/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (hide annotations) (download) (as text)
Thu May 16 15:54:37 2002 UTC (23 years, 2 months ago) by adcroft
Branch: MAIN
Changes since 1.8: +16 -1 lines
File MIME type: application/x-tex
Added \label{www:tutorials} to every section/subsection/subsubsection for
pages that need to appear in the Tutorials sectio of the web-site.

1 adcroft 1.9 % $Header: /u/gcmpack/mitgcmdoc/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.8 2002/02/28 19:32:19 cnh Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4 cnh 1.8 \section{Global Ocean Simulation at 4$^\circ$ Resolution}
5 adcroft 1.9 \label{www:tutorials}
6 adcroft 1.7 \label{sect:eg-global}
7 adcroft 1.1
8     \bodytext{bgcolor="#FFFFFFFF"}
9    
10     %\begin{center}
11 cnh 1.3 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
12 adcroft 1.1 %At Four Degree Resolution with Asynchronous Time Stepping}
13     %
14     %\vspace*{4mm}
15     %
16     %\vspace*{3mm}
17     %{\large May 2001}
18     %\end{center}
19    
20    
21     This example experiment demonstrates using the MITgcm to simulate
22     the planetary ocean circulation. The simulation is configured
23     with realistic geography and bathymetry on a
24     $4^{\circ} \times 4^{\circ}$ spherical polar grid.
25     Twenty levels are used in the vertical, ranging in thickness
26     from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
27     giving a maximum model depth of $6\,{\rm km}$.
28     At this resolution, the configuration
29     can be integrated forward for thousands of years on a single
30     processor desktop computer.
31     \\
32 cnh 1.8 \subsection{Overview}
33 adcroft 1.9 \label{www:tutorials}
34 adcroft 1.1
35 cnh 1.3 The model is forced with climatological wind stress data and surface
36     flux data from DaSilva \cite{DaSilva94}. Climatological data
37     from Levitus \cite{Levitus94} is used to initialize the model hydrography.
38     Levitus seasonal climatology data is also used throughout the calculation
39 adcroft 1.1 to provide additional air-sea fluxes.
40 cnh 1.3 These fluxes are combined with the DaSilva climatological estimates of
41 adcroft 1.1 surface heat flux and fresh water, resulting in a mixed boundary
42 cnh 1.3 condition of the style described in Haney \cite{Haney}.
43 adcroft 1.1 Altogether, this yields the following forcing applied
44     in the model surface layer.
45    
46     \begin{eqnarray}
47 cnh 1.8 \label{EQ:eg-global-global_forcing}
48     \label{EQ:eg-global-global_forcing_fu}
49 adcroft 1.1 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
50     \\
51 cnh 1.8 \label{EQ:eg-global-global_forcing_fv}
52 adcroft 1.1 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
53     \\
54 cnh 1.8 \label{EQ:eg-global-global_forcing_ft}
55 adcroft 1.1 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
56     - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
57     \\
58 cnh 1.8 \label{EQ:eg-global-global_forcing_fs}
59 adcroft 1.1 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
60     + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
61     \end{eqnarray}
62    
63     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
64     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
65     momentum and in the potential temperature and salinity
66     equations respectively.
67     The term $\Delta z_{s}$ represents the top ocean layer thickness in
68     meters.
69     It is used in conjunction with a reference density, $\rho_{0}$
70     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
71     reference salinity, $S_{0}$ (here set to 35~ppt),
72     and a specific heat capacity, $C_{p}$ (here set to
73     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
74     input dataset values into time tendencies of
75     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
76     salinity (with units ${\rm ppt}~s^{-1}$) and
77     velocity (with units ${\rm m}~{\rm s}^{-2}$).
78     The externally supplied forcing fields used in this
79     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
80     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
81     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
82     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
83     respectively. The salinity forcing fields ($S^{\ast}$ and
84     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
85 cnh 1.8 respectively. The source files and procedures for ingesting this data into the
86     simulation are described in the experiment configuration discussion in section
87     \ref{SEC:eg-global-clim_ocn_examp_exp_config}.
88 adcroft 1.1
89    
90     \subsection{Discrete Numerical Configuration}
91 adcroft 1.9 \label{www:tutorials}
92 adcroft 1.1
93    
94     The model is configured in hydrostatic form. The domain is discretised with
95     a uniform grid spacing in latitude and longitude on the sphere
96     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
97     that there are ninety grid cells in the zonal and forty in the
98     meridional direction. The internal model coordinate variables
99 cnh 1.3 $x$ and $y$ are initialized according to
100 adcroft 1.1 \begin{eqnarray}
101     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
102 cnh 1.8 y=r\lambda,~\Delta y &= &r\Delta \lambda
103 adcroft 1.1 \end{eqnarray}
104    
105     Arctic polar regions are not
106     included in this experiment. Meridionally the model extends from
107     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
108     Vertically the model is configured with twenty layers with the
109     following thicknesses
110     $\Delta z_{1} = 50\,{\rm m},\,
111     \Delta z_{2} = 50\,{\rm m},\,
112     \Delta z_{3} = 55\,{\rm m},\,
113     \Delta z_{4} = 60\,{\rm m},\,
114     \Delta z_{5} = 65\,{\rm m},\,
115     $
116     $
117     \Delta z_{6}~=~70\,{\rm m},\,
118     \Delta z_{7}~=~80\,{\rm m},\,
119     \Delta z_{8}~=95\,{\rm m},\,
120     \Delta z_{9}=120\,{\rm m},\,
121     \Delta z_{10}=155\,{\rm m},\,
122     $
123     $
124     \Delta z_{11}=200\,{\rm m},\,
125     \Delta z_{12}=260\,{\rm m},\,
126     \Delta z_{13}=320\,{\rm m},\,
127     \Delta z_{14}=400\,{\rm m},\,
128     \Delta z_{15}=480\,{\rm m},\,
129     $
130     $
131     \Delta z_{16}=570\,{\rm m},\,
132     \Delta z_{17}=655\,{\rm m},\,
133     \Delta z_{18}=725\,{\rm m},\,
134     \Delta z_{19}=775\,{\rm m},\,
135     \Delta z_{20}=815\,{\rm m}
136 cnh 1.8 $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
137     give a total depth, $H$, of $-5450{\rm m}$.
138 adcroft 1.1 The implicit free surface form of the pressure equation described in Marshall et. al
139 adcroft 1.6 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
140 cnh 1.3 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
141 adcroft 1.1
142 cnh 1.8 Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations})
143     for both the zonal flow, $u$ and the meridional flow $v$, according to equations
144     (\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}).
145     Thermodynamic forcing inputs are added to the equations
146     in (\ref{EQ:eg-global-model_equations}) for
147 adcroft 1.1 potential temperature, $\theta$, and salinity, $S$, according to equations
148 cnh 1.8 (\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}).
149 adcroft 1.1 This produces a set of equations solved in this configuration as follows:
150    
151     \begin{eqnarray}
152 cnh 1.8 \label{EQ:eg-global-model_equations}
153 adcroft 1.1 \frac{Du}{Dt} - fv +
154     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
155     \nabla_{h}\cdot A_{h}\nabla_{h}u -
156     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
157     & = &
158     \begin{cases}
159     {\cal F}_u & \text{(surface)} \\
160     0 & \text{(interior)}
161     \end{cases}
162     \\
163     \frac{Dv}{Dt} + fu +
164     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
165     \nabla_{h}\cdot A_{h}\nabla_{h}v -
166     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
167     & = &
168     \begin{cases}
169     {\cal F}_v & \text{(surface)} \\
170     0 & \text{(interior)}
171     \end{cases}
172     \\
173     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
174     &=&
175     0
176     \\
177     \frac{D\theta}{Dt} -
178     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
179     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
180     & = &
181     \begin{cases}
182     {\cal F}_\theta & \text{(surface)} \\
183     0 & \text{(interior)}
184     \end{cases}
185     \\
186     \frac{D s}{Dt} -
187     \nabla_{h}\cdot K_{h}\nabla_{h}s
188     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
189     & = &
190     \begin{cases}
191     {\cal F}_s & \text{(surface)} \\
192     0 & \text{(interior)}
193     \end{cases}
194     \\
195     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
196     \end{eqnarray}
197    
198     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
199     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
200     are the zonal and meridional components of the
201     flow vector, $\vec{u}$, on the sphere. As described in
202 adcroft 1.5 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
203 adcroft 1.1 evolution of potential temperature, $\theta$, equation is solved prognostically.
204     The total pressure, $p$, is diagnosed by summing pressure due to surface
205     elevation $\eta$ and the hydrostatic pressure.
206     \\
207    
208     \subsubsection{Numerical Stability Criteria}
209 adcroft 1.9 \label{www:tutorials}
210 adcroft 1.1
211 cnh 1.3 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
212 adcroft 1.4 This value is chosen to yield a Munk layer width \cite{adcroft:95},
213 adcroft 1.1 \begin{eqnarray}
214 cnh 1.8 \label{EQ:eg-global-munk_layer}
215 adcroft 1.1 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
216     \end{eqnarray}
217    
218     \noindent of $\approx 600$km. This is greater than the model
219     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
220     boundary layer is adequately resolved.
221     \\
222    
223     \noindent The model is stepped forward with a
224     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
225     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
226 adcroft 1.4 parameter to the horizontal Laplacian friction \cite{adcroft:95}
227 adcroft 1.1 \begin{eqnarray}
228 cnh 1.8 \label{EQ:eg-global-laplacian_stability}
229 adcroft 1.1 S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
230     \end{eqnarray}
231    
232     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
233     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
234     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
235     \\
236    
237     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
238     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
239     \begin{eqnarray}
240 cnh 1.8 \label{EQ:eg-global-laplacian_stability_z}
241 adcroft 1.1 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
242     \end{eqnarray}
243    
244     \noindent evaluates to $0.015$ for the smallest model
245 cnh 1.3 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
246 adcroft 1.1 the upper stability limit.
247     \\
248    
249     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
250     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
251     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
252     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
253     Here the stability parameter
254     \begin{eqnarray}
255 cnh 1.8 \label{EQ:eg-global-laplacian_stability_xtheta}
256 adcroft 1.1 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
257     \end{eqnarray}
258 cnh 1.3 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
259 adcroft 1.1 stability parameter related to $K_{z}$
260     \begin{eqnarray}
261 cnh 1.8 \label{EQ:eg-global-laplacian_stability_ztheta}
262 adcroft 1.1 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
263     \end{eqnarray}
264     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
265     of $S_{l} \approx 0.5$.
266     \\
267    
268     \noindent The numerical stability for inertial oscillations
269 adcroft 1.4 \cite{adcroft:95}
270 adcroft 1.1
271     \begin{eqnarray}
272 cnh 1.8 \label{EQ:eg-global-inertial_stability}
273 adcroft 1.1 S_{i} = f^{2} {\delta t_v}^2
274     \end{eqnarray}
275    
276     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
277     the $S_{i} < 1$ upper limit for stability.
278     \\
279    
280 adcroft 1.4 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
281 adcroft 1.1 horizontal flow
282     speed of $ | \vec{u} | = 2 ms^{-1}$
283    
284     \begin{eqnarray}
285 cnh 1.8 \label{EQ:eg-global-cfl_stability}
286 adcroft 1.1 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
287     \end{eqnarray}
288    
289     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
290     limit of 0.5.
291     \\
292    
293 cnh 1.3 \noindent The stability parameter for internal gravity waves propagating
294 adcroft 1.1 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
295 adcroft 1.4 \cite{adcroft:95}
296 adcroft 1.1
297     \begin{eqnarray}
298 cnh 1.8 \label{EQ:eg-global-gfl_stability}
299 adcroft 1.1 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
300     \end{eqnarray}
301    
302     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
303     stability limit of 0.5.
304    
305     \subsection{Experiment Configuration}
306 adcroft 1.9 \label{www:tutorials}
307 cnh 1.8 \label{SEC:eg-global-clim_ocn_examp_exp_config}
308 adcroft 1.1
309     The model configuration for this experiment resides under the
310 cnh 1.8 directory {\it tutorial\_examples/global\_ocean\_circulation/}.
311     The experiment files
312    
313 adcroft 1.1 \begin{itemize}
314     \item {\it input/data}
315     \item {\it input/data.pkg}
316     \item {\it input/eedata},
317     \item {\it input/windx.bin},
318     \item {\it input/windy.bin},
319     \item {\it input/salt.bin},
320     \item {\it input/theta.bin},
321     \item {\it input/SSS.bin},
322     \item {\it input/SST.bin},
323     \item {\it input/topog.bin},
324     \item {\it code/CPP\_EEOPTIONS.h}
325     \item {\it code/CPP\_OPTIONS.h},
326     \item {\it code/SIZE.h}.
327     \end{itemize}
328 cnh 1.3 contain the code customizations and parameter settings for these
329     experiments. Below we describe the customizations
330 adcroft 1.1 to these files associated with this experiment.
331 cnh 1.8
332     \subsubsection{Driving Datasets}
333 adcroft 1.9 \label{www:tutorials}
334 cnh 1.8
335     Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
336     relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
337     the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
338     and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
339     in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
340     also indicate the lateral extent and coastline used in the experiment.
341     Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
342     domain.
343    
344 adcroft 1.1
345     \subsubsection{File {\it input/data}}
346 adcroft 1.9 \label{www:tutorials}
347 adcroft 1.1
348     This file, reproduced completely below, specifies the main parameters
349     for the experiment. The parameters that are significant for this configuration
350     are
351    
352     \begin{itemize}
353    
354     \item Lines 7-10 and 11-14
355     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
356     $\cdots$ \\
357     set reference values for potential
358     temperature and salinity at each model level in units of $^{\circ}$C and
359     ${\rm ppt}$. The entries are ordered from surface to depth.
360     Density is calculated from anomalies at each level evaluated
361     with respect to the reference values set here.\\
362     \fbox{
363     \begin{minipage}{5.0in}
364     {\it S/R INI\_THETA}({\it ini\_theta.F})
365     \end{minipage}
366     }
367    
368    
369     \item Line 15,
370     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
371 cnh 1.3 this line sets the vertical Laplacian dissipation coefficient to
372 adcroft 1.1 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
373     for this operator are specified later. This variable is copied into
374     model general vertical coordinate variable {\bf viscAr}.
375    
376     \fbox{
377     \begin{minipage}{5.0in}
378     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
379     \end{minipage}
380     }
381    
382     \item Line 16,
383     \begin{verbatim}
384     viscAh=5.E5,
385     \end{verbatim}
386 cnh 1.3 this line sets the horizontal Laplacian frictional dissipation coefficient to
387 adcroft 1.1 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
388     for this operator are specified later.
389    
390     \item Lines 17,
391     \begin{verbatim}
392     no_slip_sides=.FALSE.
393     \end{verbatim}
394     this line selects a free-slip lateral boundary condition for
395 cnh 1.3 the horizontal Laplacian friction operator
396 adcroft 1.1 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
397     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
398    
399     \item Lines 9,
400     \begin{verbatim}
401     no_slip_bottom=.TRUE.
402     \end{verbatim}
403     this line selects a no-slip boundary condition for bottom
404 cnh 1.3 boundary condition in the vertical Laplacian friction operator
405 adcroft 1.1 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
406    
407     \item Line 19,
408     \begin{verbatim}
409     diffKhT=1.E3,
410     \end{verbatim}
411     this line sets the horizontal diffusion coefficient for temperature
412     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
413     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
414     all boundaries.
415    
416     \item Line 20,
417     \begin{verbatim}
418     diffKzT=3.E-5,
419     \end{verbatim}
420     this line sets the vertical diffusion coefficient for temperature
421     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
422     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
423     the upper and lower boundaries.
424    
425     \item Line 21,
426     \begin{verbatim}
427     diffKhS=1.E3,
428     \end{verbatim}
429     this line sets the horizontal diffusion coefficient for salinity
430     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
431     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
432     all boundaries.
433    
434     \item Line 22,
435     \begin{verbatim}
436     diffKzS=3.E-5,
437     \end{verbatim}
438     this line sets the vertical diffusion coefficient for salinity
439     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
440     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
441     the upper and lower boundaries.
442    
443     \item Lines 23-26
444     \begin{verbatim}
445     beta=1.E-11,
446     \end{verbatim}
447     \vspace{-5mm}$\cdots$\\
448     These settings do not apply for this experiment.
449    
450     \item Line 27,
451     \begin{verbatim}
452     gravity=9.81,
453     \end{verbatim}
454 cnh 1.3 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
455 adcroft 1.1 \fbox{
456     \begin{minipage}{5.0in}
457     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
458     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
459     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
460     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
461     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
462     \end{minipage}
463     }
464    
465    
466     \item Line 28-29,
467     \begin{verbatim}
468     rigidLid=.FALSE.,
469     implicitFreeSurface=.TRUE.,
470     \end{verbatim}
471     Selects the barotropic pressure equation to be the implicit free surface
472     formulation.
473    
474     \item Line 30,
475     \begin{verbatim}
476     eosType='POLY3',
477     \end{verbatim}
478     Selects the third order polynomial form of the equation of state.\\
479     \fbox{
480     \begin{minipage}{5.0in}
481     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
482     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
483     \end{minipage}
484     }
485    
486     \item Line 31,
487     \begin{verbatim}
488     readBinaryPrec=32,
489     \end{verbatim}
490     Sets format for reading binary input datasets holding model fields to
491     use 32-bit representation for floating-point numbers.\\
492     \fbox{
493     \begin{minipage}{5.0in}
494     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
495     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
496     \end{minipage}
497     }
498    
499     \item Line 36,
500     \begin{verbatim}
501     cg2dMaxIters=1000,
502     \end{verbatim}
503     Sets maximum number of iterations the two-dimensional, conjugate
504     gradient solver will use, {\bf irrespective of convergence
505     criteria being met}.\\
506     \fbox{
507     \begin{minipage}{5.0in}
508     {\it S/R CG2D}~({\it cg2d.F})
509     \end{minipage}
510     }
511    
512     \item Line 37,
513     \begin{verbatim}
514     cg2dTargetResidual=1.E-13,
515     \end{verbatim}
516     Sets the tolerance which the two-dimensional, conjugate
517     gradient solver will use to test for convergence in equation
518     \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
519     Solver will iterate until
520     tolerance falls below this value or until the maximum number of
521     solver iterations is reached.\\
522     \fbox{
523     \begin{minipage}{5.0in}
524     {\it S/R CG2D}~({\it cg2d.F})
525     \end{minipage}
526     }
527    
528     \item Line 42,
529     \begin{verbatim}
530     startTime=0,
531     \end{verbatim}
532     Sets the starting time for the model internal time counter.
533     When set to non-zero this option implicitly requests a
534     checkpoint file be read for initial state.
535     By default the checkpoint file is named according to
536     the integer number of time steps in the {\bf startTime} value.
537     The internal time counter works in seconds.
538    
539     \item Line 43,
540     \begin{verbatim}
541     endTime=2808000.,
542     \end{verbatim}
543     Sets the time (in seconds) at which this simulation will terminate.
544     At the end of a simulation a checkpoint file is automatically
545     written so that a numerical experiment can consist of multiple
546     stages.
547    
548     \item Line 44,
549     \begin{verbatim}
550     #endTime=62208000000,
551     \end{verbatim}
552     A commented out setting for endTime for a 2000 year simulation.
553    
554     \item Line 45,
555     \begin{verbatim}
556     deltaTmom=2400.0,
557     \end{verbatim}
558     Sets the timestep $\delta t_{v}$ used in the momentum equations to
559     $20~{\rm mins}$.
560     See section \ref{SEC:mom_time_stepping}.
561    
562     \fbox{
563     \begin{minipage}{5.0in}
564     {\it S/R TIMESTEP}({\it timestep.F})
565     \end{minipage}
566     }
567    
568     \item Line 46,
569     \begin{verbatim}
570     tauCD=321428.,
571     \end{verbatim}
572     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
573     See section \ref{SEC:cd_scheme}.
574    
575     \fbox{
576     \begin{minipage}{5.0in}
577     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
578     {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
579     \end{minipage}
580     }
581    
582     \item Line 47,
583     \begin{verbatim}
584     deltaTtracer=108000.,
585     \end{verbatim}
586     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
587     $30~{\rm hours}$.
588     See section \ref{SEC:tracer_time_stepping}.
589    
590     \fbox{
591     \begin{minipage}{5.0in}
592     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
593     \end{minipage}
594     }
595    
596     \item Line 47,
597     \begin{verbatim}
598     bathyFile='topog.box'
599     \end{verbatim}
600     This line specifies the name of the file from which the domain
601     bathymetry is read. This file is a two-dimensional ($x,y$) map of
602     depths. This file is assumed to contain 64-bit binary numbers
603     giving the depth of the model at each grid cell, ordered with the x
604     coordinate varying fastest. The points are ordered from low coordinate
605     to high coordinate for both axes. The units and orientation of the
606     depths in this file are the same as used in the MITgcm code. In this
607     experiment, a depth of $0m$ indicates a solid wall and a depth
608     of $-2000m$ indicates open ocean. The matlab program
609     {\it input/gendata.m} shows an example of how to generate a
610     bathymetry file.
611    
612    
613     \item Line 50,
614     \begin{verbatim}
615     zonalWindFile='windx.sin_y'
616     \end{verbatim}
617     This line specifies the name of the file from which the x-direction
618     surface wind stress is read. This file is also a two-dimensional
619     ($x,y$) map and is enumerated and formatted in the same manner as the
620     bathymetry file. The matlab program {\it input/gendata.m} includes example
621     code to generate a valid
622     {\bf zonalWindFile}
623     file.
624    
625     \end{itemize}
626    
627     \noindent other lines in the file {\it input/data} are standard values
628     that are described in the MITgcm Getting Started and MITgcm Parameters
629     notes.
630    
631     \begin{small}
632     \input{part3/case_studies/climatalogical_ogcm/input/data}
633     \end{small}
634    
635     \subsubsection{File {\it input/data.pkg}}
636 adcroft 1.9 \label{www:tutorials}
637 adcroft 1.1
638     This file uses standard default values and does not contain
639     customisations for this experiment.
640    
641     \subsubsection{File {\it input/eedata}}
642 adcroft 1.9 \label{www:tutorials}
643 adcroft 1.1
644     This file uses standard default values and does not contain
645     customisations for this experiment.
646    
647     \subsubsection{File {\it input/windx.sin\_y}}
648 adcroft 1.9 \label{www:tutorials}
649 adcroft 1.1
650     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
651     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
652     Although $\tau_{x}$ is only a function of $y$n in this experiment
653     this file must still define a complete two-dimensional map in order
654     to be compatible with the standard code for loading forcing fields
655     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
656     code for creating the {\it input/windx.sin\_y} file.
657    
658     \subsubsection{File {\it input/topog.box}}
659 adcroft 1.9 \label{www:tutorials}
660 adcroft 1.1
661    
662     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
663     map of depth values. For this experiment values are either
664     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
665     ocean. The file contains a raw binary stream of data that is enumerated
666     in the same way as standard MITgcm two-dimensional, horizontal arrays.
667     The included matlab program {\it input/gendata.m} gives a complete
668     code for creating the {\it input/topog.box} file.
669    
670     \subsubsection{File {\it code/SIZE.h}}
671 adcroft 1.9 \label{www:tutorials}
672 adcroft 1.1
673     Two lines are customized in this file for the current experiment
674    
675     \begin{itemize}
676    
677     \item Line 39,
678     \begin{verbatim} sNx=60, \end{verbatim} this line sets
679     the lateral domain extent in grid points for the
680     axis aligned with the x-coordinate.
681    
682     \item Line 40,
683     \begin{verbatim} sNy=60, \end{verbatim} this line sets
684     the lateral domain extent in grid points for the
685     axis aligned with the y-coordinate.
686    
687     \item Line 49,
688     \begin{verbatim} Nr=4, \end{verbatim} this line sets
689     the vertical domain extent in grid points.
690    
691     \end{itemize}
692    
693     \begin{small}
694     \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
695     \end{small}
696    
697     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
698 adcroft 1.9 \label{www:tutorials}
699 adcroft 1.1
700     This file uses standard default values and does not contain
701     customisations for this experiment.
702    
703    
704     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
705 adcroft 1.9 \label{www:tutorials}
706 adcroft 1.1
707     This file uses standard default values and does not contain
708     customisations for this experiment.
709    
710     \subsubsection{Other Files }
711 adcroft 1.9 \label{www:tutorials}
712 adcroft 1.1
713     Other files relevant to this experiment are
714     \begin{itemize}
715     \item {\it model/src/ini\_cori.F}. This file initializes the model
716     coriolis variables {\bf fCorU}.
717     \item {\it model/src/ini\_spherical\_polar\_grid.F}
718     \item {\it model/src/ini\_parms.F},
719     \item {\it input/windx.sin\_y},
720     \end{itemize}
721     contain the code customisations and parameter settings for this
722 cnh 1.3 experiments. Below we describe the customisations
723 adcroft 1.1 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22