/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (hide annotations) (download) (as text)
Thu Feb 28 19:32:19 2002 UTC (23 years, 4 months ago) by cnh
Branch: MAIN
Changes since 1.7: +45 -45 lines
File MIME type: application/x-tex
Updates for special on-line version with
hyperlinked and animated figures

Separating tutorials and reference material

1 cnh 1.8 % $Header: /u/u0/gcmpack/manual/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.7 2001/11/13 20:13:54 adcroft Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4 cnh 1.8 \section{Global Ocean Simulation at 4$^\circ$ Resolution}
5 adcroft 1.7 \label{sect:eg-global}
6 adcroft 1.1
7     \bodytext{bgcolor="#FFFFFFFF"}
8    
9     %\begin{center}
10 cnh 1.3 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
11 adcroft 1.1 %At Four Degree Resolution with Asynchronous Time Stepping}
12     %
13     %\vspace*{4mm}
14     %
15     %\vspace*{3mm}
16     %{\large May 2001}
17     %\end{center}
18    
19    
20     This example experiment demonstrates using the MITgcm to simulate
21     the planetary ocean circulation. The simulation is configured
22     with realistic geography and bathymetry on a
23     $4^{\circ} \times 4^{\circ}$ spherical polar grid.
24     Twenty levels are used in the vertical, ranging in thickness
25     from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
26     giving a maximum model depth of $6\,{\rm km}$.
27     At this resolution, the configuration
28     can be integrated forward for thousands of years on a single
29     processor desktop computer.
30     \\
31 cnh 1.8 \subsection{Overview}
32 adcroft 1.1
33 cnh 1.3 The model is forced with climatological wind stress data and surface
34     flux data from DaSilva \cite{DaSilva94}. Climatological data
35     from Levitus \cite{Levitus94} is used to initialize the model hydrography.
36     Levitus seasonal climatology data is also used throughout the calculation
37 adcroft 1.1 to provide additional air-sea fluxes.
38 cnh 1.3 These fluxes are combined with the DaSilva climatological estimates of
39 adcroft 1.1 surface heat flux and fresh water, resulting in a mixed boundary
40 cnh 1.3 condition of the style described in Haney \cite{Haney}.
41 adcroft 1.1 Altogether, this yields the following forcing applied
42     in the model surface layer.
43    
44     \begin{eqnarray}
45 cnh 1.8 \label{EQ:eg-global-global_forcing}
46     \label{EQ:eg-global-global_forcing_fu}
47 adcroft 1.1 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
48     \\
49 cnh 1.8 \label{EQ:eg-global-global_forcing_fv}
50 adcroft 1.1 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
51     \\
52 cnh 1.8 \label{EQ:eg-global-global_forcing_ft}
53 adcroft 1.1 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
54     - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
55     \\
56 cnh 1.8 \label{EQ:eg-global-global_forcing_fs}
57 adcroft 1.1 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
58     + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
59     \end{eqnarray}
60    
61     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
62     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
63     momentum and in the potential temperature and salinity
64     equations respectively.
65     The term $\Delta z_{s}$ represents the top ocean layer thickness in
66     meters.
67     It is used in conjunction with a reference density, $\rho_{0}$
68     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
69     reference salinity, $S_{0}$ (here set to 35~ppt),
70     and a specific heat capacity, $C_{p}$ (here set to
71     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
72     input dataset values into time tendencies of
73     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
74     salinity (with units ${\rm ppt}~s^{-1}$) and
75     velocity (with units ${\rm m}~{\rm s}^{-2}$).
76     The externally supplied forcing fields used in this
77     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
78     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
79     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
80     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
81     respectively. The salinity forcing fields ($S^{\ast}$ and
82     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
83 cnh 1.8 respectively. The source files and procedures for ingesting this data into the
84     simulation are described in the experiment configuration discussion in section
85     \ref{SEC:eg-global-clim_ocn_examp_exp_config}.
86 adcroft 1.1
87    
88     \subsection{Discrete Numerical Configuration}
89    
90    
91     The model is configured in hydrostatic form. The domain is discretised with
92     a uniform grid spacing in latitude and longitude on the sphere
93     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
94     that there are ninety grid cells in the zonal and forty in the
95     meridional direction. The internal model coordinate variables
96 cnh 1.3 $x$ and $y$ are initialized according to
97 adcroft 1.1 \begin{eqnarray}
98     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
99 cnh 1.8 y=r\lambda,~\Delta y &= &r\Delta \lambda
100 adcroft 1.1 \end{eqnarray}
101    
102     Arctic polar regions are not
103     included in this experiment. Meridionally the model extends from
104     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
105     Vertically the model is configured with twenty layers with the
106     following thicknesses
107     $\Delta z_{1} = 50\,{\rm m},\,
108     \Delta z_{2} = 50\,{\rm m},\,
109     \Delta z_{3} = 55\,{\rm m},\,
110     \Delta z_{4} = 60\,{\rm m},\,
111     \Delta z_{5} = 65\,{\rm m},\,
112     $
113     $
114     \Delta z_{6}~=~70\,{\rm m},\,
115     \Delta z_{7}~=~80\,{\rm m},\,
116     \Delta z_{8}~=95\,{\rm m},\,
117     \Delta z_{9}=120\,{\rm m},\,
118     \Delta z_{10}=155\,{\rm m},\,
119     $
120     $
121     \Delta z_{11}=200\,{\rm m},\,
122     \Delta z_{12}=260\,{\rm m},\,
123     \Delta z_{13}=320\,{\rm m},\,
124     \Delta z_{14}=400\,{\rm m},\,
125     \Delta z_{15}=480\,{\rm m},\,
126     $
127     $
128     \Delta z_{16}=570\,{\rm m},\,
129     \Delta z_{17}=655\,{\rm m},\,
130     \Delta z_{18}=725\,{\rm m},\,
131     \Delta z_{19}=775\,{\rm m},\,
132     \Delta z_{20}=815\,{\rm m}
133 cnh 1.8 $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
134     give a total depth, $H$, of $-5450{\rm m}$.
135 adcroft 1.1 The implicit free surface form of the pressure equation described in Marshall et. al
136 adcroft 1.6 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
137 cnh 1.3 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
138 adcroft 1.1
139 cnh 1.8 Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations})
140     for both the zonal flow, $u$ and the meridional flow $v$, according to equations
141     (\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}).
142     Thermodynamic forcing inputs are added to the equations
143     in (\ref{EQ:eg-global-model_equations}) for
144 adcroft 1.1 potential temperature, $\theta$, and salinity, $S$, according to equations
145 cnh 1.8 (\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}).
146 adcroft 1.1 This produces a set of equations solved in this configuration as follows:
147    
148     \begin{eqnarray}
149 cnh 1.8 \label{EQ:eg-global-model_equations}
150 adcroft 1.1 \frac{Du}{Dt} - fv +
151     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
152     \nabla_{h}\cdot A_{h}\nabla_{h}u -
153     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
154     & = &
155     \begin{cases}
156     {\cal F}_u & \text{(surface)} \\
157     0 & \text{(interior)}
158     \end{cases}
159     \\
160     \frac{Dv}{Dt} + fu +
161     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
162     \nabla_{h}\cdot A_{h}\nabla_{h}v -
163     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
164     & = &
165     \begin{cases}
166     {\cal F}_v & \text{(surface)} \\
167     0 & \text{(interior)}
168     \end{cases}
169     \\
170     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
171     &=&
172     0
173     \\
174     \frac{D\theta}{Dt} -
175     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
176     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
177     & = &
178     \begin{cases}
179     {\cal F}_\theta & \text{(surface)} \\
180     0 & \text{(interior)}
181     \end{cases}
182     \\
183     \frac{D s}{Dt} -
184     \nabla_{h}\cdot K_{h}\nabla_{h}s
185     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
186     & = &
187     \begin{cases}
188     {\cal F}_s & \text{(surface)} \\
189     0 & \text{(interior)}
190     \end{cases}
191     \\
192     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
193     \end{eqnarray}
194    
195     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
196     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
197     are the zonal and meridional components of the
198     flow vector, $\vec{u}$, on the sphere. As described in
199 adcroft 1.5 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
200 adcroft 1.1 evolution of potential temperature, $\theta$, equation is solved prognostically.
201     The total pressure, $p$, is diagnosed by summing pressure due to surface
202     elevation $\eta$ and the hydrostatic pressure.
203     \\
204    
205     \subsubsection{Numerical Stability Criteria}
206    
207 cnh 1.3 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
208 adcroft 1.4 This value is chosen to yield a Munk layer width \cite{adcroft:95},
209 adcroft 1.1 \begin{eqnarray}
210 cnh 1.8 \label{EQ:eg-global-munk_layer}
211 adcroft 1.1 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
212     \end{eqnarray}
213    
214     \noindent of $\approx 600$km. This is greater than the model
215     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
216     boundary layer is adequately resolved.
217     \\
218    
219     \noindent The model is stepped forward with a
220     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
221     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
222 adcroft 1.4 parameter to the horizontal Laplacian friction \cite{adcroft:95}
223 adcroft 1.1 \begin{eqnarray}
224 cnh 1.8 \label{EQ:eg-global-laplacian_stability}
225 adcroft 1.1 S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
226     \end{eqnarray}
227    
228     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
229     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
230     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
231     \\
232    
233     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
234     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
235     \begin{eqnarray}
236 cnh 1.8 \label{EQ:eg-global-laplacian_stability_z}
237 adcroft 1.1 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
238     \end{eqnarray}
239    
240     \noindent evaluates to $0.015$ for the smallest model
241 cnh 1.3 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
242 adcroft 1.1 the upper stability limit.
243     \\
244    
245     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
246     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
247     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
248     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
249     Here the stability parameter
250     \begin{eqnarray}
251 cnh 1.8 \label{EQ:eg-global-laplacian_stability_xtheta}
252 adcroft 1.1 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
253     \end{eqnarray}
254 cnh 1.3 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
255 adcroft 1.1 stability parameter related to $K_{z}$
256     \begin{eqnarray}
257 cnh 1.8 \label{EQ:eg-global-laplacian_stability_ztheta}
258 adcroft 1.1 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
259     \end{eqnarray}
260     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
261     of $S_{l} \approx 0.5$.
262     \\
263    
264     \noindent The numerical stability for inertial oscillations
265 adcroft 1.4 \cite{adcroft:95}
266 adcroft 1.1
267     \begin{eqnarray}
268 cnh 1.8 \label{EQ:eg-global-inertial_stability}
269 adcroft 1.1 S_{i} = f^{2} {\delta t_v}^2
270     \end{eqnarray}
271    
272     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
273     the $S_{i} < 1$ upper limit for stability.
274     \\
275    
276 adcroft 1.4 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
277 adcroft 1.1 horizontal flow
278     speed of $ | \vec{u} | = 2 ms^{-1}$
279    
280     \begin{eqnarray}
281 cnh 1.8 \label{EQ:eg-global-cfl_stability}
282 adcroft 1.1 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
283     \end{eqnarray}
284    
285     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
286     limit of 0.5.
287     \\
288    
289 cnh 1.3 \noindent The stability parameter for internal gravity waves propagating
290 adcroft 1.1 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
291 adcroft 1.4 \cite{adcroft:95}
292 adcroft 1.1
293     \begin{eqnarray}
294 cnh 1.8 \label{EQ:eg-global-gfl_stability}
295 adcroft 1.1 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
296     \end{eqnarray}
297    
298     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
299     stability limit of 0.5.
300    
301     \subsection{Experiment Configuration}
302 cnh 1.8 \label{SEC:eg-global-clim_ocn_examp_exp_config}
303 adcroft 1.1
304     The model configuration for this experiment resides under the
305 cnh 1.8 directory {\it tutorial\_examples/global\_ocean\_circulation/}.
306     The experiment files
307    
308 adcroft 1.1 \begin{itemize}
309     \item {\it input/data}
310     \item {\it input/data.pkg}
311     \item {\it input/eedata},
312     \item {\it input/windx.bin},
313     \item {\it input/windy.bin},
314     \item {\it input/salt.bin},
315     \item {\it input/theta.bin},
316     \item {\it input/SSS.bin},
317     \item {\it input/SST.bin},
318     \item {\it input/topog.bin},
319     \item {\it code/CPP\_EEOPTIONS.h}
320     \item {\it code/CPP\_OPTIONS.h},
321     \item {\it code/SIZE.h}.
322     \end{itemize}
323 cnh 1.3 contain the code customizations and parameter settings for these
324     experiments. Below we describe the customizations
325 adcroft 1.1 to these files associated with this experiment.
326 cnh 1.8
327     \subsubsection{Driving Datasets}
328    
329     Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
330     relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
331     the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
332     and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
333     in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
334     also indicate the lateral extent and coastline used in the experiment.
335     Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
336     domain.
337    
338 adcroft 1.1
339     \subsubsection{File {\it input/data}}
340    
341     This file, reproduced completely below, specifies the main parameters
342     for the experiment. The parameters that are significant for this configuration
343     are
344    
345     \begin{itemize}
346    
347     \item Lines 7-10 and 11-14
348     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
349     $\cdots$ \\
350     set reference values for potential
351     temperature and salinity at each model level in units of $^{\circ}$C and
352     ${\rm ppt}$. The entries are ordered from surface to depth.
353     Density is calculated from anomalies at each level evaluated
354     with respect to the reference values set here.\\
355     \fbox{
356     \begin{minipage}{5.0in}
357     {\it S/R INI\_THETA}({\it ini\_theta.F})
358     \end{minipage}
359     }
360    
361    
362     \item Line 15,
363     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
364 cnh 1.3 this line sets the vertical Laplacian dissipation coefficient to
365 adcroft 1.1 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
366     for this operator are specified later. This variable is copied into
367     model general vertical coordinate variable {\bf viscAr}.
368    
369     \fbox{
370     \begin{minipage}{5.0in}
371     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
372     \end{minipage}
373     }
374    
375     \item Line 16,
376     \begin{verbatim}
377     viscAh=5.E5,
378     \end{verbatim}
379 cnh 1.3 this line sets the horizontal Laplacian frictional dissipation coefficient to
380 adcroft 1.1 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
381     for this operator are specified later.
382    
383     \item Lines 17,
384     \begin{verbatim}
385     no_slip_sides=.FALSE.
386     \end{verbatim}
387     this line selects a free-slip lateral boundary condition for
388 cnh 1.3 the horizontal Laplacian friction operator
389 adcroft 1.1 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
390     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
391    
392     \item Lines 9,
393     \begin{verbatim}
394     no_slip_bottom=.TRUE.
395     \end{verbatim}
396     this line selects a no-slip boundary condition for bottom
397 cnh 1.3 boundary condition in the vertical Laplacian friction operator
398 adcroft 1.1 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
399    
400     \item Line 19,
401     \begin{verbatim}
402     diffKhT=1.E3,
403     \end{verbatim}
404     this line sets the horizontal diffusion coefficient for temperature
405     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
406     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
407     all boundaries.
408    
409     \item Line 20,
410     \begin{verbatim}
411     diffKzT=3.E-5,
412     \end{verbatim}
413     this line sets the vertical diffusion coefficient for temperature
414     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
415     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
416     the upper and lower boundaries.
417    
418     \item Line 21,
419     \begin{verbatim}
420     diffKhS=1.E3,
421     \end{verbatim}
422     this line sets the horizontal diffusion coefficient for salinity
423     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
424     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
425     all boundaries.
426    
427     \item Line 22,
428     \begin{verbatim}
429     diffKzS=3.E-5,
430     \end{verbatim}
431     this line sets the vertical diffusion coefficient for salinity
432     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
433     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
434     the upper and lower boundaries.
435    
436     \item Lines 23-26
437     \begin{verbatim}
438     beta=1.E-11,
439     \end{verbatim}
440     \vspace{-5mm}$\cdots$\\
441     These settings do not apply for this experiment.
442    
443     \item Line 27,
444     \begin{verbatim}
445     gravity=9.81,
446     \end{verbatim}
447 cnh 1.3 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
448 adcroft 1.1 \fbox{
449     \begin{minipage}{5.0in}
450     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
451     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
452     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
453     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
454     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
455     \end{minipage}
456     }
457    
458    
459     \item Line 28-29,
460     \begin{verbatim}
461     rigidLid=.FALSE.,
462     implicitFreeSurface=.TRUE.,
463     \end{verbatim}
464     Selects the barotropic pressure equation to be the implicit free surface
465     formulation.
466    
467     \item Line 30,
468     \begin{verbatim}
469     eosType='POLY3',
470     \end{verbatim}
471     Selects the third order polynomial form of the equation of state.\\
472     \fbox{
473     \begin{minipage}{5.0in}
474     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
475     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
476     \end{minipage}
477     }
478    
479     \item Line 31,
480     \begin{verbatim}
481     readBinaryPrec=32,
482     \end{verbatim}
483     Sets format for reading binary input datasets holding model fields to
484     use 32-bit representation for floating-point numbers.\\
485     \fbox{
486     \begin{minipage}{5.0in}
487     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
488     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
489     \end{minipage}
490     }
491    
492     \item Line 36,
493     \begin{verbatim}
494     cg2dMaxIters=1000,
495     \end{verbatim}
496     Sets maximum number of iterations the two-dimensional, conjugate
497     gradient solver will use, {\bf irrespective of convergence
498     criteria being met}.\\
499     \fbox{
500     \begin{minipage}{5.0in}
501     {\it S/R CG2D}~({\it cg2d.F})
502     \end{minipage}
503     }
504    
505     \item Line 37,
506     \begin{verbatim}
507     cg2dTargetResidual=1.E-13,
508     \end{verbatim}
509     Sets the tolerance which the two-dimensional, conjugate
510     gradient solver will use to test for convergence in equation
511     \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
512     Solver will iterate until
513     tolerance falls below this value or until the maximum number of
514     solver iterations is reached.\\
515     \fbox{
516     \begin{minipage}{5.0in}
517     {\it S/R CG2D}~({\it cg2d.F})
518     \end{minipage}
519     }
520    
521     \item Line 42,
522     \begin{verbatim}
523     startTime=0,
524     \end{verbatim}
525     Sets the starting time for the model internal time counter.
526     When set to non-zero this option implicitly requests a
527     checkpoint file be read for initial state.
528     By default the checkpoint file is named according to
529     the integer number of time steps in the {\bf startTime} value.
530     The internal time counter works in seconds.
531    
532     \item Line 43,
533     \begin{verbatim}
534     endTime=2808000.,
535     \end{verbatim}
536     Sets the time (in seconds) at which this simulation will terminate.
537     At the end of a simulation a checkpoint file is automatically
538     written so that a numerical experiment can consist of multiple
539     stages.
540    
541     \item Line 44,
542     \begin{verbatim}
543     #endTime=62208000000,
544     \end{verbatim}
545     A commented out setting for endTime for a 2000 year simulation.
546    
547     \item Line 45,
548     \begin{verbatim}
549     deltaTmom=2400.0,
550     \end{verbatim}
551     Sets the timestep $\delta t_{v}$ used in the momentum equations to
552     $20~{\rm mins}$.
553     See section \ref{SEC:mom_time_stepping}.
554    
555     \fbox{
556     \begin{minipage}{5.0in}
557     {\it S/R TIMESTEP}({\it timestep.F})
558     \end{minipage}
559     }
560    
561     \item Line 46,
562     \begin{verbatim}
563     tauCD=321428.,
564     \end{verbatim}
565     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
566     See section \ref{SEC:cd_scheme}.
567    
568     \fbox{
569     \begin{minipage}{5.0in}
570     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
571     {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
572     \end{minipage}
573     }
574    
575     \item Line 47,
576     \begin{verbatim}
577     deltaTtracer=108000.,
578     \end{verbatim}
579     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
580     $30~{\rm hours}$.
581     See section \ref{SEC:tracer_time_stepping}.
582    
583     \fbox{
584     \begin{minipage}{5.0in}
585     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
586     \end{minipage}
587     }
588    
589     \item Line 47,
590     \begin{verbatim}
591     bathyFile='topog.box'
592     \end{verbatim}
593     This line specifies the name of the file from which the domain
594     bathymetry is read. This file is a two-dimensional ($x,y$) map of
595     depths. This file is assumed to contain 64-bit binary numbers
596     giving the depth of the model at each grid cell, ordered with the x
597     coordinate varying fastest. The points are ordered from low coordinate
598     to high coordinate for both axes. The units and orientation of the
599     depths in this file are the same as used in the MITgcm code. In this
600     experiment, a depth of $0m$ indicates a solid wall and a depth
601     of $-2000m$ indicates open ocean. The matlab program
602     {\it input/gendata.m} shows an example of how to generate a
603     bathymetry file.
604    
605    
606     \item Line 50,
607     \begin{verbatim}
608     zonalWindFile='windx.sin_y'
609     \end{verbatim}
610     This line specifies the name of the file from which the x-direction
611     surface wind stress is read. This file is also a two-dimensional
612     ($x,y$) map and is enumerated and formatted in the same manner as the
613     bathymetry file. The matlab program {\it input/gendata.m} includes example
614     code to generate a valid
615     {\bf zonalWindFile}
616     file.
617    
618     \end{itemize}
619    
620     \noindent other lines in the file {\it input/data} are standard values
621     that are described in the MITgcm Getting Started and MITgcm Parameters
622     notes.
623    
624     \begin{small}
625     \input{part3/case_studies/climatalogical_ogcm/input/data}
626     \end{small}
627    
628     \subsubsection{File {\it input/data.pkg}}
629    
630     This file uses standard default values and does not contain
631     customisations for this experiment.
632    
633     \subsubsection{File {\it input/eedata}}
634    
635     This file uses standard default values and does not contain
636     customisations for this experiment.
637    
638     \subsubsection{File {\it input/windx.sin\_y}}
639    
640     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
641     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
642     Although $\tau_{x}$ is only a function of $y$n in this experiment
643     this file must still define a complete two-dimensional map in order
644     to be compatible with the standard code for loading forcing fields
645     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
646     code for creating the {\it input/windx.sin\_y} file.
647    
648     \subsubsection{File {\it input/topog.box}}
649    
650    
651     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
652     map of depth values. For this experiment values are either
653     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
654     ocean. The file contains a raw binary stream of data that is enumerated
655     in the same way as standard MITgcm two-dimensional, horizontal arrays.
656     The included matlab program {\it input/gendata.m} gives a complete
657     code for creating the {\it input/topog.box} file.
658    
659     \subsubsection{File {\it code/SIZE.h}}
660    
661     Two lines are customized in this file for the current experiment
662    
663     \begin{itemize}
664    
665     \item Line 39,
666     \begin{verbatim} sNx=60, \end{verbatim} this line sets
667     the lateral domain extent in grid points for the
668     axis aligned with the x-coordinate.
669    
670     \item Line 40,
671     \begin{verbatim} sNy=60, \end{verbatim} this line sets
672     the lateral domain extent in grid points for the
673     axis aligned with the y-coordinate.
674    
675     \item Line 49,
676     \begin{verbatim} Nr=4, \end{verbatim} this line sets
677     the vertical domain extent in grid points.
678    
679     \end{itemize}
680    
681     \begin{small}
682     \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
683     \end{small}
684    
685     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
686    
687     This file uses standard default values and does not contain
688     customisations for this experiment.
689    
690    
691     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
692    
693     This file uses standard default values and does not contain
694     customisations for this experiment.
695    
696     \subsubsection{Other Files }
697    
698     Other files relevant to this experiment are
699     \begin{itemize}
700     \item {\it model/src/ini\_cori.F}. This file initializes the model
701     coriolis variables {\bf fCorU}.
702     \item {\it model/src/ini\_spherical\_polar\_grid.F}
703     \item {\it model/src/ini\_parms.F},
704     \item {\it input/windx.sin\_y},
705     \end{itemize}
706     contain the code customisations and parameter settings for this
707 cnh 1.3 experiments. Below we describe the customisations
708 adcroft 1.1 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22