 |
\cite{Adcroft_thesis} |
279 |
|
280 |
\begin{eqnarray} |
281 |
\label{EQ:inertial_stability} |
282 |
S_{i} = f^{2} {\delta t_v}^2 |
283 |
\end{eqnarray} |
284 |
|
285 |
\noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to |
286 |
the $S_{i} < 1$ upper limit for stability. |
287 |
\\ |
288 |
|
289 |
\noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum |
290 |
horizontal flow |
291 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
292 |
|
293 |
\begin{eqnarray} |
294 |
\label{EQ:cfl_stability} |
295 |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
296 |
\end{eqnarray} |
297 |
|
298 |
\noindent evaluates to $6 \times 10^{-2}$. This is well below the stability |
299 |
limit of 0.5. |
300 |
\\ |
301 |
|
302 |
\noindent The stability parameter for internal gravity waves propogating |
303 |
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
304 |
\cite{Adcroft_thesis} |
305 |
|
306 |
\begin{eqnarray} |
307 |
\label{EQ:cfl_stability} |
308 |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
309 |
\end{eqnarray} |
310 |
|
311 |
\noindent evaluates to $3 \times 10^{-1}$. This is close to the linear |
312 |
stability limit of 0.5. |
313 |
|
314 |
\subsection{Experiment Configuration} |
315 |
\label{SEC:clim_ocn_examp_exp_config} |
316 |
|
317 |
The model configuration for this experiment resides under the |
318 |
directory {\it verification/exp2/}. The experiment files |
319 |
\begin{itemize} |
320 |
\item {\it input/data} |
321 |
\item {\it input/data.pkg} |
322 |
\item {\it input/eedata}, |
323 |
\item {\it input/windx.bin}, |
324 |
\item {\it input/windy.bin}, |
325 |
\item {\it input/salt.bin}, |
326 |
\item {\it input/theta.bin}, |
327 |
\item {\it input/SSS.bin}, |
328 |
\item {\it input/SST.bin}, |
329 |
\item {\it input/topog.bin}, |
330 |
\item {\it code/CPP\_EEOPTIONS.h} |
331 |
\item {\it code/CPP\_OPTIONS.h}, |
332 |
\item {\it code/SIZE.h}. |
333 |
\end{itemize} |
334 |
contain the code customisations and parameter settings for these |
335 |
experiements. Below we describe the customisations |
336 |
to these files associated with this experiment. |
337 |
|
338 |
\subsubsection{File {\it input/data}} |
339 |
|
340 |
This file, reproduced completely below, specifies the main parameters |
341 |
for the experiment. The parameters that are significant for this configuration |
342 |
are |
343 |
|
344 |
\begin{itemize} |
345 |
|
346 |
\item Lines 7-10 and 11-14 |
347 |
\begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim} |
348 |
$\cdots$ \\ |
349 |
set reference values for potential |
350 |
temperature and salinity at each model level in units of $^{\circ}$C and |
351 |
${\rm ppt}$. The entries are ordered from surface to depth. |
352 |
Density is calculated from anomalies at each level evaluated |
353 |
with respect to the reference values set here.\\ |
354 |
\fbox{ |
355 |
\begin{minipage}{5.0in} |
356 |
{\it S/R INI\_THETA}({\it ini\_theta.F}) |
357 |
\end{minipage} |
358 |
} |
359 |
|
360 |
|
361 |
\item Line 15, |
362 |
\begin{verbatim} viscAz=1.E-3, \end{verbatim} |
363 |
this line sets the vertical laplacian dissipation coefficient to |
364 |
$1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions |
365 |
for this operator are specified later. This variable is copied into |
366 |
model general vertical coordinate variable {\bf viscAr}. |
367 |
|
368 |
\fbox{ |
369 |
\begin{minipage}{5.0in} |
370 |
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
371 |
\end{minipage} |
372 |
} |
373 |
|
374 |
\item Line 16, |
375 |
\begin{verbatim} |
376 |
viscAh=5.E5, |
377 |
\end{verbatim} |
378 |
this line sets the horizontal laplacian frictional dissipation coefficient to |
379 |
$5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions |
380 |
for this operator are specified later. |
381 |
|
382 |
\item Lines 17, |
383 |
\begin{verbatim} |
384 |
no_slip_sides=.FALSE. |
385 |
\end{verbatim} |
386 |
this line selects a free-slip lateral boundary condition for |
387 |
the horizontal laplacian friction operator |
388 |
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
389 |
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
390 |
|
391 |
\item Lines 9, |
392 |
\begin{verbatim} |
393 |
no_slip_bottom=.TRUE. |
394 |
\end{verbatim} |
395 |
this line selects a no-slip boundary condition for bottom |
396 |
boundary condition in the vertical laplacian friction operator |
397 |
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
398 |
|
399 |
\item Line 19, |
400 |
\begin{verbatim} |
401 |
diffKhT=1.E3, |
402 |
\end{verbatim} |
403 |
this line sets the horizontal diffusion coefficient for temperature |
404 |
to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
405 |
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on |
406 |
all boundaries. |
407 |
|
408 |
\item Line 20, |
409 |
\begin{verbatim} |
410 |
diffKzT=3.E-5, |
411 |
\end{verbatim} |
412 |
this line sets the vertical diffusion coefficient for temperature |
413 |
to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary |
414 |
condition on this operator is $\frac{\partial}{\partial z}=0$ at both |
415 |
the upper and lower boundaries. |
416 |
|
417 |
\item Line 21, |
418 |
\begin{verbatim} |
419 |
diffKhS=1.E3, |
420 |
\end{verbatim} |
421 |
this line sets the horizontal diffusion coefficient for salinity |
422 |
to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
423 |
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on |
424 |
all boundaries. |
425 |
|
426 |
\item Line 22, |
427 |
\begin{verbatim} |
428 |
diffKzS=3.E-5, |
429 |
\end{verbatim} |
430 |
this line sets the vertical diffusion coefficient for salinity |
431 |
to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary |
432 |
condition on this operator is $\frac{\partial}{\partial z}=0$ at both |
433 |
the upper and lower boundaries. |
434 |
|
435 |
\item Lines 23-26 |
436 |
\begin{verbatim} |
437 |
beta=1.E-11, |
438 |
\end{verbatim} |
439 |
\vspace{-5mm}$\cdots$\\ |
440 |
These settings do not apply for this experiment. |
441 |
|
442 |
\item Line 27, |
443 |
\begin{verbatim} |
444 |
gravity=9.81, |
445 |
\end{verbatim} |
446 |
Sets the gravitational acceleration coeeficient to $9.81{\rm m}{\rm s}^{-1}$.\\ |
447 |
\fbox{ |
448 |
\begin{minipage}{5.0in} |
449 |
{\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\ |
450 |
{\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\ |
451 |
{\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\ |
452 |
{\it S/R INI\_PARMS}~({\it ini\_parms.F})\\ |
453 |
{\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F}) |
454 |
\end{minipage} |
455 |
} |
456 |
|
457 |
|
458 |
\item Line 28-29, |
459 |
\begin{verbatim} |
460 |
rigidLid=.FALSE., |
461 |
implicitFreeSurface=.TRUE., |
462 |
\end{verbatim} |
463 |
Selects the barotropic pressure equation to be the implicit free surface |
464 |
formulation. |
465 |
|
466 |
\item Line 30, |
467 |
\begin{verbatim} |
468 |
eosType='POLY3', |
469 |
\end{verbatim} |
470 |
Selects the third order polynomial form of the equation of state.\\ |
471 |
\fbox{ |
472 |
\begin{minipage}{5.0in} |
473 |
{\it S/R FIND\_RHO}~({\it find\_rho.F})\\ |
474 |
{\it S/R FIND\_ALPHA}~({\it find\_alpha.F}) |
475 |
\end{minipage} |
476 |
} |
477 |
|
478 |
\item Line 31, |
479 |
\begin{verbatim} |
480 |
readBinaryPrec=32, |
481 |
\end{verbatim} |
482 |
Sets format for reading binary input datasets holding model fields to |
483 |
use 32-bit representation for floating-point numbers.\\ |
484 |
\fbox{ |
485 |
\begin{minipage}{5.0in} |
486 |
{\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\ |
487 |
{\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F}) |
488 |
\end{minipage} |
489 |
} |
490 |
|
491 |
\item Line 36, |
492 |
\begin{verbatim} |
493 |
cg2dMaxIters=1000, |
494 |
\end{verbatim} |
495 |
Sets maximum number of iterations the two-dimensional, conjugate |
496 |
gradient solver will use, {\bf irrespective of convergence |
497 |
criteria being met}.\\ |
498 |
\fbox{ |
499 |
\begin{minipage}{5.0in} |
500 |
{\it S/R CG2D}~({\it cg2d.F}) |
501 |
\end{minipage} |
502 |
} |
503 |
|
504 |
\item Line 37, |
505 |
\begin{verbatim} |
506 |
cg2dTargetResidual=1.E-13, |
507 |
\end{verbatim} |
508 |
Sets the tolerance which the two-dimensional, conjugate |
509 |
gradient solver will use to test for convergence in equation |
510 |
\ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$. |
511 |
Solver will iterate until |
512 |
tolerance falls below this value or until the maximum number of |
513 |
solver iterations is reached.\\ |
514 |
\fbox{ |
515 |
\begin{minipage}{5.0in} |
516 |
{\it S/R CG2D}~({\it cg2d.F}) |
517 |
\end{minipage} |
518 |
} |
519 |
|
520 |
\item Line 42, |
521 |
\begin{verbatim} |
522 |
startTime=0, |
523 |
\end{verbatim} |
524 |
Sets the starting time for the model internal time counter. |
525 |
When set to non-zero this option implicitly requests a |
526 |
checkpoint file be read for initial state. |
527 |
By default the checkpoint file is named according to |
528 |
the integer number of time steps in the {\bf startTime} value. |
529 |
The internal time counter works in seconds. |
530 |
|
531 |
\item Line 43, |
532 |
\begin{verbatim} |
533 |
endTime=2808000., |
534 |
\end{verbatim} |
535 |
Sets the time (in seconds) at which this simulation will terminate. |
536 |
At the end of a simulation a checkpoint file is automatically |
537 |
written so that a numerical experiment can consist of multiple |
538 |
stages. |
539 |
|
540 |
\item Line 44, |
541 |
\begin{verbatim} |
542 |
#endTime=62208000000, |
543 |
\end{verbatim} |
544 |
A commented out setting for endTime for a 2000 year simulation. |
545 |
|
546 |
\item Line 45, |
547 |
\begin{verbatim} |
548 |
deltaTmom=2400.0, |
549 |
\end{verbatim} |
550 |
Sets the timestep $\delta t_{v}$ used in the momentum equations to |
551 |
$20~{\rm mins}$. |
552 |
See section \ref{SEC:mom_time_stepping}. |
553 |
|
554 |
\fbox{ |
555 |
\begin{minipage}{5.0in} |
556 |
{\it S/R TIMESTEP}({\it timestep.F}) |
557 |
\end{minipage} |
558 |
} |
559 |
|
560 |
\item Line 46, |
561 |
\begin{verbatim} |
562 |
tauCD=321428., |
563 |
\end{verbatim} |
564 |
Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations. |
565 |
See section \ref{SEC:cd_scheme}. |
566 |
|
567 |
\fbox{ |
568 |
\begin{minipage}{5.0in} |
569 |
{\it S/R INI\_PARMS}({\it ini\_parms.F})\\ |
570 |
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
571 |
\end{minipage} |
572 |
} |
573 |
|
574 |
\item Line 47, |
575 |
\begin{verbatim} |
576 |
deltaTtracer=108000., |
577 |
\end{verbatim} |
578 |
Sets the default timestep, $\delta t_{\theta}$, for tracer equations to |
579 |
$30~{\rm hours}$. |
580 |
See section \ref{SEC:tracer_time_stepping}. |
581 |
|
582 |
\fbox{ |
583 |
\begin{minipage}{5.0in} |
584 |
{\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F}) |
585 |
\end{minipage} |
586 |
} |
587 |
|
588 |
\item Line 47, |
589 |
\begin{verbatim} |
590 |
bathyFile='topog.box' |
591 |
\end{verbatim} |
592 |
This line specifies the name of the file from which the domain |
593 |
bathymetry is read. This file is a two-dimensional ($x,y$) map of |
594 |
depths. This file is assumed to contain 64-bit binary numbers |
595 |
giving the depth of the model at each grid cell, ordered with the x |
596 |
coordinate varying fastest. The points are ordered from low coordinate |
597 |
to high coordinate for both axes. The units and orientation of the |
598 |
depths in this file are the same as used in the MITgcm code. In this |
599 |
experiment, a depth of $0m$ indicates a solid wall and a depth |
600 |
of $-2000m$ indicates open ocean. The matlab program |
601 |
{\it input/gendata.m} shows an example of how to generate a |
602 |
bathymetry file. |
603 |
|
604 |
|
605 |
\item Line 50, |
606 |
\begin{verbatim} |
607 |
zonalWindFile='windx.sin_y' |
608 |
\end{verbatim} |
609 |
This line specifies the name of the file from which the x-direction |
610 |
surface wind stress is read. This file is also a two-dimensional |
611 |
($x,y$) map and is enumerated and formatted in the same manner as the |
612 |
bathymetry file. The matlab program {\it input/gendata.m} includes example |
613 |
code to generate a valid |
614 |
{\bf zonalWindFile} |
615 |
file. |
616 |
|
617 |
\end{itemize} |
618 |
|
619 |
\noindent other lines in the file {\it input/data} are standard values |
620 |
that are described in the MITgcm Getting Started and MITgcm Parameters |
621 |
notes. |
622 |
|
623 |
\begin{small} |
624 |
\input{part3/case_studies/climatalogical_ogcm/input/data} |
625 |
\end{small} |
626 |
|
627 |
\subsubsection{File {\it input/data.pkg}} |
628 |
|
629 |
This file uses standard default values and does not contain |
630 |
customisations for this experiment. |
631 |
|
632 |
\subsubsection{File {\it input/eedata}} |
633 |
|
634 |
This file uses standard default values and does not contain |
635 |
customisations for this experiment. |
636 |
|
637 |
\subsubsection{File {\it input/windx.sin\_y}} |
638 |
|
639 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
640 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
641 |
Although $\tau_{x}$ is only a function of $y$n in this experiment |
642 |
this file must still define a complete two-dimensional map in order |
643 |
to be compatible with the standard code for loading forcing fields |
644 |
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
645 |
code for creating the {\it input/windx.sin\_y} file. |
646 |
|
647 |
\subsubsection{File {\it input/topog.box}} |
648 |
|
649 |
|
650 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
651 |
map of depth values. For this experiment values are either |
652 |
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
653 |
ocean. The file contains a raw binary stream of data that is enumerated |
654 |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
655 |
The included matlab program {\it input/gendata.m} gives a complete |
656 |
code for creating the {\it input/topog.box} file. |
657 |
|
658 |
\subsubsection{File {\it code/SIZE.h}} |
659 |
|
660 |
Two lines are customized in this file for the current experiment |
661 |
|
662 |
\begin{itemize} |
663 |
|
664 |
\item Line 39, |
665 |
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
666 |
the lateral domain extent in grid points for the |
667 |
axis aligned with the x-coordinate. |
668 |
|
669 |
\item Line 40, |
670 |
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
671 |
the lateral domain extent in grid points for the |
672 |
axis aligned with the y-coordinate. |
673 |
|
674 |
\item Line 49, |
675 |
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
676 |
the vertical domain extent in grid points. |
677 |
|
678 |
\end{itemize} |
679 |
|
680 |
\begin{small} |
681 |
\input{part3/case_studies/climatalogical_ogcm/code/SIZE.h} |
682 |
\end{small} |
683 |
|
684 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
685 |
|
686 |
This file uses standard default values and does not contain |
687 |
customisations for this experiment. |
688 |
|
689 |
|
690 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
691 |
|
692 |
This file uses standard default values and does not contain |
693 |
customisations for this experiment. |
694 |
|
695 |
\subsubsection{Other Files } |
696 |
|
697 |
Other files relevant to this experiment are |
698 |
\begin{itemize} |
699 |
\item {\it model/src/ini\_cori.F}. This file initializes the model |
700 |
coriolis variables {\bf fCorU}. |
701 |
\item {\it model/src/ini\_spherical\_polar\_grid.F} |
702 |
\item {\it model/src/ini\_parms.F}, |
703 |
\item {\it input/windx.sin\_y}, |
704 |
\end{itemize} |
705 |
contain the code customisations and parameter settings for this |
706 |
experiements. Below we describe the customisations |
707 |
to these files associated with this experiment. |