/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.25 - (hide annotations) (download) (as text)
Wed Nov 25 10:57:41 2015 UTC (9 years, 7 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.24: +7 -9 lines
File MIME type: application/x-tex
fix paragraphy about bathymetry.bin

1 mlosch 1.25 % $Header: /u/gcmpack/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex,v 1.24 2013/05/15 22:47:12 jmc Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4 jmc 1.17 \section[Global Ocean MITgcm Example]{Global Ocean Simulation at $4^\circ$ Resolution}
5 jmc 1.19 %\label{www:tutorials}
6     \label{sec:eg-global}
7 edhill 1.12 \begin{rawhtml}
8     <!-- CMIREDIR:eg-global: -->
9     \end{rawhtml}
10 jmc 1.16 \begin{center}
11     (in directory: {\it verification/tutorial\_global\_oce\_latlon/})
12     \end{center}
13 adcroft 1.1
14     \bodytext{bgcolor="#FFFFFFFF"}
15    
16 mlosch 1.22 \noindent {\bf WARNING: the description of this experiment is not complete.
17     In particular, many parameters are not yet described.}\\
18 jmc 1.21
19 jmc 1.24 %\begin{center}
20 cnh 1.3 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
21 adcroft 1.1 %At Four Degree Resolution with Asynchronous Time Stepping}
22     %
23     %\vspace*{4mm}
24     %
25     %\vspace*{3mm}
26     %{\large May 2001}
27     %\end{center}
28    
29 mlosch 1.22 This example experiment demonstrates using the MITgcm to simulate the
30     planetary ocean circulation. The simulation is configured with
31     realistic geography and bathymetry on a $4^{\circ} \times 4^{\circ}$
32     spherical polar grid. The files for this experiment are in the
33     verification directory under tutorial\_global\_oce\_latlon. Fifteen
34     levels are used in the vertical, ranging in thickness from $50\,{\rm
35     m}$ at the surface to $690\,{\rm m}$ at depth, giving a maximum
36 jmc 1.24 model depth of $5200\,{\rm m}$.
37     Different time-steps are used to accelerate the convergence to
38     equilibrium \cite[]{bryan:84} so that, at this resolution,
39     the configuration can be integrated forward for thousands of years
40     on a single processor desktop computer.
41 adcroft 1.1 \\
42 cnh 1.8 \subsection{Overview}
43 jmc 1.19 %\label{www:tutorials}
44 adcroft 1.1
45 mlosch 1.22 The model is forced with climatological wind stress data from
46     \citet{trenberth90} and NCEP surface flux data from
47     \citet{kalnay96}. Climatological data \citep{Levitus94} is
48     used to initialize the model hydrography. \citeauthor{Levitus94} seasonal
49     climatology data is also used throughout the calculation to provide
50     additional air-sea fluxes. These fluxes are combined with the NCEP
51     climatological estimates of surface heat flux, resulting in a mixed
52     boundary condition of the style described in \citet{Haney}.
53     Altogether, this yields the following forcing applied in the model
54     surface layer.
55 adcroft 1.1
56     \begin{eqnarray}
57 jmc 1.19 \label{eq:eg-global-global_forcing}
58     \label{eq:eg-global-global_forcing_fu}
59 adcroft 1.1 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
60     \\
61 jmc 1.19 \label{eq:eg-global-global_forcing_fv}
62 adcroft 1.1 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
63     \\
64 jmc 1.19 \label{eq:eg-global-global_forcing_ft}
65 jmc 1.24 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
66 adcroft 1.1 - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
67     \\
68 jmc 1.19 \label{eq:eg-global-global_forcing_fs}
69 jmc 1.24 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
70 adcroft 1.1 + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
71     \end{eqnarray}
72    
73     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
74     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
75     momentum and in the potential temperature and salinity
76     equations respectively.
77     The term $\Delta z_{s}$ represents the top ocean layer thickness in
78     meters.
79     It is used in conjunction with a reference density, $\rho_{0}$
80     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
81     reference salinity, $S_{0}$ (here set to 35~ppt),
82     and a specific heat capacity, $C_{p}$ (here set to
83     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
84     input dataset values into time tendencies of
85     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
86     salinity (with units ${\rm ppt}~s^{-1}$) and
87     velocity (with units ${\rm m}~{\rm s}^{-2}$).
88     The externally supplied forcing fields used in this
89     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
90     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
91     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
92     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
93 jmc 1.24 respectively. The salinity forcing fields ($S^{\ast}$ and
94 adcroft 1.1 $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
95 cnh 1.8 respectively. The source files and procedures for ingesting this data into the
96     simulation are described in the experiment configuration discussion in section
97 jmc 1.19 \ref{sec:eg-global-clim_ocn_examp_exp_config}.
98 adcroft 1.1
99    
100     \subsection{Discrete Numerical Configuration}
101 jmc 1.19 %\label{www:tutorials}
102 adcroft 1.1
103    
104 mlosch 1.22 The model is configured in hydrostatic form. The domain is
105     discretised with a uniform grid spacing in latitude and longitude on
106     the sphere $\Delta \phi=\Delta \lambda=4^{\circ}$, so that there are
107     ninety grid cells in the zonal and forty in the meridional
108     direction. The internal model coordinate variables $x$ and $y$ are
109     initialized according to
110 adcroft 1.1 \begin{eqnarray}
111     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
112 jmc 1.24 y=r\lambda,~\Delta y &= &r\Delta \lambda
113 adcroft 1.1 \end{eqnarray}
114    
115     Arctic polar regions are not
116     included in this experiment. Meridionally the model extends from
117     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
118 jmc 1.24 Vertically the model is configured with fifteen layers with the
119     following thicknesses:
120     $\Delta z_{1} = 50\,{\rm m},$\\
121     $\Delta z_{2} = 70\,{\rm m},\,
122 mlosch 1.22 \Delta z_{3} = 100\,{\rm m},\,
123     \Delta z_{4} = 140\,{\rm m},\,
124     \Delta z_{5} = 190\,{\rm m},\,
125 jmc 1.24 \Delta z_{6} = 240\,{\rm m},\,
126     \Delta z_{7} = 290\,{\rm m},\,
127     \Delta z_{8} = 340\,{\rm m},$\\
128     $\Delta z_{9} = 390\,{\rm m},\,
129     \Delta z_{10}= 440\,{\rm m},\,
130     \Delta z_{11}= 490\,{\rm m},\,
131     \Delta z_{12}= 540\,{\rm m},\,
132     \Delta z_{13}= 590\,{\rm m},\,
133     \Delta z_{14}= 640\,{\rm m},\,
134     \Delta z_{15}= 690\,{\rm m}$\\
135     (here the numeric subscript indicates the model level index number, ${\tt k}$) to
136 mlosch 1.22 give a total depth, $H$, of $-5200{\rm m}$.
137 jmc 1.24 The implicit free surface form of the pressure equation described in
138 mlosch 1.22 \citet{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
139 cnh 1.3 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
140 adcroft 1.1
141 jmc 1.24 Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations})
142     for both the zonal flow, $u$ and the meridional flow $v$, according to equations
143 jmc 1.19 (\ref{eq:eg-global-global_forcing_fu}) and (\ref{eq:eg-global-global_forcing_fv}).
144 jmc 1.24 Thermodynamic forcing inputs are added to the equations
145 jmc 1.19 in (\ref{eq:eg-global-model_equations}) for
146 jmc 1.24 potential temperature, $\theta$, and salinity, $S$, according to equations
147 jmc 1.19 (\ref{eq:eg-global-global_forcing_ft}) and (\ref{eq:eg-global-global_forcing_fs}).
148 adcroft 1.1 This produces a set of equations solved in this configuration as follows:
149    
150     \begin{eqnarray}
151 jmc 1.19 \label{eq:eg-global-model_equations}
152 jmc 1.24 \frac{Du}{Dt} - fv +
153     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
154     \nabla_{h}\cdot A_{h}\nabla_{h}u -
155     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
156 adcroft 1.1 & = &
157     \begin{cases}
158     {\cal F}_u & \text{(surface)} \\
159     0 & \text{(interior)}
160     \end{cases}
161     \\
162 jmc 1.24 \frac{Dv}{Dt} + fu +
163     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
164     \nabla_{h}\cdot A_{h}\nabla_{h}v -
165     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
166 adcroft 1.1 & = &
167     \begin{cases}
168     {\cal F}_v & \text{(surface)} \\
169     0 & \text{(interior)}
170     \end{cases}
171     \\
172     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
173     &=&
174     0
175     \\
176     \frac{D\theta}{Dt} -
177     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
178 jmc 1.24 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
179 adcroft 1.1 & = &
180     \begin{cases}
181     {\cal F}_\theta & \text{(surface)} \\
182     0 & \text{(interior)}
183     \end{cases}
184     \\
185     \frac{D s}{Dt} -
186     \nabla_{h}\cdot K_{h}\nabla_{h}s
187 jmc 1.24 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
188 adcroft 1.1 & = &
189     \begin{cases}
190     {\cal F}_s & \text{(surface)} \\
191     0 & \text{(interior)}
192     \end{cases}
193     \\
194     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
195     \end{eqnarray}
196    
197 jmc 1.24 \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
198     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
199 adcroft 1.1 are the zonal and meridional components of the
200     flow vector, $\vec{u}$, on the sphere. As described in
201 jmc 1.24 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
202 adcroft 1.1 evolution of potential temperature, $\theta$, equation is solved prognostically.
203 jmc 1.24 The total pressure, $p$, is diagnosed by summing pressure due to surface
204 adcroft 1.1 elevation $\eta$ and the hydrostatic pressure.
205     \\
206    
207     \subsubsection{Numerical Stability Criteria}
208 jmc 1.19 %\label{www:tutorials}
209 adcroft 1.1
210 cnh 1.3 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
211 mlosch 1.22 This value is chosen to yield a Munk layer width \citep{adcroft:95},
212 adcroft 1.1 \begin{eqnarray}
213 jmc 1.19 \label{eq:eg-global-munk_layer}
214 adcroft 1.10 && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
215 adcroft 1.1 \end{eqnarray}
216    
217     \noindent of $\approx 600$km. This is greater than the model
218 jmc 1.24 resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
219 adcroft 1.1 boundary layer is adequately resolved.
220     \\
221    
222 jmc 1.24 \noindent The model is stepped forward with a time step $\Delta
223     t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $\Delta
224     t_{v}=30~{\rm minutes}$ for momentum terms. With this time step,
225     the stability parameter to the horizontal Laplacian friction
226 mlosch 1.22 \citep{adcroft:95}
227 adcroft 1.1 \begin{eqnarray}
228 jmc 1.19 \label{eq:eg-global-laplacian_stability}
229 jmc 1.24 && S_{l} = 4 \frac{A_{h} \Delta t_{v}}{{\Delta x}^2}
230 adcroft 1.1 \end{eqnarray}
231    
232 mlosch 1.22 \noindent evaluates to 0.6 at a latitude of $\phi=80^{\circ}$, which
233     is above the 0.3 upper limit for stability, but the zonal grid spacing
234     $\Delta x$ is smallest at $\phi=80^{\circ}$ where $\Delta
235     x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$ and the stability
236     criterion is already met 1 grid cell equatorwards (at $\phi=76^{\circ}$).
237    
238 adcroft 1.1
239 jmc 1.24 \noindent The vertical dissipation coefficient, $A_{z}$, is set to
240 adcroft 1.1 $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
241     \begin{eqnarray}
242 jmc 1.19 \label{eq:eg-global-laplacian_stability_z}
243 jmc 1.24 && S_{l} = 4 \frac{A_{z} \Delta t_{v}}{{\Delta z}^2}
244 adcroft 1.1 \end{eqnarray}
245    
246 mlosch 1.22 \noindent evaluates to $0.0029$ for the smallest model
247     level spacing ($\Delta z_{1}=50{\rm m}$) which is well below
248 adcroft 1.1 the upper stability limit.
249     \\
250    
251 jmc 1.24 % The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
252     % for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
253     % and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
254     % related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
255     % Here the stability parameter
256     % \begin{eqnarray}
257 mlosch 1.22 % \label{eq:eg-global-laplacian_stability_xtheta}
258 jmc 1.24 % S_{l} = \frac{4 K_{h} \Delta t_{\theta}}{{\Delta x}^2}
259 mlosch 1.22 % \end{eqnarray}
260 jmc 1.24 % evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
261 mlosch 1.22 % stability parameter related to $K_{z}$
262 jmc 1.24 % \begin{eqnarray}
263 mlosch 1.22 % \label{eq:eg-global-laplacian_stability_ztheta}
264 jmc 1.24 % S_{l} = \frac{4 K_{z} \Delta t_{\theta}}{{\Delta z}^2}
265 mlosch 1.22 % \end{eqnarray}
266 jmc 1.24 % evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
267 mlosch 1.22 % of $S_{l} \approx 0.5$.
268     % \\
269 adcroft 1.1
270     \noindent The numerical stability for inertial oscillations
271 jmc 1.24 \citep{adcroft:95}
272 adcroft 1.1
273     \begin{eqnarray}
274 jmc 1.19 \label{eq:eg-global-inertial_stability}
275 jmc 1.24 && S_{i} = f^{2} {\Delta t_v}^2
276 adcroft 1.1 \end{eqnarray}
277    
278 mlosch 1.22 \noindent evaluates to $0.07$ for
279     $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is
280     below the $S_{i} < 1$ upper limit for stability.
281 adcroft 1.1 \\
282    
283 jmc 1.24 \noindent The advective CFL \citep{adcroft:95} for a extreme maximum
284 adcroft 1.1 horizontal flow
285     speed of $ | \vec{u} | = 2 ms^{-1}$
286    
287     \begin{eqnarray}
288 jmc 1.19 \label{eq:eg-global-cfl_stability}
289 jmc 1.24 && S_{a} = \frac{| \vec{u} | \Delta t_{v}}{ \Delta x}
290 adcroft 1.1 \end{eqnarray}
291    
292 jmc 1.24 \noindent evaluates to $5 \times 10^{-2}$. This is well below the stability
293 adcroft 1.1 limit of 0.5.
294     \\
295    
296 cnh 1.3 \noindent The stability parameter for internal gravity waves propagating
297 mlosch 1.22 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
298     \citep{adcroft:95}
299 adcroft 1.1
300     \begin{eqnarray}
301 jmc 1.19 \label{eq:eg-global-gfl_stability}
302 jmc 1.24 && S_{c} = \frac{c_{g} \Delta t_{v}}{ \Delta x}
303 adcroft 1.1 \end{eqnarray}
304    
305 mlosch 1.22 \noindent evaluates to $2.3 \times 10^{-1}$. This is close to the linear
306 adcroft 1.1 stability limit of 0.5.
307 jmc 1.24
308 adcroft 1.1 \subsection{Experiment Configuration}
309 jmc 1.19 %\label{www:tutorials}
310     \label{sec:eg-global-clim_ocn_examp_exp_config}
311 adcroft 1.1
312 mlosch 1.22 The model configuration for this experiment resides under the
313     directory {\it tutorial\_global\_oce\_latlon/}. The experiment files
314 cnh 1.8
315 adcroft 1.1 \begin{itemize}
316     \item {\it input/data}
317     \item {\it input/data.pkg}
318     \item {\it input/eedata},
319 mlosch 1.22 \item {\it input/trenberth\_taux.bin},
320     \item {\it input/trenberth\_tauy.bin},
321     \item {\it input/lev\_s.bin},
322     \item {\it input/lev\_t.bin},
323     \item {\it input/lev\_sss.bin},
324     \item {\it input/lev\_sst.bin},
325     \item {\it input/bathymetry.bin},
326 jmc 1.23 %\item {\it code/CPP\_EEOPTIONS.h}
327     %\item {\it code/CPP\_OPTIONS.h},
328 jmc 1.24 \item {\it code/SIZE.h}.
329 adcroft 1.1 \end{itemize}
330 cnh 1.3 contain the code customizations and parameter settings for these
331     experiments. Below we describe the customizations
332 adcroft 1.1 to these files associated with this experiment.
333 cnh 1.8
334     \subsubsection{Driving Datasets}
335 jmc 1.19 %\label{www:tutorials}
336 cnh 1.8
337 mlosch 1.22 %% New figures are included before
338     %% Relaxation temperature
339     %\begin{figure}
340     %\centering
341     %\includegraphics[]{relax_temperature.eps}
342     %\caption{Relaxation temperature for January}
343     %\label{fig:relax_temperature}
344     %\end{figure}
345    
346     %% Relaxation salinity
347     %\begin{figure}
348     %\centering
349     %\includegraphics[]{relax_salinity.eps}
350     %\caption{Relaxation salinity for January}
351     %\label{fig:relax_salinity}
352     %\end{figure}
353    
354     %% tau_x
355     %\begin{figure}
356     %\centering
357     %\includegraphics[]{tau_x.eps}
358     %\caption{zonal wind stress for January}
359     %\label{fig:tau_x}
360     %\end{figure}
361    
362     %% tau_y
363     %\begin{figure}
364     %\centering
365     %\includegraphics[]{tau_y.eps}
366     %\caption{meridional wind stress for January}
367     %\label{fig:tau_y}
368     %\end{figure}
369    
370     %% Qnet
371     %\begin{figure}
372     %\centering
373     %\includegraphics[]{qnet.eps}
374     %\caption{Heat flux for January}
375     %\label{fig:qnet}
376     %\end{figure}
377    
378     %% EmPmR
379     %\begin{figure}
380     %\centering
381     %\includegraphics[]{empmr.eps}
382     %\caption{Fresh water flux for January}
383     %\label{fig:empmr}
384     %\end{figure}
385    
386     %% Bathymetry
387     %\begin{figure}
388     %\centering
389     %\includegraphics[]{bathymetry.eps}
390     %\caption{Bathymetry}
391     %\label{fig:bathymetry}
392     %\end{figure}
393    
394    
395     Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord})
396 jmc 1.19 %(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr})
397 jmc 1.24 show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$)
398 jmc 1.19 fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
399 cnh 1.8 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
400 jmc 1.24 in equations
401 jmc 1.19 (\ref{eq:eg-global-global_forcing_fu}-\ref{eq:eg-global-global_forcing_fs}).
402 jmc 1.24 The figures also indicate the lateral extent and coastline used in the
403     experiment. Figure ({\it --- missing figure --- }) %ref{fig:model_bathymetry})
404 jmc 1.19 shows the depth contours of the model domain.
405 adcroft 1.1
406     \subsubsection{File {\it input/data}}
407 jmc 1.19 %\label{www:tutorials}
408 adcroft 1.1
409 jmc 1.20 \input{s_examples/global_oce_latlon/inp_data}
410 adcroft 1.1
411     \subsubsection{File {\it input/data.pkg}}
412 jmc 1.19 %\label{www:tutorials}
413 adcroft 1.1
414     This file uses standard default values and does not contain
415     customisations for this experiment.
416    
417     \subsubsection{File {\it input/eedata}}
418 jmc 1.19 %\label{www:tutorials}
419 adcroft 1.1
420     This file uses standard default values and does not contain
421     customisations for this experiment.
422    
423 mlosch 1.22 \subsubsection{Files{\it input/trenberth\_taux.bin} and {\it
424     input/trenberth\_tauy.bin}}
425 jmc 1.19 %\label{www:tutorials}
426 adcroft 1.1
427 mlosch 1.22 The {\it input/trenberth\_taux.bin} and {\it
428     input/trenberth\_tauy.bin} files specify a three-dimensional
429     ($x,y,time$) map of wind stress, $(\tau_{x},\tau_{y})$, values
430     \citep{trenberth90}. The units used are $Nm^{-2}$.
431 adcroft 1.1
432 mlosch 1.22 \subsubsection{File {\it input/bathymetry.bin}}
433 jmc 1.19 %\label{www:tutorials}
434 adcroft 1.1
435 mlosch 1.25 The {\it input/bathymetry.bin} file specifies a two-dimensional
436     ($x,y$) map of depth values. For this experiment values range
437     between~$0$ and $-5200\,{\rm m}$, and have been derived from
438     ETOPO5. The file contains a raw binary stream of data that is
439     enumerated in the same way as standard MITgcm two-dimensional,
440     horizontal arrays.
441 adcroft 1.1
442     \subsubsection{File {\it code/SIZE.h}}
443 jmc 1.19 %\label{www:tutorials}
444 adcroft 1.1
445 jmc 1.23 \input{s_examples/global_oce_latlon/cod_SIZE.h}
446 adcroft 1.1
447 jmc 1.23 %\subsubsection{File {\it code/CPP\_OPTIONS.h}}
448 jmc 1.19 %\label{www:tutorials}
449 adcroft 1.1
450 jmc 1.23 %This file uses standard default values and does not contain
451     %customisations for this experiment.
452 adcroft 1.1
453    
454 jmc 1.23 %\subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
455 jmc 1.19 %\label{www:tutorials}
456 adcroft 1.1
457 jmc 1.23 %This file uses standard default values and does not contain
458     %customisations for this experiment.
459 adcroft 1.1
460     \subsubsection{Other Files }
461 jmc 1.19 %\label{www:tutorials}
462 adcroft 1.1
463 mlosch 1.22 % Other files relevant to this experiment are
464     % \begin{itemize}
465     % \item {\it model/src/ini\_cori.F}. This file initializes the model
466     % coriolis variables {\bf fCorU}.
467     % \item {\it model/src/ini\_spherical\_polar\_grid.F}
468     % \item {\it model/src/ini\_parms.F},
469     % \item {\it input/windx.sin\_y},
470     % \end{itemize}
471 jmc 1.24 % contain the code customisations and parameter settings for this
472 mlosch 1.22 % experiments. Below we describe the customisations
473     % to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22