| 1 |
mlosch |
1.25 |
% $Header: /u/gcmpack/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex,v 1.24 2013/05/15 22:47:12 jmc Exp $ |
| 2 |
cnh |
1.2 |
% $Name: $ |
| 3 |
adcroft |
1.1 |
|
| 4 |
jmc |
1.17 |
\section[Global Ocean MITgcm Example]{Global Ocean Simulation at $4^\circ$ Resolution} |
| 5 |
jmc |
1.19 |
%\label{www:tutorials} |
| 6 |
|
|
\label{sec:eg-global} |
| 7 |
edhill |
1.12 |
\begin{rawhtml} |
| 8 |
|
|
<!-- CMIREDIR:eg-global: --> |
| 9 |
|
|
\end{rawhtml} |
| 10 |
jmc |
1.16 |
\begin{center} |
| 11 |
|
|
(in directory: {\it verification/tutorial\_global\_oce\_latlon/}) |
| 12 |
|
|
\end{center} |
| 13 |
adcroft |
1.1 |
|
| 14 |
|
|
\bodytext{bgcolor="#FFFFFFFF"} |
| 15 |
|
|
|
| 16 |
mlosch |
1.22 |
\noindent {\bf WARNING: the description of this experiment is not complete. |
| 17 |
|
|
In particular, many parameters are not yet described.}\\ |
| 18 |
jmc |
1.21 |
|
| 19 |
jmc |
1.24 |
%\begin{center} |
| 20 |
cnh |
1.3 |
%{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation |
| 21 |
adcroft |
1.1 |
%At Four Degree Resolution with Asynchronous Time Stepping} |
| 22 |
|
|
% |
| 23 |
|
|
%\vspace*{4mm} |
| 24 |
|
|
% |
| 25 |
|
|
%\vspace*{3mm} |
| 26 |
|
|
%{\large May 2001} |
| 27 |
|
|
%\end{center} |
| 28 |
|
|
|
| 29 |
mlosch |
1.22 |
This example experiment demonstrates using the MITgcm to simulate the |
| 30 |
|
|
planetary ocean circulation. The simulation is configured with |
| 31 |
|
|
realistic geography and bathymetry on a $4^{\circ} \times 4^{\circ}$ |
| 32 |
|
|
spherical polar grid. The files for this experiment are in the |
| 33 |
|
|
verification directory under tutorial\_global\_oce\_latlon. Fifteen |
| 34 |
|
|
levels are used in the vertical, ranging in thickness from $50\,{\rm |
| 35 |
|
|
m}$ at the surface to $690\,{\rm m}$ at depth, giving a maximum |
| 36 |
jmc |
1.24 |
model depth of $5200\,{\rm m}$. |
| 37 |
|
|
Different time-steps are used to accelerate the convergence to |
| 38 |
|
|
equilibrium \cite[]{bryan:84} so that, at this resolution, |
| 39 |
|
|
the configuration can be integrated forward for thousands of years |
| 40 |
|
|
on a single processor desktop computer. |
| 41 |
adcroft |
1.1 |
\\ |
| 42 |
cnh |
1.8 |
\subsection{Overview} |
| 43 |
jmc |
1.19 |
%\label{www:tutorials} |
| 44 |
adcroft |
1.1 |
|
| 45 |
mlosch |
1.22 |
The model is forced with climatological wind stress data from |
| 46 |
|
|
\citet{trenberth90} and NCEP surface flux data from |
| 47 |
|
|
\citet{kalnay96}. Climatological data \citep{Levitus94} is |
| 48 |
|
|
used to initialize the model hydrography. \citeauthor{Levitus94} seasonal |
| 49 |
|
|
climatology data is also used throughout the calculation to provide |
| 50 |
|
|
additional air-sea fluxes. These fluxes are combined with the NCEP |
| 51 |
|
|
climatological estimates of surface heat flux, resulting in a mixed |
| 52 |
|
|
boundary condition of the style described in \citet{Haney}. |
| 53 |
|
|
Altogether, this yields the following forcing applied in the model |
| 54 |
|
|
surface layer. |
| 55 |
adcroft |
1.1 |
|
| 56 |
|
|
\begin{eqnarray} |
| 57 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing} |
| 58 |
|
|
\label{eq:eg-global-global_forcing_fu} |
| 59 |
adcroft |
1.1 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
| 60 |
|
|
\\ |
| 61 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing_fv} |
| 62 |
adcroft |
1.1 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
| 63 |
|
|
\\ |
| 64 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing_ft} |
| 65 |
jmc |
1.24 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
| 66 |
adcroft |
1.1 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
| 67 |
|
|
\\ |
| 68 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing_fs} |
| 69 |
jmc |
1.24 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
| 70 |
adcroft |
1.1 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
| 71 |
|
|
\end{eqnarray} |
| 72 |
|
|
|
| 73 |
|
|
\noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, |
| 74 |
|
|
${\cal F}_{s}$ are the forcing terms in the zonal and meridional |
| 75 |
|
|
momentum and in the potential temperature and salinity |
| 76 |
|
|
equations respectively. |
| 77 |
|
|
The term $\Delta z_{s}$ represents the top ocean layer thickness in |
| 78 |
|
|
meters. |
| 79 |
|
|
It is used in conjunction with a reference density, $\rho_{0}$ |
| 80 |
|
|
(here set to $999.8\,{\rm kg\,m^{-3}}$), a |
| 81 |
|
|
reference salinity, $S_{0}$ (here set to 35~ppt), |
| 82 |
|
|
and a specific heat capacity, $C_{p}$ (here set to |
| 83 |
|
|
$4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert |
| 84 |
|
|
input dataset values into time tendencies of |
| 85 |
|
|
potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$), |
| 86 |
|
|
salinity (with units ${\rm ppt}~s^{-1}$) and |
| 87 |
|
|
velocity (with units ${\rm m}~{\rm s}^{-2}$). |
| 88 |
|
|
The externally supplied forcing fields used in this |
| 89 |
|
|
experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$, |
| 90 |
|
|
$\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$) |
| 91 |
|
|
have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields |
| 92 |
|
|
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
| 93 |
jmc |
1.24 |
respectively. The salinity forcing fields ($S^{\ast}$ and |
| 94 |
adcroft |
1.1 |
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
| 95 |
cnh |
1.8 |
respectively. The source files and procedures for ingesting this data into the |
| 96 |
|
|
simulation are described in the experiment configuration discussion in section |
| 97 |
jmc |
1.19 |
\ref{sec:eg-global-clim_ocn_examp_exp_config}. |
| 98 |
adcroft |
1.1 |
|
| 99 |
|
|
|
| 100 |
|
|
\subsection{Discrete Numerical Configuration} |
| 101 |
jmc |
1.19 |
%\label{www:tutorials} |
| 102 |
adcroft |
1.1 |
|
| 103 |
|
|
|
| 104 |
mlosch |
1.22 |
The model is configured in hydrostatic form. The domain is |
| 105 |
|
|
discretised with a uniform grid spacing in latitude and longitude on |
| 106 |
|
|
the sphere $\Delta \phi=\Delta \lambda=4^{\circ}$, so that there are |
| 107 |
|
|
ninety grid cells in the zonal and forty in the meridional |
| 108 |
|
|
direction. The internal model coordinate variables $x$ and $y$ are |
| 109 |
|
|
initialized according to |
| 110 |
adcroft |
1.1 |
\begin{eqnarray} |
| 111 |
|
|
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
| 112 |
jmc |
1.24 |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
| 113 |
adcroft |
1.1 |
\end{eqnarray} |
| 114 |
|
|
|
| 115 |
|
|
Arctic polar regions are not |
| 116 |
|
|
included in this experiment. Meridionally the model extends from |
| 117 |
|
|
$80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. |
| 118 |
jmc |
1.24 |
Vertically the model is configured with fifteen layers with the |
| 119 |
|
|
following thicknesses: |
| 120 |
|
|
$\Delta z_{1} = 50\,{\rm m},$\\ |
| 121 |
|
|
$\Delta z_{2} = 70\,{\rm m},\, |
| 122 |
mlosch |
1.22 |
\Delta z_{3} = 100\,{\rm m},\, |
| 123 |
|
|
\Delta z_{4} = 140\,{\rm m},\, |
| 124 |
|
|
\Delta z_{5} = 190\,{\rm m},\, |
| 125 |
jmc |
1.24 |
\Delta z_{6} = 240\,{\rm m},\, |
| 126 |
|
|
\Delta z_{7} = 290\,{\rm m},\, |
| 127 |
|
|
\Delta z_{8} = 340\,{\rm m},$\\ |
| 128 |
|
|
$\Delta z_{9} = 390\,{\rm m},\, |
| 129 |
|
|
\Delta z_{10}= 440\,{\rm m},\, |
| 130 |
|
|
\Delta z_{11}= 490\,{\rm m},\, |
| 131 |
|
|
\Delta z_{12}= 540\,{\rm m},\, |
| 132 |
|
|
\Delta z_{13}= 590\,{\rm m},\, |
| 133 |
|
|
\Delta z_{14}= 640\,{\rm m},\, |
| 134 |
|
|
\Delta z_{15}= 690\,{\rm m}$\\ |
| 135 |
|
|
(here the numeric subscript indicates the model level index number, ${\tt k}$) to |
| 136 |
mlosch |
1.22 |
give a total depth, $H$, of $-5200{\rm m}$. |
| 137 |
jmc |
1.24 |
The implicit free surface form of the pressure equation described in |
| 138 |
mlosch |
1.22 |
\citet{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
| 139 |
cnh |
1.3 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
| 140 |
adcroft |
1.1 |
|
| 141 |
jmc |
1.24 |
Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations}) |
| 142 |
|
|
for both the zonal flow, $u$ and the meridional flow $v$, according to equations |
| 143 |
jmc |
1.19 |
(\ref{eq:eg-global-global_forcing_fu}) and (\ref{eq:eg-global-global_forcing_fv}). |
| 144 |
jmc |
1.24 |
Thermodynamic forcing inputs are added to the equations |
| 145 |
jmc |
1.19 |
in (\ref{eq:eg-global-model_equations}) for |
| 146 |
jmc |
1.24 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
| 147 |
jmc |
1.19 |
(\ref{eq:eg-global-global_forcing_ft}) and (\ref{eq:eg-global-global_forcing_fs}). |
| 148 |
adcroft |
1.1 |
This produces a set of equations solved in this configuration as follows: |
| 149 |
|
|
|
| 150 |
|
|
\begin{eqnarray} |
| 151 |
jmc |
1.19 |
\label{eq:eg-global-model_equations} |
| 152 |
jmc |
1.24 |
\frac{Du}{Dt} - fv + |
| 153 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
| 154 |
|
|
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
| 155 |
|
|
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} |
| 156 |
adcroft |
1.1 |
& = & |
| 157 |
|
|
\begin{cases} |
| 158 |
|
|
{\cal F}_u & \text{(surface)} \\ |
| 159 |
|
|
0 & \text{(interior)} |
| 160 |
|
|
\end{cases} |
| 161 |
|
|
\\ |
| 162 |
jmc |
1.24 |
\frac{Dv}{Dt} + fu + |
| 163 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
| 164 |
|
|
\nabla_{h}\cdot A_{h}\nabla_{h}v - |
| 165 |
|
|
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} |
| 166 |
adcroft |
1.1 |
& = & |
| 167 |
|
|
\begin{cases} |
| 168 |
|
|
{\cal F}_v & \text{(surface)} \\ |
| 169 |
|
|
0 & \text{(interior)} |
| 170 |
|
|
\end{cases} |
| 171 |
|
|
\\ |
| 172 |
|
|
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} |
| 173 |
|
|
&=& |
| 174 |
|
|
0 |
| 175 |
|
|
\\ |
| 176 |
|
|
\frac{D\theta}{Dt} - |
| 177 |
|
|
\nabla_{h}\cdot K_{h}\nabla_{h}\theta |
| 178 |
jmc |
1.24 |
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z} |
| 179 |
adcroft |
1.1 |
& = & |
| 180 |
|
|
\begin{cases} |
| 181 |
|
|
{\cal F}_\theta & \text{(surface)} \\ |
| 182 |
|
|
0 & \text{(interior)} |
| 183 |
|
|
\end{cases} |
| 184 |
|
|
\\ |
| 185 |
|
|
\frac{D s}{Dt} - |
| 186 |
|
|
\nabla_{h}\cdot K_{h}\nabla_{h}s |
| 187 |
jmc |
1.24 |
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z} |
| 188 |
adcroft |
1.1 |
& = & |
| 189 |
|
|
\begin{cases} |
| 190 |
|
|
{\cal F}_s & \text{(surface)} \\ |
| 191 |
|
|
0 & \text{(interior)} |
| 192 |
|
|
\end{cases} |
| 193 |
|
|
\\ |
| 194 |
|
|
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
| 195 |
|
|
\end{eqnarray} |
| 196 |
|
|
|
| 197 |
jmc |
1.24 |
\noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and |
| 198 |
|
|
$v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ |
| 199 |
adcroft |
1.1 |
are the zonal and meridional components of the |
| 200 |
|
|
flow vector, $\vec{u}$, on the sphere. As described in |
| 201 |
jmc |
1.24 |
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
| 202 |
adcroft |
1.1 |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
| 203 |
jmc |
1.24 |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
| 204 |
adcroft |
1.1 |
elevation $\eta$ and the hydrostatic pressure. |
| 205 |
|
|
\\ |
| 206 |
|
|
|
| 207 |
|
|
\subsubsection{Numerical Stability Criteria} |
| 208 |
jmc |
1.19 |
%\label{www:tutorials} |
| 209 |
adcroft |
1.1 |
|
| 210 |
cnh |
1.3 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
| 211 |
mlosch |
1.22 |
This value is chosen to yield a Munk layer width \citep{adcroft:95}, |
| 212 |
adcroft |
1.1 |
\begin{eqnarray} |
| 213 |
jmc |
1.19 |
\label{eq:eg-global-munk_layer} |
| 214 |
adcroft |
1.10 |
&& M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
| 215 |
adcroft |
1.1 |
\end{eqnarray} |
| 216 |
|
|
|
| 217 |
|
|
\noindent of $\approx 600$km. This is greater than the model |
| 218 |
jmc |
1.24 |
resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional |
| 219 |
adcroft |
1.1 |
boundary layer is adequately resolved. |
| 220 |
|
|
\\ |
| 221 |
|
|
|
| 222 |
jmc |
1.24 |
\noindent The model is stepped forward with a time step $\Delta |
| 223 |
|
|
t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $\Delta |
| 224 |
|
|
t_{v}=30~{\rm minutes}$ for momentum terms. With this time step, |
| 225 |
|
|
the stability parameter to the horizontal Laplacian friction |
| 226 |
mlosch |
1.22 |
\citep{adcroft:95} |
| 227 |
adcroft |
1.1 |
\begin{eqnarray} |
| 228 |
jmc |
1.19 |
\label{eq:eg-global-laplacian_stability} |
| 229 |
jmc |
1.24 |
&& S_{l} = 4 \frac{A_{h} \Delta t_{v}}{{\Delta x}^2} |
| 230 |
adcroft |
1.1 |
\end{eqnarray} |
| 231 |
|
|
|
| 232 |
mlosch |
1.22 |
\noindent evaluates to 0.6 at a latitude of $\phi=80^{\circ}$, which |
| 233 |
|
|
is above the 0.3 upper limit for stability, but the zonal grid spacing |
| 234 |
|
|
$\Delta x$ is smallest at $\phi=80^{\circ}$ where $\Delta |
| 235 |
|
|
x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$ and the stability |
| 236 |
|
|
criterion is already met 1 grid cell equatorwards (at $\phi=76^{\circ}$). |
| 237 |
|
|
|
| 238 |
adcroft |
1.1 |
|
| 239 |
jmc |
1.24 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
| 240 |
adcroft |
1.1 |
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
| 241 |
|
|
\begin{eqnarray} |
| 242 |
jmc |
1.19 |
\label{eq:eg-global-laplacian_stability_z} |
| 243 |
jmc |
1.24 |
&& S_{l} = 4 \frac{A_{z} \Delta t_{v}}{{\Delta z}^2} |
| 244 |
adcroft |
1.1 |
\end{eqnarray} |
| 245 |
|
|
|
| 246 |
mlosch |
1.22 |
\noindent evaluates to $0.0029$ for the smallest model |
| 247 |
|
|
level spacing ($\Delta z_{1}=50{\rm m}$) which is well below |
| 248 |
adcroft |
1.1 |
the upper stability limit. |
| 249 |
|
|
\\ |
| 250 |
|
|
|
| 251 |
jmc |
1.24 |
% The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients |
| 252 |
|
|
% for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ |
| 253 |
|
|
% and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit |
| 254 |
|
|
% related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
| 255 |
|
|
% Here the stability parameter |
| 256 |
|
|
% \begin{eqnarray} |
| 257 |
mlosch |
1.22 |
% \label{eq:eg-global-laplacian_stability_xtheta} |
| 258 |
jmc |
1.24 |
% S_{l} = \frac{4 K_{h} \Delta t_{\theta}}{{\Delta x}^2} |
| 259 |
mlosch |
1.22 |
% \end{eqnarray} |
| 260 |
jmc |
1.24 |
% evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
| 261 |
mlosch |
1.22 |
% stability parameter related to $K_{z}$ |
| 262 |
jmc |
1.24 |
% \begin{eqnarray} |
| 263 |
mlosch |
1.22 |
% \label{eq:eg-global-laplacian_stability_ztheta} |
| 264 |
jmc |
1.24 |
% S_{l} = \frac{4 K_{z} \Delta t_{\theta}}{{\Delta z}^2} |
| 265 |
mlosch |
1.22 |
% \end{eqnarray} |
| 266 |
jmc |
1.24 |
% evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
| 267 |
mlosch |
1.22 |
% of $S_{l} \approx 0.5$. |
| 268 |
|
|
% \\ |
| 269 |
adcroft |
1.1 |
|
| 270 |
|
|
\noindent The numerical stability for inertial oscillations |
| 271 |
jmc |
1.24 |
\citep{adcroft:95} |
| 272 |
adcroft |
1.1 |
|
| 273 |
|
|
\begin{eqnarray} |
| 274 |
jmc |
1.19 |
\label{eq:eg-global-inertial_stability} |
| 275 |
jmc |
1.24 |
&& S_{i} = f^{2} {\Delta t_v}^2 |
| 276 |
adcroft |
1.1 |
\end{eqnarray} |
| 277 |
|
|
|
| 278 |
mlosch |
1.22 |
\noindent evaluates to $0.07$ for |
| 279 |
|
|
$f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is |
| 280 |
|
|
below the $S_{i} < 1$ upper limit for stability. |
| 281 |
adcroft |
1.1 |
\\ |
| 282 |
|
|
|
| 283 |
jmc |
1.24 |
\noindent The advective CFL \citep{adcroft:95} for a extreme maximum |
| 284 |
adcroft |
1.1 |
horizontal flow |
| 285 |
|
|
speed of $ | \vec{u} | = 2 ms^{-1}$ |
| 286 |
|
|
|
| 287 |
|
|
\begin{eqnarray} |
| 288 |
jmc |
1.19 |
\label{eq:eg-global-cfl_stability} |
| 289 |
jmc |
1.24 |
&& S_{a} = \frac{| \vec{u} | \Delta t_{v}}{ \Delta x} |
| 290 |
adcroft |
1.1 |
\end{eqnarray} |
| 291 |
|
|
|
| 292 |
jmc |
1.24 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
| 293 |
adcroft |
1.1 |
limit of 0.5. |
| 294 |
|
|
\\ |
| 295 |
|
|
|
| 296 |
cnh |
1.3 |
\noindent The stability parameter for internal gravity waves propagating |
| 297 |
mlosch |
1.22 |
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
| 298 |
|
|
\citep{adcroft:95} |
| 299 |
adcroft |
1.1 |
|
| 300 |
|
|
\begin{eqnarray} |
| 301 |
jmc |
1.19 |
\label{eq:eg-global-gfl_stability} |
| 302 |
jmc |
1.24 |
&& S_{c} = \frac{c_{g} \Delta t_{v}}{ \Delta x} |
| 303 |
adcroft |
1.1 |
\end{eqnarray} |
| 304 |
|
|
|
| 305 |
mlosch |
1.22 |
\noindent evaluates to $2.3 \times 10^{-1}$. This is close to the linear |
| 306 |
adcroft |
1.1 |
stability limit of 0.5. |
| 307 |
jmc |
1.24 |
|
| 308 |
adcroft |
1.1 |
\subsection{Experiment Configuration} |
| 309 |
jmc |
1.19 |
%\label{www:tutorials} |
| 310 |
|
|
\label{sec:eg-global-clim_ocn_examp_exp_config} |
| 311 |
adcroft |
1.1 |
|
| 312 |
mlosch |
1.22 |
The model configuration for this experiment resides under the |
| 313 |
|
|
directory {\it tutorial\_global\_oce\_latlon/}. The experiment files |
| 314 |
cnh |
1.8 |
|
| 315 |
adcroft |
1.1 |
\begin{itemize} |
| 316 |
|
|
\item {\it input/data} |
| 317 |
|
|
\item {\it input/data.pkg} |
| 318 |
|
|
\item {\it input/eedata}, |
| 319 |
mlosch |
1.22 |
\item {\it input/trenberth\_taux.bin}, |
| 320 |
|
|
\item {\it input/trenberth\_tauy.bin}, |
| 321 |
|
|
\item {\it input/lev\_s.bin}, |
| 322 |
|
|
\item {\it input/lev\_t.bin}, |
| 323 |
|
|
\item {\it input/lev\_sss.bin}, |
| 324 |
|
|
\item {\it input/lev\_sst.bin}, |
| 325 |
|
|
\item {\it input/bathymetry.bin}, |
| 326 |
jmc |
1.23 |
%\item {\it code/CPP\_EEOPTIONS.h} |
| 327 |
|
|
%\item {\it code/CPP\_OPTIONS.h}, |
| 328 |
jmc |
1.24 |
\item {\it code/SIZE.h}. |
| 329 |
adcroft |
1.1 |
\end{itemize} |
| 330 |
cnh |
1.3 |
contain the code customizations and parameter settings for these |
| 331 |
|
|
experiments. Below we describe the customizations |
| 332 |
adcroft |
1.1 |
to these files associated with this experiment. |
| 333 |
cnh |
1.8 |
|
| 334 |
|
|
\subsubsection{Driving Datasets} |
| 335 |
jmc |
1.19 |
%\label{www:tutorials} |
| 336 |
cnh |
1.8 |
|
| 337 |
mlosch |
1.22 |
%% New figures are included before |
| 338 |
|
|
%% Relaxation temperature |
| 339 |
|
|
%\begin{figure} |
| 340 |
|
|
%\centering |
| 341 |
|
|
%\includegraphics[]{relax_temperature.eps} |
| 342 |
|
|
%\caption{Relaxation temperature for January} |
| 343 |
|
|
%\label{fig:relax_temperature} |
| 344 |
|
|
%\end{figure} |
| 345 |
|
|
|
| 346 |
|
|
%% Relaxation salinity |
| 347 |
|
|
%\begin{figure} |
| 348 |
|
|
%\centering |
| 349 |
|
|
%\includegraphics[]{relax_salinity.eps} |
| 350 |
|
|
%\caption{Relaxation salinity for January} |
| 351 |
|
|
%\label{fig:relax_salinity} |
| 352 |
|
|
%\end{figure} |
| 353 |
|
|
|
| 354 |
|
|
%% tau_x |
| 355 |
|
|
%\begin{figure} |
| 356 |
|
|
%\centering |
| 357 |
|
|
%\includegraphics[]{tau_x.eps} |
| 358 |
|
|
%\caption{zonal wind stress for January} |
| 359 |
|
|
%\label{fig:tau_x} |
| 360 |
|
|
%\end{figure} |
| 361 |
|
|
|
| 362 |
|
|
%% tau_y |
| 363 |
|
|
%\begin{figure} |
| 364 |
|
|
%\centering |
| 365 |
|
|
%\includegraphics[]{tau_y.eps} |
| 366 |
|
|
%\caption{meridional wind stress for January} |
| 367 |
|
|
%\label{fig:tau_y} |
| 368 |
|
|
%\end{figure} |
| 369 |
|
|
|
| 370 |
|
|
%% Qnet |
| 371 |
|
|
%\begin{figure} |
| 372 |
|
|
%\centering |
| 373 |
|
|
%\includegraphics[]{qnet.eps} |
| 374 |
|
|
%\caption{Heat flux for January} |
| 375 |
|
|
%\label{fig:qnet} |
| 376 |
|
|
%\end{figure} |
| 377 |
|
|
|
| 378 |
|
|
%% EmPmR |
| 379 |
|
|
%\begin{figure} |
| 380 |
|
|
%\centering |
| 381 |
|
|
%\includegraphics[]{empmr.eps} |
| 382 |
|
|
%\caption{Fresh water flux for January} |
| 383 |
|
|
%\label{fig:empmr} |
| 384 |
|
|
%\end{figure} |
| 385 |
|
|
|
| 386 |
|
|
%% Bathymetry |
| 387 |
|
|
%\begin{figure} |
| 388 |
|
|
%\centering |
| 389 |
|
|
%\includegraphics[]{bathymetry.eps} |
| 390 |
|
|
%\caption{Bathymetry} |
| 391 |
|
|
%\label{fig:bathymetry} |
| 392 |
|
|
%\end{figure} |
| 393 |
|
|
|
| 394 |
|
|
|
| 395 |
|
|
Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord}) |
| 396 |
jmc |
1.19 |
%(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr}) |
| 397 |
jmc |
1.24 |
show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) |
| 398 |
jmc |
1.19 |
fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
| 399 |
cnh |
1.8 |
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
| 400 |
jmc |
1.24 |
in equations |
| 401 |
jmc |
1.19 |
(\ref{eq:eg-global-global_forcing_fu}-\ref{eq:eg-global-global_forcing_fs}). |
| 402 |
jmc |
1.24 |
The figures also indicate the lateral extent and coastline used in the |
| 403 |
|
|
experiment. Figure ({\it --- missing figure --- }) %ref{fig:model_bathymetry}) |
| 404 |
jmc |
1.19 |
shows the depth contours of the model domain. |
| 405 |
adcroft |
1.1 |
|
| 406 |
|
|
\subsubsection{File {\it input/data}} |
| 407 |
jmc |
1.19 |
%\label{www:tutorials} |
| 408 |
adcroft |
1.1 |
|
| 409 |
jmc |
1.20 |
\input{s_examples/global_oce_latlon/inp_data} |
| 410 |
adcroft |
1.1 |
|
| 411 |
|
|
\subsubsection{File {\it input/data.pkg}} |
| 412 |
jmc |
1.19 |
%\label{www:tutorials} |
| 413 |
adcroft |
1.1 |
|
| 414 |
|
|
This file uses standard default values and does not contain |
| 415 |
|
|
customisations for this experiment. |
| 416 |
|
|
|
| 417 |
|
|
\subsubsection{File {\it input/eedata}} |
| 418 |
jmc |
1.19 |
%\label{www:tutorials} |
| 419 |
adcroft |
1.1 |
|
| 420 |
|
|
This file uses standard default values and does not contain |
| 421 |
|
|
customisations for this experiment. |
| 422 |
|
|
|
| 423 |
mlosch |
1.22 |
\subsubsection{Files{\it input/trenberth\_taux.bin} and {\it |
| 424 |
|
|
input/trenberth\_tauy.bin}} |
| 425 |
jmc |
1.19 |
%\label{www:tutorials} |
| 426 |
adcroft |
1.1 |
|
| 427 |
mlosch |
1.22 |
The {\it input/trenberth\_taux.bin} and {\it |
| 428 |
|
|
input/trenberth\_tauy.bin} files specify a three-dimensional |
| 429 |
|
|
($x,y,time$) map of wind stress, $(\tau_{x},\tau_{y})$, values |
| 430 |
|
|
\citep{trenberth90}. The units used are $Nm^{-2}$. |
| 431 |
adcroft |
1.1 |
|
| 432 |
mlosch |
1.22 |
\subsubsection{File {\it input/bathymetry.bin}} |
| 433 |
jmc |
1.19 |
%\label{www:tutorials} |
| 434 |
adcroft |
1.1 |
|
| 435 |
mlosch |
1.25 |
The {\it input/bathymetry.bin} file specifies a two-dimensional |
| 436 |
|
|
($x,y$) map of depth values. For this experiment values range |
| 437 |
|
|
between~$0$ and $-5200\,{\rm m}$, and have been derived from |
| 438 |
|
|
ETOPO5. The file contains a raw binary stream of data that is |
| 439 |
|
|
enumerated in the same way as standard MITgcm two-dimensional, |
| 440 |
|
|
horizontal arrays. |
| 441 |
adcroft |
1.1 |
|
| 442 |
|
|
\subsubsection{File {\it code/SIZE.h}} |
| 443 |
jmc |
1.19 |
%\label{www:tutorials} |
| 444 |
adcroft |
1.1 |
|
| 445 |
jmc |
1.23 |
\input{s_examples/global_oce_latlon/cod_SIZE.h} |
| 446 |
adcroft |
1.1 |
|
| 447 |
jmc |
1.23 |
%\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
| 448 |
jmc |
1.19 |
%\label{www:tutorials} |
| 449 |
adcroft |
1.1 |
|
| 450 |
jmc |
1.23 |
%This file uses standard default values and does not contain |
| 451 |
|
|
%customisations for this experiment. |
| 452 |
adcroft |
1.1 |
|
| 453 |
|
|
|
| 454 |
jmc |
1.23 |
%\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
| 455 |
jmc |
1.19 |
%\label{www:tutorials} |
| 456 |
adcroft |
1.1 |
|
| 457 |
jmc |
1.23 |
%This file uses standard default values and does not contain |
| 458 |
|
|
%customisations for this experiment. |
| 459 |
adcroft |
1.1 |
|
| 460 |
|
|
\subsubsection{Other Files } |
| 461 |
jmc |
1.19 |
%\label{www:tutorials} |
| 462 |
adcroft |
1.1 |
|
| 463 |
mlosch |
1.22 |
% Other files relevant to this experiment are |
| 464 |
|
|
% \begin{itemize} |
| 465 |
|
|
% \item {\it model/src/ini\_cori.F}. This file initializes the model |
| 466 |
|
|
% coriolis variables {\bf fCorU}. |
| 467 |
|
|
% \item {\it model/src/ini\_spherical\_polar\_grid.F} |
| 468 |
|
|
% \item {\it model/src/ini\_parms.F}, |
| 469 |
|
|
% \item {\it input/windx.sin\_y}, |
| 470 |
|
|
% \end{itemize} |
| 471 |
jmc |
1.24 |
% contain the code customisations and parameter settings for this |
| 472 |
mlosch |
1.22 |
% experiments. Below we describe the customisations |
| 473 |
|
|
% to these files associated with this experiment. |