/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download) (as text)
Tue Nov 13 20:13:54 2001 UTC (23 years, 8 months ago) by adcroft
Branch: MAIN
Changes since 1.6: +2 -2 lines
File MIME type: application/x-tex
Fixed x-refs (replaced sec: with sect: since both were in use for
same targets).

1 adcroft 1.7 % $Header: /u/gcmpack/mitgcmdoc/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.6 2001/11/13 19:01:42 adcroft Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4     \section{Example: 4$^\circ$ Global Climatological Ocean Simulation}
5 adcroft 1.7 \label{sect:eg-global}
6 adcroft 1.1
7     \bodytext{bgcolor="#FFFFFFFF"}
8    
9     %\begin{center}
10 cnh 1.3 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
11 adcroft 1.1 %At Four Degree Resolution with Asynchronous Time Stepping}
12     %
13     %\vspace*{4mm}
14     %
15     %\vspace*{3mm}
16     %{\large May 2001}
17     %\end{center}
18    
19     \subsection{Introduction}
20    
21     This document describes the third example MITgcm experiment. The first
22 cnh 1.3 two examples illustrated how to configure the code for hydrostatic idealized
23     geophysical fluids simulations. This example illustrates the use of
24 adcroft 1.1 the MITgcm for large scale ocean circulation simulation.
25    
26     \subsection{Overview}
27    
28     This example experiment demonstrates using the MITgcm to simulate
29     the planetary ocean circulation. The simulation is configured
30     with realistic geography and bathymetry on a
31     $4^{\circ} \times 4^{\circ}$ spherical polar grid.
32     Twenty levels are used in the vertical, ranging in thickness
33     from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
34     giving a maximum model depth of $6\,{\rm km}$.
35     At this resolution, the configuration
36     can be integrated forward for thousands of years on a single
37     processor desktop computer.
38     \\
39    
40 cnh 1.3 The model is forced with climatological wind stress data and surface
41     flux data from DaSilva \cite{DaSilva94}. Climatological data
42     from Levitus \cite{Levitus94} is used to initialize the model hydrography.
43     Levitus seasonal climatology data is also used throughout the calculation
44 adcroft 1.1 to provide additional air-sea fluxes.
45 cnh 1.3 These fluxes are combined with the DaSilva climatological estimates of
46 adcroft 1.1 surface heat flux and fresh water, resulting in a mixed boundary
47 cnh 1.3 condition of the style described in Haney \cite{Haney}.
48 adcroft 1.1 Altogether, this yields the following forcing applied
49     in the model surface layer.
50    
51     \begin{eqnarray}
52     \label{EQ:global_forcing}
53     \label{EQ:global_forcing_fu}
54     {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
55     \\
56     \label{EQ:global_forcing_fv}
57     {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
58     \\
59     \label{EQ:global_forcing_ft}
60     {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
61     - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
62     \\
63     \label{EQ:global_forcing_fs}
64     {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
65     + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
66     \end{eqnarray}
67    
68     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
69     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
70     momentum and in the potential temperature and salinity
71     equations respectively.
72     The term $\Delta z_{s}$ represents the top ocean layer thickness in
73     meters.
74     It is used in conjunction with a reference density, $\rho_{0}$
75     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
76     reference salinity, $S_{0}$ (here set to 35~ppt),
77     and a specific heat capacity, $C_{p}$ (here set to
78     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
79     input dataset values into time tendencies of
80     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
81     salinity (with units ${\rm ppt}~s^{-1}$) and
82     velocity (with units ${\rm m}~{\rm s}^{-2}$).
83     The externally supplied forcing fields used in this
84     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
85     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
86     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
87     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
88     respectively. The salinity forcing fields ($S^{\ast}$ and
89     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
90     respectively.
91     \\
92    
93    
94     Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
95     relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
96     the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
97     and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
98     in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
99     also indicate the lateral extent and coastline used in the experiment.
100     Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
101     domain.
102    
103    
104     \subsection{Discrete Numerical Configuration}
105    
106    
107     The model is configured in hydrostatic form. The domain is discretised with
108     a uniform grid spacing in latitude and longitude on the sphere
109     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
110     that there are ninety grid cells in the zonal and forty in the
111     meridional direction. The internal model coordinate variables
112 cnh 1.3 $x$ and $y$ are initialized according to
113 adcroft 1.1 \begin{eqnarray}
114     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
115     y=r\lambda,~\Delta x &= &r\Delta \lambda
116     \end{eqnarray}
117    
118     Arctic polar regions are not
119     included in this experiment. Meridionally the model extends from
120     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
121     Vertically the model is configured with twenty layers with the
122     following thicknesses
123     $\Delta z_{1} = 50\,{\rm m},\,
124     \Delta z_{2} = 50\,{\rm m},\,
125     \Delta z_{3} = 55\,{\rm m},\,
126     \Delta z_{4} = 60\,{\rm m},\,
127     \Delta z_{5} = 65\,{\rm m},\,
128     $
129     $
130     \Delta z_{6}~=~70\,{\rm m},\,
131     \Delta z_{7}~=~80\,{\rm m},\,
132     \Delta z_{8}~=95\,{\rm m},\,
133     \Delta z_{9}=120\,{\rm m},\,
134     \Delta z_{10}=155\,{\rm m},\,
135     $
136     $
137     \Delta z_{11}=200\,{\rm m},\,
138     \Delta z_{12}=260\,{\rm m},\,
139     \Delta z_{13}=320\,{\rm m},\,
140     \Delta z_{14}=400\,{\rm m},\,
141     \Delta z_{15}=480\,{\rm m},\,
142     $
143     $
144     \Delta z_{16}=570\,{\rm m},\,
145     \Delta z_{17}=655\,{\rm m},\,
146     \Delta z_{18}=725\,{\rm m},\,
147     \Delta z_{19}=775\,{\rm m},\,
148     \Delta z_{20}=815\,{\rm m}
149     $ (here the numeric subscript indicates the model level index number, ${\tt k}$).
150     The implicit free surface form of the pressure equation described in Marshall et. al
151 adcroft 1.6 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
152 cnh 1.3 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
153 adcroft 1.1
154     Wind-stress forcing is added to the momentum equations for both
155 cnh 1.3 the zonal flow, $u$ and the meridional flow $v$, according to equations
156 adcroft 1.1 (\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}).
157     Thermodynamic forcing inputs are added to the equations for
158     potential temperature, $\theta$, and salinity, $S$, according to equations
159     (\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}).
160     This produces a set of equations solved in this configuration as follows:
161    
162     \begin{eqnarray}
163     \label{EQ:model_equations}
164     \frac{Du}{Dt} - fv +
165     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
166     \nabla_{h}\cdot A_{h}\nabla_{h}u -
167     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
168     & = &
169     \begin{cases}
170     {\cal F}_u & \text{(surface)} \\
171     0 & \text{(interior)}
172     \end{cases}
173     \\
174     \frac{Dv}{Dt} + fu +
175     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
176     \nabla_{h}\cdot A_{h}\nabla_{h}v -
177     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
178     & = &
179     \begin{cases}
180     {\cal F}_v & \text{(surface)} \\
181     0 & \text{(interior)}
182     \end{cases}
183     \\
184     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
185     &=&
186     0
187     \\
188     \frac{D\theta}{Dt} -
189     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
190     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
191     & = &
192     \begin{cases}
193     {\cal F}_\theta & \text{(surface)} \\
194     0 & \text{(interior)}
195     \end{cases}
196     \\
197     \frac{D s}{Dt} -
198     \nabla_{h}\cdot K_{h}\nabla_{h}s
199     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
200     & = &
201     \begin{cases}
202     {\cal F}_s & \text{(surface)} \\
203     0 & \text{(interior)}
204     \end{cases}
205     \\
206     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
207     \end{eqnarray}
208    
209     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
210     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
211     are the zonal and meridional components of the
212     flow vector, $\vec{u}$, on the sphere. As described in
213 adcroft 1.5 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
214 adcroft 1.1 evolution of potential temperature, $\theta$, equation is solved prognostically.
215     The total pressure, $p$, is diagnosed by summing pressure due to surface
216     elevation $\eta$ and the hydrostatic pressure.
217     \\
218    
219     \subsubsection{Numerical Stability Criteria}
220    
221 cnh 1.3 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
222 adcroft 1.4 This value is chosen to yield a Munk layer width \cite{adcroft:95},
223 adcroft 1.1 \begin{eqnarray}
224     \label{EQ:munk_layer}
225     M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
226     \end{eqnarray}
227    
228     \noindent of $\approx 600$km. This is greater than the model
229     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
230     boundary layer is adequately resolved.
231     \\
232    
233     \noindent The model is stepped forward with a
234     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
235     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
236 adcroft 1.4 parameter to the horizontal Laplacian friction \cite{adcroft:95}
237 adcroft 1.1 \begin{eqnarray}
238     \label{EQ:laplacian_stability}
239     S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
240     \end{eqnarray}
241    
242     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
243     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
244     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
245     \\
246    
247     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
248     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
249     \begin{eqnarray}
250     \label{EQ:laplacian_stability_z}
251     S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
252     \end{eqnarray}
253    
254     \noindent evaluates to $0.015$ for the smallest model
255 cnh 1.3 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
256 adcroft 1.1 the upper stability limit.
257     \\
258    
259     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
260     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
261     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
262     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
263     Here the stability parameter
264     \begin{eqnarray}
265     \label{EQ:laplacian_stability_xtheta}
266     S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
267     \end{eqnarray}
268 cnh 1.3 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
269 adcroft 1.1 stability parameter related to $K_{z}$
270     \begin{eqnarray}
271     \label{EQ:laplacian_stability_ztheta}
272     S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
273     \end{eqnarray}
274     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
275     of $S_{l} \approx 0.5$.
276     \\
277    
278     \noindent The numerical stability for inertial oscillations
279 adcroft 1.4 \cite{adcroft:95}
280 adcroft 1.1
281     \begin{eqnarray}
282     \label{EQ:inertial_stability}
283     S_{i} = f^{2} {\delta t_v}^2
284     \end{eqnarray}
285    
286     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
287     the $S_{i} < 1$ upper limit for stability.
288     \\
289    
290 adcroft 1.4 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
291 adcroft 1.1 horizontal flow
292     speed of $ | \vec{u} | = 2 ms^{-1}$
293    
294     \begin{eqnarray}
295     \label{EQ:cfl_stability}
296     S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
297     \end{eqnarray}
298    
299     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
300     limit of 0.5.
301     \\
302    
303 cnh 1.3 \noindent The stability parameter for internal gravity waves propagating
304 adcroft 1.1 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
305 adcroft 1.4 \cite{adcroft:95}
306 adcroft 1.1
307     \begin{eqnarray}
308     \label{EQ:cfl_stability}
309     S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
310     \end{eqnarray}
311    
312     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
313     stability limit of 0.5.
314    
315     \subsection{Experiment Configuration}
316     \label{SEC:clim_ocn_examp_exp_config}
317    
318     The model configuration for this experiment resides under the
319     directory {\it verification/exp2/}. The experiment files
320     \begin{itemize}
321     \item {\it input/data}
322     \item {\it input/data.pkg}
323     \item {\it input/eedata},
324     \item {\it input/windx.bin},
325     \item {\it input/windy.bin},
326     \item {\it input/salt.bin},
327     \item {\it input/theta.bin},
328     \item {\it input/SSS.bin},
329     \item {\it input/SST.bin},
330     \item {\it input/topog.bin},
331     \item {\it code/CPP\_EEOPTIONS.h}
332     \item {\it code/CPP\_OPTIONS.h},
333     \item {\it code/SIZE.h}.
334     \end{itemize}
335 cnh 1.3 contain the code customizations and parameter settings for these
336     experiments. Below we describe the customizations
337 adcroft 1.1 to these files associated with this experiment.
338    
339     \subsubsection{File {\it input/data}}
340    
341     This file, reproduced completely below, specifies the main parameters
342     for the experiment. The parameters that are significant for this configuration
343     are
344    
345     \begin{itemize}
346    
347     \item Lines 7-10 and 11-14
348     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
349     $\cdots$ \\
350     set reference values for potential
351     temperature and salinity at each model level in units of $^{\circ}$C and
352     ${\rm ppt}$. The entries are ordered from surface to depth.
353     Density is calculated from anomalies at each level evaluated
354     with respect to the reference values set here.\\
355     \fbox{
356     \begin{minipage}{5.0in}
357     {\it S/R INI\_THETA}({\it ini\_theta.F})
358     \end{minipage}
359     }
360    
361    
362     \item Line 15,
363     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
364 cnh 1.3 this line sets the vertical Laplacian dissipation coefficient to
365 adcroft 1.1 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
366     for this operator are specified later. This variable is copied into
367     model general vertical coordinate variable {\bf viscAr}.
368    
369     \fbox{
370     \begin{minipage}{5.0in}
371     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
372     \end{minipage}
373     }
374    
375     \item Line 16,
376     \begin{verbatim}
377     viscAh=5.E5,
378     \end{verbatim}
379 cnh 1.3 this line sets the horizontal Laplacian frictional dissipation coefficient to
380 adcroft 1.1 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
381     for this operator are specified later.
382    
383     \item Lines 17,
384     \begin{verbatim}
385     no_slip_sides=.FALSE.
386     \end{verbatim}
387     this line selects a free-slip lateral boundary condition for
388 cnh 1.3 the horizontal Laplacian friction operator
389 adcroft 1.1 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
390     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
391    
392     \item Lines 9,
393     \begin{verbatim}
394     no_slip_bottom=.TRUE.
395     \end{verbatim}
396     this line selects a no-slip boundary condition for bottom
397 cnh 1.3 boundary condition in the vertical Laplacian friction operator
398 adcroft 1.1 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
399    
400     \item Line 19,
401     \begin{verbatim}
402     diffKhT=1.E3,
403     \end{verbatim}
404     this line sets the horizontal diffusion coefficient for temperature
405     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
406     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
407     all boundaries.
408    
409     \item Line 20,
410     \begin{verbatim}
411     diffKzT=3.E-5,
412     \end{verbatim}
413     this line sets the vertical diffusion coefficient for temperature
414     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
415     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
416     the upper and lower boundaries.
417    
418     \item Line 21,
419     \begin{verbatim}
420     diffKhS=1.E3,
421     \end{verbatim}
422     this line sets the horizontal diffusion coefficient for salinity
423     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
424     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
425     all boundaries.
426    
427     \item Line 22,
428     \begin{verbatim}
429     diffKzS=3.E-5,
430     \end{verbatim}
431     this line sets the vertical diffusion coefficient for salinity
432     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
433     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
434     the upper and lower boundaries.
435    
436     \item Lines 23-26
437     \begin{verbatim}
438     beta=1.E-11,
439     \end{verbatim}
440     \vspace{-5mm}$\cdots$\\
441     These settings do not apply for this experiment.
442    
443     \item Line 27,
444     \begin{verbatim}
445     gravity=9.81,
446     \end{verbatim}
447 cnh 1.3 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
448 adcroft 1.1 \fbox{
449     \begin{minipage}{5.0in}
450     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
451     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
452     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
453     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
454     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
455     \end{minipage}
456     }
457    
458    
459     \item Line 28-29,
460     \begin{verbatim}
461     rigidLid=.FALSE.,
462     implicitFreeSurface=.TRUE.,
463     \end{verbatim}
464     Selects the barotropic pressure equation to be the implicit free surface
465     formulation.
466    
467     \item Line 30,
468     \begin{verbatim}
469     eosType='POLY3',
470     \end{verbatim}
471     Selects the third order polynomial form of the equation of state.\\
472     \fbox{
473     \begin{minipage}{5.0in}
474     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
475     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
476     \end{minipage}
477     }
478    
479     \item Line 31,
480     \begin{verbatim}
481     readBinaryPrec=32,
482     \end{verbatim}
483     Sets format for reading binary input datasets holding model fields to
484     use 32-bit representation for floating-point numbers.\\
485     \fbox{
486     \begin{minipage}{5.0in}
487     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
488     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
489     \end{minipage}
490     }
491    
492     \item Line 36,
493     \begin{verbatim}
494     cg2dMaxIters=1000,
495     \end{verbatim}
496     Sets maximum number of iterations the two-dimensional, conjugate
497     gradient solver will use, {\bf irrespective of convergence
498     criteria being met}.\\
499     \fbox{
500     \begin{minipage}{5.0in}
501     {\it S/R CG2D}~({\it cg2d.F})
502     \end{minipage}
503     }
504    
505     \item Line 37,
506     \begin{verbatim}
507     cg2dTargetResidual=1.E-13,
508     \end{verbatim}
509     Sets the tolerance which the two-dimensional, conjugate
510     gradient solver will use to test for convergence in equation
511     \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
512     Solver will iterate until
513     tolerance falls below this value or until the maximum number of
514     solver iterations is reached.\\
515     \fbox{
516     \begin{minipage}{5.0in}
517     {\it S/R CG2D}~({\it cg2d.F})
518     \end{minipage}
519     }
520    
521     \item Line 42,
522     \begin{verbatim}
523     startTime=0,
524     \end{verbatim}
525     Sets the starting time for the model internal time counter.
526     When set to non-zero this option implicitly requests a
527     checkpoint file be read for initial state.
528     By default the checkpoint file is named according to
529     the integer number of time steps in the {\bf startTime} value.
530     The internal time counter works in seconds.
531    
532     \item Line 43,
533     \begin{verbatim}
534     endTime=2808000.,
535     \end{verbatim}
536     Sets the time (in seconds) at which this simulation will terminate.
537     At the end of a simulation a checkpoint file is automatically
538     written so that a numerical experiment can consist of multiple
539     stages.
540    
541     \item Line 44,
542     \begin{verbatim}
543     #endTime=62208000000,
544     \end{verbatim}
545     A commented out setting for endTime for a 2000 year simulation.
546    
547     \item Line 45,
548     \begin{verbatim}
549     deltaTmom=2400.0,
550     \end{verbatim}
551     Sets the timestep $\delta t_{v}$ used in the momentum equations to
552     $20~{\rm mins}$.
553     See section \ref{SEC:mom_time_stepping}.
554    
555     \fbox{
556     \begin{minipage}{5.0in}
557     {\it S/R TIMESTEP}({\it timestep.F})
558     \end{minipage}
559     }
560    
561     \item Line 46,
562     \begin{verbatim}
563     tauCD=321428.,
564     \end{verbatim}
565     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
566     See section \ref{SEC:cd_scheme}.
567    
568     \fbox{
569     \begin{minipage}{5.0in}
570     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
571     {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
572     \end{minipage}
573     }
574    
575     \item Line 47,
576     \begin{verbatim}
577     deltaTtracer=108000.,
578     \end{verbatim}
579     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
580     $30~{\rm hours}$.
581     See section \ref{SEC:tracer_time_stepping}.
582    
583     \fbox{
584     \begin{minipage}{5.0in}
585     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
586     \end{minipage}
587     }
588    
589     \item Line 47,
590     \begin{verbatim}
591     bathyFile='topog.box'
592     \end{verbatim}
593     This line specifies the name of the file from which the domain
594     bathymetry is read. This file is a two-dimensional ($x,y$) map of
595     depths. This file is assumed to contain 64-bit binary numbers
596     giving the depth of the model at each grid cell, ordered with the x
597     coordinate varying fastest. The points are ordered from low coordinate
598     to high coordinate for both axes. The units and orientation of the
599     depths in this file are the same as used in the MITgcm code. In this
600     experiment, a depth of $0m$ indicates a solid wall and a depth
601     of $-2000m$ indicates open ocean. The matlab program
602     {\it input/gendata.m} shows an example of how to generate a
603     bathymetry file.
604    
605    
606     \item Line 50,
607     \begin{verbatim}
608     zonalWindFile='windx.sin_y'
609     \end{verbatim}
610     This line specifies the name of the file from which the x-direction
611     surface wind stress is read. This file is also a two-dimensional
612     ($x,y$) map and is enumerated and formatted in the same manner as the
613     bathymetry file. The matlab program {\it input/gendata.m} includes example
614     code to generate a valid
615     {\bf zonalWindFile}
616     file.
617    
618     \end{itemize}
619    
620     \noindent other lines in the file {\it input/data} are standard values
621     that are described in the MITgcm Getting Started and MITgcm Parameters
622     notes.
623    
624     \begin{small}
625     \input{part3/case_studies/climatalogical_ogcm/input/data}
626     \end{small}
627    
628     \subsubsection{File {\it input/data.pkg}}
629    
630     This file uses standard default values and does not contain
631     customisations for this experiment.
632    
633     \subsubsection{File {\it input/eedata}}
634    
635     This file uses standard default values and does not contain
636     customisations for this experiment.
637    
638     \subsubsection{File {\it input/windx.sin\_y}}
639    
640     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
641     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
642     Although $\tau_{x}$ is only a function of $y$n in this experiment
643     this file must still define a complete two-dimensional map in order
644     to be compatible with the standard code for loading forcing fields
645     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
646     code for creating the {\it input/windx.sin\_y} file.
647    
648     \subsubsection{File {\it input/topog.box}}
649    
650    
651     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
652     map of depth values. For this experiment values are either
653     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
654     ocean. The file contains a raw binary stream of data that is enumerated
655     in the same way as standard MITgcm two-dimensional, horizontal arrays.
656     The included matlab program {\it input/gendata.m} gives a complete
657     code for creating the {\it input/topog.box} file.
658    
659     \subsubsection{File {\it code/SIZE.h}}
660    
661     Two lines are customized in this file for the current experiment
662    
663     \begin{itemize}
664    
665     \item Line 39,
666     \begin{verbatim} sNx=60, \end{verbatim} this line sets
667     the lateral domain extent in grid points for the
668     axis aligned with the x-coordinate.
669    
670     \item Line 40,
671     \begin{verbatim} sNy=60, \end{verbatim} this line sets
672     the lateral domain extent in grid points for the
673     axis aligned with the y-coordinate.
674    
675     \item Line 49,
676     \begin{verbatim} Nr=4, \end{verbatim} this line sets
677     the vertical domain extent in grid points.
678    
679     \end{itemize}
680    
681     \begin{small}
682     \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
683     \end{small}
684    
685     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
686    
687     This file uses standard default values and does not contain
688     customisations for this experiment.
689    
690    
691     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
692    
693     This file uses standard default values and does not contain
694     customisations for this experiment.
695    
696     \subsubsection{Other Files }
697    
698     Other files relevant to this experiment are
699     \begin{itemize}
700     \item {\it model/src/ini\_cori.F}. This file initializes the model
701     coriolis variables {\bf fCorU}.
702     \item {\it model/src/ini\_spherical\_polar\_grid.F}
703     \item {\it model/src/ini\_parms.F},
704     \item {\it input/windx.sin\_y},
705     \end{itemize}
706     contain the code customisations and parameter settings for this
707 cnh 1.3 experiments. Below we describe the customisations
708 adcroft 1.1 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22