1 |
mlosch |
1.25 |
% $Header: /u/gcmpack/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex,v 1.24 2013/05/15 22:47:12 jmc Exp $ |
2 |
cnh |
1.2 |
% $Name: $ |
3 |
adcroft |
1.1 |
|
4 |
jmc |
1.17 |
\section[Global Ocean MITgcm Example]{Global Ocean Simulation at $4^\circ$ Resolution} |
5 |
jmc |
1.19 |
%\label{www:tutorials} |
6 |
|
|
\label{sec:eg-global} |
7 |
edhill |
1.12 |
\begin{rawhtml} |
8 |
|
|
<!-- CMIREDIR:eg-global: --> |
9 |
|
|
\end{rawhtml} |
10 |
jmc |
1.16 |
\begin{center} |
11 |
|
|
(in directory: {\it verification/tutorial\_global\_oce\_latlon/}) |
12 |
|
|
\end{center} |
13 |
adcroft |
1.1 |
|
14 |
|
|
\bodytext{bgcolor="#FFFFFFFF"} |
15 |
|
|
|
16 |
mlosch |
1.22 |
\noindent {\bf WARNING: the description of this experiment is not complete. |
17 |
|
|
In particular, many parameters are not yet described.}\\ |
18 |
jmc |
1.21 |
|
19 |
jmc |
1.24 |
%\begin{center} |
20 |
cnh |
1.3 |
%{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation |
21 |
adcroft |
1.1 |
%At Four Degree Resolution with Asynchronous Time Stepping} |
22 |
|
|
% |
23 |
|
|
%\vspace*{4mm} |
24 |
|
|
% |
25 |
|
|
%\vspace*{3mm} |
26 |
|
|
%{\large May 2001} |
27 |
|
|
%\end{center} |
28 |
|
|
|
29 |
mlosch |
1.22 |
This example experiment demonstrates using the MITgcm to simulate the |
30 |
|
|
planetary ocean circulation. The simulation is configured with |
31 |
|
|
realistic geography and bathymetry on a $4^{\circ} \times 4^{\circ}$ |
32 |
|
|
spherical polar grid. The files for this experiment are in the |
33 |
|
|
verification directory under tutorial\_global\_oce\_latlon. Fifteen |
34 |
|
|
levels are used in the vertical, ranging in thickness from $50\,{\rm |
35 |
|
|
m}$ at the surface to $690\,{\rm m}$ at depth, giving a maximum |
36 |
jmc |
1.24 |
model depth of $5200\,{\rm m}$. |
37 |
|
|
Different time-steps are used to accelerate the convergence to |
38 |
|
|
equilibrium \cite[]{bryan:84} so that, at this resolution, |
39 |
|
|
the configuration can be integrated forward for thousands of years |
40 |
|
|
on a single processor desktop computer. |
41 |
adcroft |
1.1 |
\\ |
42 |
cnh |
1.8 |
\subsection{Overview} |
43 |
jmc |
1.19 |
%\label{www:tutorials} |
44 |
adcroft |
1.1 |
|
45 |
mlosch |
1.22 |
The model is forced with climatological wind stress data from |
46 |
|
|
\citet{trenberth90} and NCEP surface flux data from |
47 |
|
|
\citet{kalnay96}. Climatological data \citep{Levitus94} is |
48 |
|
|
used to initialize the model hydrography. \citeauthor{Levitus94} seasonal |
49 |
|
|
climatology data is also used throughout the calculation to provide |
50 |
|
|
additional air-sea fluxes. These fluxes are combined with the NCEP |
51 |
|
|
climatological estimates of surface heat flux, resulting in a mixed |
52 |
|
|
boundary condition of the style described in \citet{Haney}. |
53 |
|
|
Altogether, this yields the following forcing applied in the model |
54 |
|
|
surface layer. |
55 |
adcroft |
1.1 |
|
56 |
|
|
\begin{eqnarray} |
57 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing} |
58 |
|
|
\label{eq:eg-global-global_forcing_fu} |
59 |
adcroft |
1.1 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
60 |
|
|
\\ |
61 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing_fv} |
62 |
adcroft |
1.1 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
63 |
|
|
\\ |
64 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing_ft} |
65 |
jmc |
1.24 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
66 |
adcroft |
1.1 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
67 |
|
|
\\ |
68 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing_fs} |
69 |
jmc |
1.24 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
70 |
adcroft |
1.1 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
71 |
|
|
\end{eqnarray} |
72 |
|
|
|
73 |
|
|
\noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, |
74 |
|
|
${\cal F}_{s}$ are the forcing terms in the zonal and meridional |
75 |
|
|
momentum and in the potential temperature and salinity |
76 |
|
|
equations respectively. |
77 |
|
|
The term $\Delta z_{s}$ represents the top ocean layer thickness in |
78 |
|
|
meters. |
79 |
|
|
It is used in conjunction with a reference density, $\rho_{0}$ |
80 |
|
|
(here set to $999.8\,{\rm kg\,m^{-3}}$), a |
81 |
|
|
reference salinity, $S_{0}$ (here set to 35~ppt), |
82 |
|
|
and a specific heat capacity, $C_{p}$ (here set to |
83 |
|
|
$4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert |
84 |
|
|
input dataset values into time tendencies of |
85 |
|
|
potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$), |
86 |
|
|
salinity (with units ${\rm ppt}~s^{-1}$) and |
87 |
|
|
velocity (with units ${\rm m}~{\rm s}^{-2}$). |
88 |
|
|
The externally supplied forcing fields used in this |
89 |
|
|
experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$, |
90 |
|
|
$\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$) |
91 |
|
|
have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields |
92 |
|
|
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
93 |
jmc |
1.24 |
respectively. The salinity forcing fields ($S^{\ast}$ and |
94 |
adcroft |
1.1 |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
95 |
cnh |
1.8 |
respectively. The source files and procedures for ingesting this data into the |
96 |
|
|
simulation are described in the experiment configuration discussion in section |
97 |
jmc |
1.19 |
\ref{sec:eg-global-clim_ocn_examp_exp_config}. |
98 |
adcroft |
1.1 |
|
99 |
|
|
|
100 |
|
|
\subsection{Discrete Numerical Configuration} |
101 |
jmc |
1.19 |
%\label{www:tutorials} |
102 |
adcroft |
1.1 |
|
103 |
|
|
|
104 |
mlosch |
1.22 |
The model is configured in hydrostatic form. The domain is |
105 |
|
|
discretised with a uniform grid spacing in latitude and longitude on |
106 |
|
|
the sphere $\Delta \phi=\Delta \lambda=4^{\circ}$, so that there are |
107 |
|
|
ninety grid cells in the zonal and forty in the meridional |
108 |
|
|
direction. The internal model coordinate variables $x$ and $y$ are |
109 |
|
|
initialized according to |
110 |
adcroft |
1.1 |
\begin{eqnarray} |
111 |
|
|
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
112 |
jmc |
1.24 |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
113 |
adcroft |
1.1 |
\end{eqnarray} |
114 |
|
|
|
115 |
|
|
Arctic polar regions are not |
116 |
|
|
included in this experiment. Meridionally the model extends from |
117 |
|
|
$80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. |
118 |
jmc |
1.24 |
Vertically the model is configured with fifteen layers with the |
119 |
|
|
following thicknesses: |
120 |
|
|
$\Delta z_{1} = 50\,{\rm m},$\\ |
121 |
|
|
$\Delta z_{2} = 70\,{\rm m},\, |
122 |
mlosch |
1.22 |
\Delta z_{3} = 100\,{\rm m},\, |
123 |
|
|
\Delta z_{4} = 140\,{\rm m},\, |
124 |
|
|
\Delta z_{5} = 190\,{\rm m},\, |
125 |
jmc |
1.24 |
\Delta z_{6} = 240\,{\rm m},\, |
126 |
|
|
\Delta z_{7} = 290\,{\rm m},\, |
127 |
|
|
\Delta z_{8} = 340\,{\rm m},$\\ |
128 |
|
|
$\Delta z_{9} = 390\,{\rm m},\, |
129 |
|
|
\Delta z_{10}= 440\,{\rm m},\, |
130 |
|
|
\Delta z_{11}= 490\,{\rm m},\, |
131 |
|
|
\Delta z_{12}= 540\,{\rm m},\, |
132 |
|
|
\Delta z_{13}= 590\,{\rm m},\, |
133 |
|
|
\Delta z_{14}= 640\,{\rm m},\, |
134 |
|
|
\Delta z_{15}= 690\,{\rm m}$\\ |
135 |
|
|
(here the numeric subscript indicates the model level index number, ${\tt k}$) to |
136 |
mlosch |
1.22 |
give a total depth, $H$, of $-5200{\rm m}$. |
137 |
jmc |
1.24 |
The implicit free surface form of the pressure equation described in |
138 |
mlosch |
1.22 |
\citet{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
139 |
cnh |
1.3 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
140 |
adcroft |
1.1 |
|
141 |
jmc |
1.24 |
Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations}) |
142 |
|
|
for both the zonal flow, $u$ and the meridional flow $v$, according to equations |
143 |
jmc |
1.19 |
(\ref{eq:eg-global-global_forcing_fu}) and (\ref{eq:eg-global-global_forcing_fv}). |
144 |
jmc |
1.24 |
Thermodynamic forcing inputs are added to the equations |
145 |
jmc |
1.19 |
in (\ref{eq:eg-global-model_equations}) for |
146 |
jmc |
1.24 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
147 |
jmc |
1.19 |
(\ref{eq:eg-global-global_forcing_ft}) and (\ref{eq:eg-global-global_forcing_fs}). |
148 |
adcroft |
1.1 |
This produces a set of equations solved in this configuration as follows: |
149 |
|
|
|
150 |
|
|
\begin{eqnarray} |
151 |
jmc |
1.19 |
\label{eq:eg-global-model_equations} |
152 |
jmc |
1.24 |
\frac{Du}{Dt} - fv + |
153 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
154 |
|
|
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
155 |
|
|
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} |
156 |
adcroft |
1.1 |
& = & |
157 |
|
|
\begin{cases} |
158 |
|
|
{\cal F}_u & \text{(surface)} \\ |
159 |
|
|
0 & \text{(interior)} |
160 |
|
|
\end{cases} |
161 |
|
|
\\ |
162 |
jmc |
1.24 |
\frac{Dv}{Dt} + fu + |
163 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
164 |
|
|
\nabla_{h}\cdot A_{h}\nabla_{h}v - |
165 |
|
|
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} |
166 |
adcroft |
1.1 |
& = & |
167 |
|
|
\begin{cases} |
168 |
|
|
{\cal F}_v & \text{(surface)} \\ |
169 |
|
|
0 & \text{(interior)} |
170 |
|
|
\end{cases} |
171 |
|
|
\\ |
172 |
|
|
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} |
173 |
|
|
&=& |
174 |
|
|
0 |
175 |
|
|
\\ |
176 |
|
|
\frac{D\theta}{Dt} - |
177 |
|
|
\nabla_{h}\cdot K_{h}\nabla_{h}\theta |
178 |
jmc |
1.24 |
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z} |
179 |
adcroft |
1.1 |
& = & |
180 |
|
|
\begin{cases} |
181 |
|
|
{\cal F}_\theta & \text{(surface)} \\ |
182 |
|
|
0 & \text{(interior)} |
183 |
|
|
\end{cases} |
184 |
|
|
\\ |
185 |
|
|
\frac{D s}{Dt} - |
186 |
|
|
\nabla_{h}\cdot K_{h}\nabla_{h}s |
187 |
jmc |
1.24 |
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z} |
188 |
adcroft |
1.1 |
& = & |
189 |
|
|
\begin{cases} |
190 |
|
|
{\cal F}_s & \text{(surface)} \\ |
191 |
|
|
0 & \text{(interior)} |
192 |
|
|
\end{cases} |
193 |
|
|
\\ |
194 |
|
|
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
195 |
|
|
\end{eqnarray} |
196 |
|
|
|
197 |
jmc |
1.24 |
\noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and |
198 |
|
|
$v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ |
199 |
adcroft |
1.1 |
are the zonal and meridional components of the |
200 |
|
|
flow vector, $\vec{u}$, on the sphere. As described in |
201 |
jmc |
1.24 |
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
202 |
adcroft |
1.1 |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
203 |
jmc |
1.24 |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
204 |
adcroft |
1.1 |
elevation $\eta$ and the hydrostatic pressure. |
205 |
|
|
\\ |
206 |
|
|
|
207 |
|
|
\subsubsection{Numerical Stability Criteria} |
208 |
jmc |
1.19 |
%\label{www:tutorials} |
209 |
adcroft |
1.1 |
|
210 |
cnh |
1.3 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
211 |
mlosch |
1.22 |
This value is chosen to yield a Munk layer width \citep{adcroft:95}, |
212 |
adcroft |
1.1 |
\begin{eqnarray} |
213 |
jmc |
1.19 |
\label{eq:eg-global-munk_layer} |
214 |
adcroft |
1.10 |
&& M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
215 |
adcroft |
1.1 |
\end{eqnarray} |
216 |
|
|
|
217 |
|
|
\noindent of $\approx 600$km. This is greater than the model |
218 |
jmc |
1.24 |
resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional |
219 |
adcroft |
1.1 |
boundary layer is adequately resolved. |
220 |
|
|
\\ |
221 |
|
|
|
222 |
jmc |
1.24 |
\noindent The model is stepped forward with a time step $\Delta |
223 |
|
|
t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $\Delta |
224 |
|
|
t_{v}=30~{\rm minutes}$ for momentum terms. With this time step, |
225 |
|
|
the stability parameter to the horizontal Laplacian friction |
226 |
mlosch |
1.22 |
\citep{adcroft:95} |
227 |
adcroft |
1.1 |
\begin{eqnarray} |
228 |
jmc |
1.19 |
\label{eq:eg-global-laplacian_stability} |
229 |
jmc |
1.24 |
&& S_{l} = 4 \frac{A_{h} \Delta t_{v}}{{\Delta x}^2} |
230 |
adcroft |
1.1 |
\end{eqnarray} |
231 |
|
|
|
232 |
mlosch |
1.22 |
\noindent evaluates to 0.6 at a latitude of $\phi=80^{\circ}$, which |
233 |
|
|
is above the 0.3 upper limit for stability, but the zonal grid spacing |
234 |
|
|
$\Delta x$ is smallest at $\phi=80^{\circ}$ where $\Delta |
235 |
|
|
x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$ and the stability |
236 |
|
|
criterion is already met 1 grid cell equatorwards (at $\phi=76^{\circ}$). |
237 |
|
|
|
238 |
adcroft |
1.1 |
|
239 |
jmc |
1.24 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
240 |
adcroft |
1.1 |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
241 |
|
|
\begin{eqnarray} |
242 |
jmc |
1.19 |
\label{eq:eg-global-laplacian_stability_z} |
243 |
jmc |
1.24 |
&& S_{l} = 4 \frac{A_{z} \Delta t_{v}}{{\Delta z}^2} |
244 |
adcroft |
1.1 |
\end{eqnarray} |
245 |
|
|
|
246 |
mlosch |
1.22 |
\noindent evaluates to $0.0029$ for the smallest model |
247 |
|
|
level spacing ($\Delta z_{1}=50{\rm m}$) which is well below |
248 |
adcroft |
1.1 |
the upper stability limit. |
249 |
|
|
\\ |
250 |
|
|
|
251 |
jmc |
1.24 |
% The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients |
252 |
|
|
% for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ |
253 |
|
|
% and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit |
254 |
|
|
% related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
255 |
|
|
% Here the stability parameter |
256 |
|
|
% \begin{eqnarray} |
257 |
mlosch |
1.22 |
% \label{eq:eg-global-laplacian_stability_xtheta} |
258 |
jmc |
1.24 |
% S_{l} = \frac{4 K_{h} \Delta t_{\theta}}{{\Delta x}^2} |
259 |
mlosch |
1.22 |
% \end{eqnarray} |
260 |
jmc |
1.24 |
% evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
261 |
mlosch |
1.22 |
% stability parameter related to $K_{z}$ |
262 |
jmc |
1.24 |
% \begin{eqnarray} |
263 |
mlosch |
1.22 |
% \label{eq:eg-global-laplacian_stability_ztheta} |
264 |
jmc |
1.24 |
% S_{l} = \frac{4 K_{z} \Delta t_{\theta}}{{\Delta z}^2} |
265 |
mlosch |
1.22 |
% \end{eqnarray} |
266 |
jmc |
1.24 |
% evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
267 |
mlosch |
1.22 |
% of $S_{l} \approx 0.5$. |
268 |
|
|
% \\ |
269 |
adcroft |
1.1 |
|
270 |
|
|
\noindent The numerical stability for inertial oscillations |
271 |
jmc |
1.24 |
\citep{adcroft:95} |
272 |
adcroft |
1.1 |
|
273 |
|
|
\begin{eqnarray} |
274 |
jmc |
1.19 |
\label{eq:eg-global-inertial_stability} |
275 |
jmc |
1.24 |
&& S_{i} = f^{2} {\Delta t_v}^2 |
276 |
adcroft |
1.1 |
\end{eqnarray} |
277 |
|
|
|
278 |
mlosch |
1.22 |
\noindent evaluates to $0.07$ for |
279 |
|
|
$f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is |
280 |
|
|
below the $S_{i} < 1$ upper limit for stability. |
281 |
adcroft |
1.1 |
\\ |
282 |
|
|
|
283 |
jmc |
1.24 |
\noindent The advective CFL \citep{adcroft:95} for a extreme maximum |
284 |
adcroft |
1.1 |
horizontal flow |
285 |
|
|
speed of $ | \vec{u} | = 2 ms^{-1}$ |
286 |
|
|
|
287 |
|
|
\begin{eqnarray} |
288 |
jmc |
1.19 |
\label{eq:eg-global-cfl_stability} |
289 |
jmc |
1.24 |
&& S_{a} = \frac{| \vec{u} | \Delta t_{v}}{ \Delta x} |
290 |
adcroft |
1.1 |
\end{eqnarray} |
291 |
|
|
|
292 |
jmc |
1.24 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
293 |
adcroft |
1.1 |
limit of 0.5. |
294 |
|
|
\\ |
295 |
|
|
|
296 |
cnh |
1.3 |
\noindent The stability parameter for internal gravity waves propagating |
297 |
mlosch |
1.22 |
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
298 |
|
|
\citep{adcroft:95} |
299 |
adcroft |
1.1 |
|
300 |
|
|
\begin{eqnarray} |
301 |
jmc |
1.19 |
\label{eq:eg-global-gfl_stability} |
302 |
jmc |
1.24 |
&& S_{c} = \frac{c_{g} \Delta t_{v}}{ \Delta x} |
303 |
adcroft |
1.1 |
\end{eqnarray} |
304 |
|
|
|
305 |
mlosch |
1.22 |
\noindent evaluates to $2.3 \times 10^{-1}$. This is close to the linear |
306 |
adcroft |
1.1 |
stability limit of 0.5. |
307 |
jmc |
1.24 |
|
308 |
adcroft |
1.1 |
\subsection{Experiment Configuration} |
309 |
jmc |
1.19 |
%\label{www:tutorials} |
310 |
|
|
\label{sec:eg-global-clim_ocn_examp_exp_config} |
311 |
adcroft |
1.1 |
|
312 |
mlosch |
1.22 |
The model configuration for this experiment resides under the |
313 |
|
|
directory {\it tutorial\_global\_oce\_latlon/}. The experiment files |
314 |
cnh |
1.8 |
|
315 |
adcroft |
1.1 |
\begin{itemize} |
316 |
|
|
\item {\it input/data} |
317 |
|
|
\item {\it input/data.pkg} |
318 |
|
|
\item {\it input/eedata}, |
319 |
mlosch |
1.22 |
\item {\it input/trenberth\_taux.bin}, |
320 |
|
|
\item {\it input/trenberth\_tauy.bin}, |
321 |
|
|
\item {\it input/lev\_s.bin}, |
322 |
|
|
\item {\it input/lev\_t.bin}, |
323 |
|
|
\item {\it input/lev\_sss.bin}, |
324 |
|
|
\item {\it input/lev\_sst.bin}, |
325 |
|
|
\item {\it input/bathymetry.bin}, |
326 |
jmc |
1.23 |
%\item {\it code/CPP\_EEOPTIONS.h} |
327 |
|
|
%\item {\it code/CPP\_OPTIONS.h}, |
328 |
jmc |
1.24 |
\item {\it code/SIZE.h}. |
329 |
adcroft |
1.1 |
\end{itemize} |
330 |
cnh |
1.3 |
contain the code customizations and parameter settings for these |
331 |
|
|
experiments. Below we describe the customizations |
332 |
adcroft |
1.1 |
to these files associated with this experiment. |
333 |
cnh |
1.8 |
|
334 |
|
|
\subsubsection{Driving Datasets} |
335 |
jmc |
1.19 |
%\label{www:tutorials} |
336 |
cnh |
1.8 |
|
337 |
mlosch |
1.22 |
%% New figures are included before |
338 |
|
|
%% Relaxation temperature |
339 |
|
|
%\begin{figure} |
340 |
|
|
%\centering |
341 |
|
|
%\includegraphics[]{relax_temperature.eps} |
342 |
|
|
%\caption{Relaxation temperature for January} |
343 |
|
|
%\label{fig:relax_temperature} |
344 |
|
|
%\end{figure} |
345 |
|
|
|
346 |
|
|
%% Relaxation salinity |
347 |
|
|
%\begin{figure} |
348 |
|
|
%\centering |
349 |
|
|
%\includegraphics[]{relax_salinity.eps} |
350 |
|
|
%\caption{Relaxation salinity for January} |
351 |
|
|
%\label{fig:relax_salinity} |
352 |
|
|
%\end{figure} |
353 |
|
|
|
354 |
|
|
%% tau_x |
355 |
|
|
%\begin{figure} |
356 |
|
|
%\centering |
357 |
|
|
%\includegraphics[]{tau_x.eps} |
358 |
|
|
%\caption{zonal wind stress for January} |
359 |
|
|
%\label{fig:tau_x} |
360 |
|
|
%\end{figure} |
361 |
|
|
|
362 |
|
|
%% tau_y |
363 |
|
|
%\begin{figure} |
364 |
|
|
%\centering |
365 |
|
|
%\includegraphics[]{tau_y.eps} |
366 |
|
|
%\caption{meridional wind stress for January} |
367 |
|
|
%\label{fig:tau_y} |
368 |
|
|
%\end{figure} |
369 |
|
|
|
370 |
|
|
%% Qnet |
371 |
|
|
%\begin{figure} |
372 |
|
|
%\centering |
373 |
|
|
%\includegraphics[]{qnet.eps} |
374 |
|
|
%\caption{Heat flux for January} |
375 |
|
|
%\label{fig:qnet} |
376 |
|
|
%\end{figure} |
377 |
|
|
|
378 |
|
|
%% EmPmR |
379 |
|
|
%\begin{figure} |
380 |
|
|
%\centering |
381 |
|
|
%\includegraphics[]{empmr.eps} |
382 |
|
|
%\caption{Fresh water flux for January} |
383 |
|
|
%\label{fig:empmr} |
384 |
|
|
%\end{figure} |
385 |
|
|
|
386 |
|
|
%% Bathymetry |
387 |
|
|
%\begin{figure} |
388 |
|
|
%\centering |
389 |
|
|
%\includegraphics[]{bathymetry.eps} |
390 |
|
|
%\caption{Bathymetry} |
391 |
|
|
%\label{fig:bathymetry} |
392 |
|
|
%\end{figure} |
393 |
|
|
|
394 |
|
|
|
395 |
|
|
Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord}) |
396 |
jmc |
1.19 |
%(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr}) |
397 |
jmc |
1.24 |
show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) |
398 |
jmc |
1.19 |
fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
399 |
cnh |
1.8 |
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
400 |
jmc |
1.24 |
in equations |
401 |
jmc |
1.19 |
(\ref{eq:eg-global-global_forcing_fu}-\ref{eq:eg-global-global_forcing_fs}). |
402 |
jmc |
1.24 |
The figures also indicate the lateral extent and coastline used in the |
403 |
|
|
experiment. Figure ({\it --- missing figure --- }) %ref{fig:model_bathymetry}) |
404 |
jmc |
1.19 |
shows the depth contours of the model domain. |
405 |
adcroft |
1.1 |
|
406 |
|
|
\subsubsection{File {\it input/data}} |
407 |
jmc |
1.19 |
%\label{www:tutorials} |
408 |
adcroft |
1.1 |
|
409 |
jmc |
1.20 |
\input{s_examples/global_oce_latlon/inp_data} |
410 |
adcroft |
1.1 |
|
411 |
|
|
\subsubsection{File {\it input/data.pkg}} |
412 |
jmc |
1.19 |
%\label{www:tutorials} |
413 |
adcroft |
1.1 |
|
414 |
|
|
This file uses standard default values and does not contain |
415 |
|
|
customisations for this experiment. |
416 |
|
|
|
417 |
|
|
\subsubsection{File {\it input/eedata}} |
418 |
jmc |
1.19 |
%\label{www:tutorials} |
419 |
adcroft |
1.1 |
|
420 |
|
|
This file uses standard default values and does not contain |
421 |
|
|
customisations for this experiment. |
422 |
|
|
|
423 |
mlosch |
1.22 |
\subsubsection{Files{\it input/trenberth\_taux.bin} and {\it |
424 |
|
|
input/trenberth\_tauy.bin}} |
425 |
jmc |
1.19 |
%\label{www:tutorials} |
426 |
adcroft |
1.1 |
|
427 |
mlosch |
1.22 |
The {\it input/trenberth\_taux.bin} and {\it |
428 |
|
|
input/trenberth\_tauy.bin} files specify a three-dimensional |
429 |
|
|
($x,y,time$) map of wind stress, $(\tau_{x},\tau_{y})$, values |
430 |
|
|
\citep{trenberth90}. The units used are $Nm^{-2}$. |
431 |
adcroft |
1.1 |
|
432 |
mlosch |
1.22 |
\subsubsection{File {\it input/bathymetry.bin}} |
433 |
jmc |
1.19 |
%\label{www:tutorials} |
434 |
adcroft |
1.1 |
|
435 |
mlosch |
1.25 |
The {\it input/bathymetry.bin} file specifies a two-dimensional |
436 |
|
|
($x,y$) map of depth values. For this experiment values range |
437 |
|
|
between~$0$ and $-5200\,{\rm m}$, and have been derived from |
438 |
|
|
ETOPO5. The file contains a raw binary stream of data that is |
439 |
|
|
enumerated in the same way as standard MITgcm two-dimensional, |
440 |
|
|
horizontal arrays. |
441 |
adcroft |
1.1 |
|
442 |
|
|
\subsubsection{File {\it code/SIZE.h}} |
443 |
jmc |
1.19 |
%\label{www:tutorials} |
444 |
adcroft |
1.1 |
|
445 |
jmc |
1.23 |
\input{s_examples/global_oce_latlon/cod_SIZE.h} |
446 |
adcroft |
1.1 |
|
447 |
jmc |
1.23 |
%\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
448 |
jmc |
1.19 |
%\label{www:tutorials} |
449 |
adcroft |
1.1 |
|
450 |
jmc |
1.23 |
%This file uses standard default values and does not contain |
451 |
|
|
%customisations for this experiment. |
452 |
adcroft |
1.1 |
|
453 |
|
|
|
454 |
jmc |
1.23 |
%\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
455 |
jmc |
1.19 |
%\label{www:tutorials} |
456 |
adcroft |
1.1 |
|
457 |
jmc |
1.23 |
%This file uses standard default values and does not contain |
458 |
|
|
%customisations for this experiment. |
459 |
adcroft |
1.1 |
|
460 |
|
|
\subsubsection{Other Files } |
461 |
jmc |
1.19 |
%\label{www:tutorials} |
462 |
adcroft |
1.1 |
|
463 |
mlosch |
1.22 |
% Other files relevant to this experiment are |
464 |
|
|
% \begin{itemize} |
465 |
|
|
% \item {\it model/src/ini\_cori.F}. This file initializes the model |
466 |
|
|
% coriolis variables {\bf fCorU}. |
467 |
|
|
% \item {\it model/src/ini\_spherical\_polar\_grid.F} |
468 |
|
|
% \item {\it model/src/ini\_parms.F}, |
469 |
|
|
% \item {\it input/windx.sin\_y}, |
470 |
|
|
% \end{itemize} |
471 |
jmc |
1.24 |
% contain the code customisations and parameter settings for this |
472 |
mlosch |
1.22 |
% experiments. Below we describe the customisations |
473 |
|
|
% to these files associated with this experiment. |