| 1 | cnh | 1.3 | % $Header: /u/u0/gcmpack/mitgcmdoc/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.2 2001/10/22 11:55:48 cnh Exp $ | 
| 2 | cnh | 1.2 | % $Name:  $ | 
| 3 | adcroft | 1.1 |  | 
| 4 |  |  | \section{Example: 4$^\circ$ Global Climatological Ocean Simulation} | 
| 5 | cnh | 1.2 | \label{sec:eg-global} | 
| 6 | adcroft | 1.1 |  | 
| 7 |  |  | \bodytext{bgcolor="#FFFFFFFF"} | 
| 8 |  |  |  | 
| 9 |  |  | %\begin{center} | 
| 10 | cnh | 1.3 | %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation | 
| 11 | adcroft | 1.1 | %At Four Degree Resolution with Asynchronous Time Stepping} | 
| 12 |  |  | % | 
| 13 |  |  | %\vspace*{4mm} | 
| 14 |  |  | % | 
| 15 |  |  | %\vspace*{3mm} | 
| 16 |  |  | %{\large May 2001} | 
| 17 |  |  | %\end{center} | 
| 18 |  |  |  | 
| 19 |  |  | \subsection{Introduction} | 
| 20 |  |  |  | 
| 21 |  |  | This document describes the third example MITgcm experiment. The first | 
| 22 | cnh | 1.3 | two examples illustrated how to configure the code for hydrostatic idealized | 
| 23 |  |  | geophysical fluids simulations. This example illustrates the use of | 
| 24 | adcroft | 1.1 | the MITgcm for large scale ocean circulation simulation. | 
| 25 |  |  |  | 
| 26 |  |  | \subsection{Overview} | 
| 27 |  |  |  | 
| 28 |  |  | This example experiment demonstrates using the MITgcm to simulate | 
| 29 |  |  | the planetary ocean circulation. The simulation is configured | 
| 30 |  |  | with realistic geography and bathymetry on a | 
| 31 |  |  | $4^{\circ} \times 4^{\circ}$ spherical polar grid. | 
| 32 |  |  | Twenty levels are used in the vertical, ranging in thickness | 
| 33 |  |  | from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, | 
| 34 |  |  | giving a maximum model depth of $6\,{\rm km}$. | 
| 35 |  |  | At this resolution, the configuration | 
| 36 |  |  | can be integrated forward for thousands of years on a single | 
| 37 |  |  | processor desktop computer. | 
| 38 |  |  | \\ | 
| 39 |  |  |  | 
| 40 | cnh | 1.3 | The model is forced with climatological wind stress data and surface | 
| 41 |  |  | flux data from DaSilva \cite{DaSilva94}. Climatological data | 
| 42 |  |  | from Levitus \cite{Levitus94} is used to initialize the model hydrography. | 
| 43 |  |  | Levitus seasonal climatology data is also used throughout the calculation | 
| 44 | adcroft | 1.1 | to provide additional air-sea fluxes. | 
| 45 | cnh | 1.3 | These fluxes are combined with the DaSilva climatological estimates of | 
| 46 | adcroft | 1.1 | surface heat flux and fresh water, resulting in a mixed boundary | 
| 47 | cnh | 1.3 | condition of the style described in Haney \cite{Haney}. | 
| 48 | adcroft | 1.1 | Altogether, this yields the following forcing applied | 
| 49 |  |  | in the model surface layer. | 
| 50 |  |  |  | 
| 51 |  |  | \begin{eqnarray} | 
| 52 |  |  | \label{EQ:global_forcing} | 
| 53 |  |  | \label{EQ:global_forcing_fu} | 
| 54 |  |  | {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} | 
| 55 |  |  | \\ | 
| 56 |  |  | \label{EQ:global_forcing_fv} | 
| 57 |  |  | {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} | 
| 58 |  |  | \\ | 
| 59 |  |  | \label{EQ:global_forcing_ft} | 
| 60 |  |  | {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) | 
| 61 |  |  | - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} | 
| 62 |  |  | \\ | 
| 63 |  |  | \label{EQ:global_forcing_fs} | 
| 64 |  |  | {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) | 
| 65 |  |  | + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) | 
| 66 |  |  | \end{eqnarray} | 
| 67 |  |  |  | 
| 68 |  |  | \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, | 
| 69 |  |  | ${\cal F}_{s}$ are the forcing terms in the zonal and meridional | 
| 70 |  |  | momentum and in the potential temperature and salinity | 
| 71 |  |  | equations respectively. | 
| 72 |  |  | The term $\Delta z_{s}$ represents the top ocean layer thickness in | 
| 73 |  |  | meters. | 
| 74 |  |  | It is used in conjunction with a reference density, $\rho_{0}$ | 
| 75 |  |  | (here set to $999.8\,{\rm kg\,m^{-3}}$), a | 
| 76 |  |  | reference salinity, $S_{0}$ (here set to 35~ppt), | 
| 77 |  |  | and a specific heat capacity, $C_{p}$ (here set to | 
| 78 |  |  | $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert | 
| 79 |  |  | input dataset values into time tendencies of | 
| 80 |  |  | potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$), | 
| 81 |  |  | salinity (with units ${\rm ppt}~s^{-1}$) and | 
| 82 |  |  | velocity (with units ${\rm m}~{\rm s}^{-2}$). | 
| 83 |  |  | The externally supplied forcing fields used in this | 
| 84 |  |  | experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$, | 
| 85 |  |  | $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$) | 
| 86 |  |  | have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields | 
| 87 |  |  | ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ | 
| 88 |  |  | respectively. The salinity forcing fields ($S^{\ast}$ and | 
| 89 |  |  | $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ | 
| 90 |  |  | respectively. | 
| 91 |  |  | \\ | 
| 92 |  |  |  | 
| 93 |  |  |  | 
| 94 |  |  | Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the | 
| 95 |  |  | relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, | 
| 96 |  |  | the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) | 
| 97 |  |  | and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used | 
| 98 |  |  | in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures | 
| 99 |  |  | also indicate the lateral extent and coastline used in the experiment. | 
| 100 |  |  | Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model | 
| 101 |  |  | domain. | 
| 102 |  |  |  | 
| 103 |  |  |  | 
| 104 |  |  | \subsection{Discrete Numerical Configuration} | 
| 105 |  |  |  | 
| 106 |  |  |  | 
| 107 |  |  | The model is configured in hydrostatic form.  The domain is discretised with | 
| 108 |  |  | a uniform grid spacing in latitude and longitude on the sphere | 
| 109 |  |  | $\Delta \phi=\Delta \lambda=4^{\circ}$, so | 
| 110 |  |  | that there are ninety grid cells in the zonal and forty in the | 
| 111 |  |  | meridional direction. The internal model coordinate variables | 
| 112 | cnh | 1.3 | $x$ and $y$ are initialized according to | 
| 113 | adcroft | 1.1 | \begin{eqnarray} | 
| 114 |  |  | x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ | 
| 115 |  |  | y=r\lambda,~\Delta x &= &r\Delta \lambda | 
| 116 |  |  | \end{eqnarray} | 
| 117 |  |  |  | 
| 118 |  |  | Arctic polar regions are not | 
| 119 |  |  | included in this experiment. Meridionally the model extends from | 
| 120 |  |  | $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. | 
| 121 |  |  | Vertically the model is configured with twenty layers with the | 
| 122 |  |  | following thicknesses | 
| 123 |  |  | $\Delta z_{1} = 50\,{\rm m},\, | 
| 124 |  |  | \Delta z_{2} = 50\,{\rm m},\, | 
| 125 |  |  | \Delta z_{3} = 55\,{\rm m},\, | 
| 126 |  |  | \Delta z_{4} = 60\,{\rm m},\, | 
| 127 |  |  | \Delta z_{5} = 65\,{\rm m},\, | 
| 128 |  |  | $ | 
| 129 |  |  | $ | 
| 130 |  |  | \Delta z_{6}~=~70\,{\rm m},\, | 
| 131 |  |  | \Delta z_{7}~=~80\,{\rm m},\, | 
| 132 |  |  | \Delta z_{8}~=95\,{\rm m},\, | 
| 133 |  |  | \Delta z_{9}=120\,{\rm m},\, | 
| 134 |  |  | \Delta z_{10}=155\,{\rm m},\, | 
| 135 |  |  | $ | 
| 136 |  |  | $ | 
| 137 |  |  | \Delta z_{11}=200\,{\rm m},\, | 
| 138 |  |  | \Delta z_{12}=260\,{\rm m},\, | 
| 139 |  |  | \Delta z_{13}=320\,{\rm m},\, | 
| 140 |  |  | \Delta z_{14}=400\,{\rm m},\, | 
| 141 |  |  | \Delta z_{15}=480\,{\rm m},\, | 
| 142 |  |  | $ | 
| 143 |  |  | $ | 
| 144 |  |  | \Delta z_{16}=570\,{\rm m},\, | 
| 145 |  |  | \Delta z_{17}=655\,{\rm m},\, | 
| 146 |  |  | \Delta z_{18}=725\,{\rm m},\, | 
| 147 |  |  | \Delta z_{19}=775\,{\rm m},\, | 
| 148 |  |  | \Delta z_{20}=815\,{\rm m} | 
| 149 |  |  | $ (here the numeric subscript indicates the model level index number, ${\tt k}$). | 
| 150 |  |  | The implicit free surface form of the pressure equation described in Marshall et. al | 
| 151 | cnh | 1.3 | \cite{Marshall97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous | 
| 152 |  |  | dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. | 
| 153 | adcroft | 1.1 |  | 
| 154 |  |  | Wind-stress forcing is added to the momentum equations for both | 
| 155 | cnh | 1.3 | the zonal flow, $u$ and the meridional flow $v$, according to equations | 
| 156 | adcroft | 1.1 | (\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}). | 
| 157 |  |  | Thermodynamic forcing inputs are added to the equations for | 
| 158 |  |  | potential temperature, $\theta$, and salinity, $S$, according to equations | 
| 159 |  |  | (\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}). | 
| 160 |  |  | This produces a set of equations solved in this configuration as follows: | 
| 161 |  |  |  | 
| 162 |  |  | \begin{eqnarray} | 
| 163 |  |  | \label{EQ:model_equations} | 
| 164 |  |  | \frac{Du}{Dt} - fv + | 
| 165 |  |  | \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - | 
| 166 |  |  | \nabla_{h}\cdot A_{h}\nabla_{h}u - | 
| 167 |  |  | \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} | 
| 168 |  |  | & = & | 
| 169 |  |  | \begin{cases} | 
| 170 |  |  | {\cal F}_u & \text{(surface)} \\ | 
| 171 |  |  | 0 & \text{(interior)} | 
| 172 |  |  | \end{cases} | 
| 173 |  |  | \\ | 
| 174 |  |  | \frac{Dv}{Dt} + fu + | 
| 175 |  |  | \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - | 
| 176 |  |  | \nabla_{h}\cdot A_{h}\nabla_{h}v - | 
| 177 |  |  | \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} | 
| 178 |  |  | & = & | 
| 179 |  |  | \begin{cases} | 
| 180 |  |  | {\cal F}_v & \text{(surface)} \\ | 
| 181 |  |  | 0 & \text{(interior)} | 
| 182 |  |  | \end{cases} | 
| 183 |  |  | \\ | 
| 184 |  |  | \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} | 
| 185 |  |  | &=& | 
| 186 |  |  | 0 | 
| 187 |  |  | \\ | 
| 188 |  |  | \frac{D\theta}{Dt} - | 
| 189 |  |  | \nabla_{h}\cdot K_{h}\nabla_{h}\theta | 
| 190 |  |  | - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z} | 
| 191 |  |  | & = & | 
| 192 |  |  | \begin{cases} | 
| 193 |  |  | {\cal F}_\theta & \text{(surface)} \\ | 
| 194 |  |  | 0 & \text{(interior)} | 
| 195 |  |  | \end{cases} | 
| 196 |  |  | \\ | 
| 197 |  |  | \frac{D s}{Dt} - | 
| 198 |  |  | \nabla_{h}\cdot K_{h}\nabla_{h}s | 
| 199 |  |  | - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z} | 
| 200 |  |  | & = & | 
| 201 |  |  | \begin{cases} | 
| 202 |  |  | {\cal F}_s & \text{(surface)} \\ | 
| 203 |  |  | 0 & \text{(interior)} | 
| 204 |  |  | \end{cases} | 
| 205 |  |  | \\ | 
| 206 |  |  | g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} | 
| 207 |  |  | \end{eqnarray} | 
| 208 |  |  |  | 
| 209 |  |  | \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and | 
| 210 |  |  | $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ | 
| 211 |  |  | are the zonal and meridional components of the | 
| 212 |  |  | flow vector, $\vec{u}$, on the sphere. As described in | 
| 213 |  |  | MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time | 
| 214 |  |  | evolution of potential temperature, $\theta$, equation is solved prognostically. | 
| 215 |  |  | The total pressure, $p$, is diagnosed by summing pressure due to surface | 
| 216 |  |  | elevation $\eta$ and the hydrostatic pressure. | 
| 217 |  |  | \\ | 
| 218 |  |  |  | 
| 219 |  |  | \subsubsection{Numerical Stability Criteria} | 
| 220 |  |  |  | 
| 221 | cnh | 1.3 | The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. | 
| 222 | adcroft | 1.1 | This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, | 
| 223 |  |  | \begin{eqnarray} | 
| 224 |  |  | \label{EQ:munk_layer} | 
| 225 |  |  | M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} | 
| 226 |  |  | \end{eqnarray} | 
| 227 |  |  |  | 
| 228 |  |  | \noindent  of $\approx 600$km. This is greater than the model | 
| 229 |  |  | resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional | 
| 230 |  |  | boundary layer is adequately resolved. | 
| 231 |  |  | \\ | 
| 232 |  |  |  | 
| 233 |  |  | \noindent The model is stepped forward with a | 
| 234 |  |  | time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and | 
| 235 |  |  | $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability | 
| 236 | cnh | 1.3 | parameter to the horizontal Laplacian friction \cite{Adcroft_thesis} | 
| 237 | adcroft | 1.1 | \begin{eqnarray} | 
| 238 |  |  | \label{EQ:laplacian_stability} | 
| 239 |  |  | S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} | 
| 240 |  |  | \end{eqnarray} | 
| 241 |  |  |  | 
| 242 |  |  | \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the | 
| 243 |  |  | 0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at | 
| 244 |  |  | $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$. | 
| 245 |  |  | \\ | 
| 246 |  |  |  | 
| 247 |  |  | \noindent The vertical dissipation coefficient, $A_{z}$, is set to | 
| 248 |  |  | $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit | 
| 249 |  |  | \begin{eqnarray} | 
| 250 |  |  | \label{EQ:laplacian_stability_z} | 
| 251 |  |  | S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} | 
| 252 |  |  | \end{eqnarray} | 
| 253 |  |  |  | 
| 254 |  |  | \noindent evaluates to $0.015$ for the smallest model | 
| 255 | cnh | 1.3 | level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below | 
| 256 | adcroft | 1.1 | the upper stability limit. | 
| 257 |  |  | \\ | 
| 258 |  |  |  | 
| 259 |  |  | The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients | 
| 260 |  |  | for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ | 
| 261 |  |  | and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit | 
| 262 |  |  | related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. | 
| 263 |  |  | Here the stability parameter | 
| 264 |  |  | \begin{eqnarray} | 
| 265 |  |  | \label{EQ:laplacian_stability_xtheta} | 
| 266 |  |  | S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} | 
| 267 |  |  | \end{eqnarray} | 
| 268 | cnh | 1.3 | evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The | 
| 269 | adcroft | 1.1 | stability parameter related to $K_{z}$ | 
| 270 |  |  | \begin{eqnarray} | 
| 271 |  |  | \label{EQ:laplacian_stability_ztheta} | 
| 272 |  |  | S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} | 
| 273 |  |  | \end{eqnarray} | 
| 274 |  |  | evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit | 
| 275 |  |  | of $S_{l} \approx 0.5$. | 
| 276 |  |  | \\ | 
| 277 |  |  |  | 
| 278 |  |  | \noindent The numerical stability for inertial oscillations | 
| 279 |  |  | \cite{Adcroft_thesis} | 
| 280 |  |  |  | 
| 281 |  |  | \begin{eqnarray} | 
| 282 |  |  | \label{EQ:inertial_stability} | 
| 283 |  |  | S_{i} = f^{2} {\delta t_v}^2 | 
| 284 |  |  | \end{eqnarray} | 
| 285 |  |  |  | 
| 286 |  |  | \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to | 
| 287 |  |  | the $S_{i} < 1$ upper limit for stability. | 
| 288 |  |  | \\ | 
| 289 |  |  |  | 
| 290 |  |  | \noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum | 
| 291 |  |  | horizontal flow | 
| 292 |  |  | speed of $ | \vec{u} | = 2 ms^{-1}$ | 
| 293 |  |  |  | 
| 294 |  |  | \begin{eqnarray} | 
| 295 |  |  | \label{EQ:cfl_stability} | 
| 296 |  |  | S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} | 
| 297 |  |  | \end{eqnarray} | 
| 298 |  |  |  | 
| 299 |  |  | \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability | 
| 300 |  |  | limit of 0.5. | 
| 301 |  |  | \\ | 
| 302 |  |  |  | 
| 303 | cnh | 1.3 | \noindent The stability parameter for internal gravity waves propagating | 
| 304 | adcroft | 1.1 | with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ | 
| 305 |  |  | \cite{Adcroft_thesis} | 
| 306 |  |  |  | 
| 307 |  |  | \begin{eqnarray} | 
| 308 |  |  | \label{EQ:cfl_stability} | 
| 309 |  |  | S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} | 
| 310 |  |  | \end{eqnarray} | 
| 311 |  |  |  | 
| 312 |  |  | \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear | 
| 313 |  |  | stability limit of 0.5. | 
| 314 |  |  |  | 
| 315 |  |  | \subsection{Experiment Configuration} | 
| 316 |  |  | \label{SEC:clim_ocn_examp_exp_config} | 
| 317 |  |  |  | 
| 318 |  |  | The model configuration for this experiment resides under the | 
| 319 |  |  | directory {\it verification/exp2/}.  The experiment files | 
| 320 |  |  | \begin{itemize} | 
| 321 |  |  | \item {\it input/data} | 
| 322 |  |  | \item {\it input/data.pkg} | 
| 323 |  |  | \item {\it input/eedata}, | 
| 324 |  |  | \item {\it input/windx.bin}, | 
| 325 |  |  | \item {\it input/windy.bin}, | 
| 326 |  |  | \item {\it input/salt.bin}, | 
| 327 |  |  | \item {\it input/theta.bin}, | 
| 328 |  |  | \item {\it input/SSS.bin}, | 
| 329 |  |  | \item {\it input/SST.bin}, | 
| 330 |  |  | \item {\it input/topog.bin}, | 
| 331 |  |  | \item {\it code/CPP\_EEOPTIONS.h} | 
| 332 |  |  | \item {\it code/CPP\_OPTIONS.h}, | 
| 333 |  |  | \item {\it code/SIZE.h}. | 
| 334 |  |  | \end{itemize} | 
| 335 | cnh | 1.3 | contain the code customizations and parameter settings for these | 
| 336 |  |  | experiments. Below we describe the customizations | 
| 337 | adcroft | 1.1 | to these files associated with this experiment. | 
| 338 |  |  |  | 
| 339 |  |  | \subsubsection{File {\it input/data}} | 
| 340 |  |  |  | 
| 341 |  |  | This file, reproduced completely below, specifies the main parameters | 
| 342 |  |  | for the experiment. The parameters that are significant for this configuration | 
| 343 |  |  | are | 
| 344 |  |  |  | 
| 345 |  |  | \begin{itemize} | 
| 346 |  |  |  | 
| 347 |  |  | \item Lines 7-10 and 11-14 | 
| 348 |  |  | \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 ,  \end{verbatim} | 
| 349 |  |  | $\cdots$ \\ | 
| 350 |  |  | set reference values for potential | 
| 351 |  |  | temperature and salinity at each model level in units of $^{\circ}$C and | 
| 352 |  |  | ${\rm ppt}$. The entries are ordered from surface to depth. | 
| 353 |  |  | Density is calculated from anomalies at each level evaluated | 
| 354 |  |  | with respect to the reference values set here.\\ | 
| 355 |  |  | \fbox{ | 
| 356 |  |  | \begin{minipage}{5.0in} | 
| 357 |  |  | {\it S/R INI\_THETA}({\it ini\_theta.F}) | 
| 358 |  |  | \end{minipage} | 
| 359 |  |  | } | 
| 360 |  |  |  | 
| 361 |  |  |  | 
| 362 |  |  | \item Line 15, | 
| 363 |  |  | \begin{verbatim} viscAz=1.E-3, \end{verbatim} | 
| 364 | cnh | 1.3 | this line sets the vertical Laplacian dissipation coefficient to | 
| 365 | adcroft | 1.1 | $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions | 
| 366 |  |  | for this operator are specified later. This variable is copied into | 
| 367 |  |  | model general vertical coordinate variable {\bf viscAr}. | 
| 368 |  |  |  | 
| 369 |  |  | \fbox{ | 
| 370 |  |  | \begin{minipage}{5.0in} | 
| 371 |  |  | {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) | 
| 372 |  |  | \end{minipage} | 
| 373 |  |  | } | 
| 374 |  |  |  | 
| 375 |  |  | \item Line 16, | 
| 376 |  |  | \begin{verbatim} | 
| 377 |  |  | viscAh=5.E5, | 
| 378 |  |  | \end{verbatim} | 
| 379 | cnh | 1.3 | this line sets the horizontal Laplacian frictional dissipation coefficient to | 
| 380 | adcroft | 1.1 | $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions | 
| 381 |  |  | for this operator are specified later. | 
| 382 |  |  |  | 
| 383 |  |  | \item Lines 17, | 
| 384 |  |  | \begin{verbatim} | 
| 385 |  |  | no_slip_sides=.FALSE. | 
| 386 |  |  | \end{verbatim} | 
| 387 |  |  | this line selects a free-slip lateral boundary condition for | 
| 388 | cnh | 1.3 | the horizontal Laplacian friction operator | 
| 389 | adcroft | 1.1 | e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and | 
| 390 |  |  | $\frac{\partial v}{\partial x}$=0 along boundaries in $x$. | 
| 391 |  |  |  | 
| 392 |  |  | \item Lines 9, | 
| 393 |  |  | \begin{verbatim} | 
| 394 |  |  | no_slip_bottom=.TRUE. | 
| 395 |  |  | \end{verbatim} | 
| 396 |  |  | this line selects a no-slip boundary condition for bottom | 
| 397 | cnh | 1.3 | boundary condition in the vertical Laplacian friction operator | 
| 398 | adcroft | 1.1 | e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. | 
| 399 |  |  |  | 
| 400 |  |  | \item Line 19, | 
| 401 |  |  | \begin{verbatim} | 
| 402 |  |  | diffKhT=1.E3, | 
| 403 |  |  | \end{verbatim} | 
| 404 |  |  | this line sets the horizontal diffusion coefficient for temperature | 
| 405 |  |  | to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this | 
| 406 |  |  | operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on | 
| 407 |  |  | all boundaries. | 
| 408 |  |  |  | 
| 409 |  |  | \item Line 20, | 
| 410 |  |  | \begin{verbatim} | 
| 411 |  |  | diffKzT=3.E-5, | 
| 412 |  |  | \end{verbatim} | 
| 413 |  |  | this line sets the vertical diffusion coefficient for temperature | 
| 414 |  |  | to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary | 
| 415 |  |  | condition on this operator is $\frac{\partial}{\partial z}=0$ at both | 
| 416 |  |  | the upper and lower boundaries. | 
| 417 |  |  |  | 
| 418 |  |  | \item Line 21, | 
| 419 |  |  | \begin{verbatim} | 
| 420 |  |  | diffKhS=1.E3, | 
| 421 |  |  | \end{verbatim} | 
| 422 |  |  | this line sets the horizontal diffusion coefficient for salinity | 
| 423 |  |  | to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this | 
| 424 |  |  | operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on | 
| 425 |  |  | all boundaries. | 
| 426 |  |  |  | 
| 427 |  |  | \item Line 22, | 
| 428 |  |  | \begin{verbatim} | 
| 429 |  |  | diffKzS=3.E-5, | 
| 430 |  |  | \end{verbatim} | 
| 431 |  |  | this line sets the vertical diffusion coefficient for salinity | 
| 432 |  |  | to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary | 
| 433 |  |  | condition on this operator is $\frac{\partial}{\partial z}=0$ at both | 
| 434 |  |  | the upper and lower boundaries. | 
| 435 |  |  |  | 
| 436 |  |  | \item Lines 23-26 | 
| 437 |  |  | \begin{verbatim} | 
| 438 |  |  | beta=1.E-11, | 
| 439 |  |  | \end{verbatim} | 
| 440 |  |  | \vspace{-5mm}$\cdots$\\ | 
| 441 |  |  | These settings do not apply for this experiment. | 
| 442 |  |  |  | 
| 443 |  |  | \item Line 27, | 
| 444 |  |  | \begin{verbatim} | 
| 445 |  |  | gravity=9.81, | 
| 446 |  |  | \end{verbatim} | 
| 447 | cnh | 1.3 | Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\ | 
| 448 | adcroft | 1.1 | \fbox{ | 
| 449 |  |  | \begin{minipage}{5.0in} | 
| 450 |  |  | {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\ | 
| 451 |  |  | {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\ | 
| 452 |  |  | {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\ | 
| 453 |  |  | {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\ | 
| 454 |  |  | {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F}) | 
| 455 |  |  | \end{minipage} | 
| 456 |  |  | } | 
| 457 |  |  |  | 
| 458 |  |  |  | 
| 459 |  |  | \item Line 28-29, | 
| 460 |  |  | \begin{verbatim} | 
| 461 |  |  | rigidLid=.FALSE., | 
| 462 |  |  | implicitFreeSurface=.TRUE., | 
| 463 |  |  | \end{verbatim} | 
| 464 |  |  | Selects the barotropic pressure equation to be the implicit free surface | 
| 465 |  |  | formulation. | 
| 466 |  |  |  | 
| 467 |  |  | \item Line 30, | 
| 468 |  |  | \begin{verbatim} | 
| 469 |  |  | eosType='POLY3', | 
| 470 |  |  | \end{verbatim} | 
| 471 |  |  | Selects the third order polynomial form of the equation of state.\\ | 
| 472 |  |  | \fbox{ | 
| 473 |  |  | \begin{minipage}{5.0in} | 
| 474 |  |  | {\it S/R FIND\_RHO}~({\it find\_rho.F})\\ | 
| 475 |  |  | {\it S/R FIND\_ALPHA}~({\it find\_alpha.F}) | 
| 476 |  |  | \end{minipage} | 
| 477 |  |  | } | 
| 478 |  |  |  | 
| 479 |  |  | \item Line 31, | 
| 480 |  |  | \begin{verbatim} | 
| 481 |  |  | readBinaryPrec=32, | 
| 482 |  |  | \end{verbatim} | 
| 483 |  |  | Sets format for reading binary input datasets holding model fields to | 
| 484 |  |  | use 32-bit representation for floating-point numbers.\\ | 
| 485 |  |  | \fbox{ | 
| 486 |  |  | \begin{minipage}{5.0in} | 
| 487 |  |  | {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\ | 
| 488 |  |  | {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F}) | 
| 489 |  |  | \end{minipage} | 
| 490 |  |  | } | 
| 491 |  |  |  | 
| 492 |  |  | \item Line 36, | 
| 493 |  |  | \begin{verbatim} | 
| 494 |  |  | cg2dMaxIters=1000, | 
| 495 |  |  | \end{verbatim} | 
| 496 |  |  | Sets maximum number of iterations the two-dimensional, conjugate | 
| 497 |  |  | gradient solver will use, {\bf irrespective of convergence | 
| 498 |  |  | criteria being met}.\\ | 
| 499 |  |  | \fbox{ | 
| 500 |  |  | \begin{minipage}{5.0in} | 
| 501 |  |  | {\it S/R CG2D}~({\it cg2d.F}) | 
| 502 |  |  | \end{minipage} | 
| 503 |  |  | } | 
| 504 |  |  |  | 
| 505 |  |  | \item Line 37, | 
| 506 |  |  | \begin{verbatim} | 
| 507 |  |  | cg2dTargetResidual=1.E-13, | 
| 508 |  |  | \end{verbatim} | 
| 509 |  |  | Sets the tolerance which the two-dimensional, conjugate | 
| 510 |  |  | gradient solver will use to test for convergence in equation | 
| 511 |  |  | \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$. | 
| 512 |  |  | Solver will iterate until | 
| 513 |  |  | tolerance falls below this value or until the maximum number of | 
| 514 |  |  | solver iterations is reached.\\ | 
| 515 |  |  | \fbox{ | 
| 516 |  |  | \begin{minipage}{5.0in} | 
| 517 |  |  | {\it S/R CG2D}~({\it cg2d.F}) | 
| 518 |  |  | \end{minipage} | 
| 519 |  |  | } | 
| 520 |  |  |  | 
| 521 |  |  | \item Line 42, | 
| 522 |  |  | \begin{verbatim} | 
| 523 |  |  | startTime=0, | 
| 524 |  |  | \end{verbatim} | 
| 525 |  |  | Sets the starting time for the model internal time counter. | 
| 526 |  |  | When set to non-zero this option implicitly requests a | 
| 527 |  |  | checkpoint file be read for initial state. | 
| 528 |  |  | By default the checkpoint file is named according to | 
| 529 |  |  | the integer number of time steps in the {\bf startTime} value. | 
| 530 |  |  | The internal time counter works in seconds. | 
| 531 |  |  |  | 
| 532 |  |  | \item Line 43, | 
| 533 |  |  | \begin{verbatim} | 
| 534 |  |  | endTime=2808000., | 
| 535 |  |  | \end{verbatim} | 
| 536 |  |  | Sets the time (in seconds) at which this simulation will terminate. | 
| 537 |  |  | At the end of a simulation a checkpoint file is automatically | 
| 538 |  |  | written so that a numerical experiment can consist of multiple | 
| 539 |  |  | stages. | 
| 540 |  |  |  | 
| 541 |  |  | \item Line 44, | 
| 542 |  |  | \begin{verbatim} | 
| 543 |  |  | #endTime=62208000000, | 
| 544 |  |  | \end{verbatim} | 
| 545 |  |  | A commented out setting for endTime for a 2000 year simulation. | 
| 546 |  |  |  | 
| 547 |  |  | \item Line 45, | 
| 548 |  |  | \begin{verbatim} | 
| 549 |  |  | deltaTmom=2400.0, | 
| 550 |  |  | \end{verbatim} | 
| 551 |  |  | Sets the timestep $\delta t_{v}$ used in the momentum equations to | 
| 552 |  |  | $20~{\rm mins}$. | 
| 553 |  |  | See section \ref{SEC:mom_time_stepping}. | 
| 554 |  |  |  | 
| 555 |  |  | \fbox{ | 
| 556 |  |  | \begin{minipage}{5.0in} | 
| 557 |  |  | {\it S/R TIMESTEP}({\it timestep.F}) | 
| 558 |  |  | \end{minipage} | 
| 559 |  |  | } | 
| 560 |  |  |  | 
| 561 |  |  | \item Line 46, | 
| 562 |  |  | \begin{verbatim} | 
| 563 |  |  | tauCD=321428., | 
| 564 |  |  | \end{verbatim} | 
| 565 |  |  | Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations. | 
| 566 |  |  | See section \ref{SEC:cd_scheme}. | 
| 567 |  |  |  | 
| 568 |  |  | \fbox{ | 
| 569 |  |  | \begin{minipage}{5.0in} | 
| 570 |  |  | {\it S/R INI\_PARMS}({\it ini\_parms.F})\\ | 
| 571 |  |  | {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) | 
| 572 |  |  | \end{minipage} | 
| 573 |  |  | } | 
| 574 |  |  |  | 
| 575 |  |  | \item Line 47, | 
| 576 |  |  | \begin{verbatim} | 
| 577 |  |  | deltaTtracer=108000., | 
| 578 |  |  | \end{verbatim} | 
| 579 |  |  | Sets the default timestep, $\delta t_{\theta}$, for tracer equations to | 
| 580 |  |  | $30~{\rm hours}$. | 
| 581 |  |  | See section \ref{SEC:tracer_time_stepping}. | 
| 582 |  |  |  | 
| 583 |  |  | \fbox{ | 
| 584 |  |  | \begin{minipage}{5.0in} | 
| 585 |  |  | {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F}) | 
| 586 |  |  | \end{minipage} | 
| 587 |  |  | } | 
| 588 |  |  |  | 
| 589 |  |  | \item Line 47, | 
| 590 |  |  | \begin{verbatim} | 
| 591 |  |  | bathyFile='topog.box' | 
| 592 |  |  | \end{verbatim} | 
| 593 |  |  | This line specifies the name of the file from which the domain | 
| 594 |  |  | bathymetry is read. This file is a two-dimensional ($x,y$) map of | 
| 595 |  |  | depths. This file is assumed to contain 64-bit binary numbers | 
| 596 |  |  | giving the depth of the model at each grid cell, ordered with the x | 
| 597 |  |  | coordinate varying fastest. The points are ordered from low coordinate | 
| 598 |  |  | to high coordinate for both axes. The units and orientation of the | 
| 599 |  |  | depths in this file are the same as used in the MITgcm code. In this | 
| 600 |  |  | experiment, a depth of $0m$ indicates a solid wall and a depth | 
| 601 |  |  | of $-2000m$ indicates open ocean. The matlab program | 
| 602 |  |  | {\it input/gendata.m} shows an example of how to generate a | 
| 603 |  |  | bathymetry file. | 
| 604 |  |  |  | 
| 605 |  |  |  | 
| 606 |  |  | \item Line 50, | 
| 607 |  |  | \begin{verbatim} | 
| 608 |  |  | zonalWindFile='windx.sin_y' | 
| 609 |  |  | \end{verbatim} | 
| 610 |  |  | This line specifies the name of the file from which the x-direction | 
| 611 |  |  | surface wind stress is read. This file is also a two-dimensional | 
| 612 |  |  | ($x,y$) map and is enumerated and formatted in the same manner as the | 
| 613 |  |  | bathymetry file. The matlab program {\it input/gendata.m} includes example | 
| 614 |  |  | code to generate a valid | 
| 615 |  |  | {\bf zonalWindFile} | 
| 616 |  |  | file. | 
| 617 |  |  |  | 
| 618 |  |  | \end{itemize} | 
| 619 |  |  |  | 
| 620 |  |  | \noindent other lines in the file {\it input/data} are standard values | 
| 621 |  |  | that are described in the MITgcm Getting Started and MITgcm Parameters | 
| 622 |  |  | notes. | 
| 623 |  |  |  | 
| 624 |  |  | \begin{small} | 
| 625 |  |  | \input{part3/case_studies/climatalogical_ogcm/input/data} | 
| 626 |  |  | \end{small} | 
| 627 |  |  |  | 
| 628 |  |  | \subsubsection{File {\it input/data.pkg}} | 
| 629 |  |  |  | 
| 630 |  |  | This file uses standard default values and does not contain | 
| 631 |  |  | customisations for this experiment. | 
| 632 |  |  |  | 
| 633 |  |  | \subsubsection{File {\it input/eedata}} | 
| 634 |  |  |  | 
| 635 |  |  | This file uses standard default values and does not contain | 
| 636 |  |  | customisations for this experiment. | 
| 637 |  |  |  | 
| 638 |  |  | \subsubsection{File {\it input/windx.sin\_y}} | 
| 639 |  |  |  | 
| 640 |  |  | The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) | 
| 641 |  |  | map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. | 
| 642 |  |  | Although $\tau_{x}$ is only a function of $y$n in this experiment | 
| 643 |  |  | this file must still define a complete two-dimensional map in order | 
| 644 |  |  | to be compatible with the standard code for loading forcing fields | 
| 645 |  |  | in MITgcm. The included matlab program {\it input/gendata.m} gives a complete | 
| 646 |  |  | code for creating the {\it input/windx.sin\_y} file. | 
| 647 |  |  |  | 
| 648 |  |  | \subsubsection{File {\it input/topog.box}} | 
| 649 |  |  |  | 
| 650 |  |  |  | 
| 651 |  |  | The {\it input/topog.box} file specifies a two-dimensional ($x,y$) | 
| 652 |  |  | map of depth values. For this experiment values are either | 
| 653 |  |  | $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep | 
| 654 |  |  | ocean. The file contains a raw binary stream of data that is enumerated | 
| 655 |  |  | in the same way as standard MITgcm two-dimensional, horizontal arrays. | 
| 656 |  |  | The included matlab program {\it input/gendata.m} gives a complete | 
| 657 |  |  | code for creating the {\it input/topog.box} file. | 
| 658 |  |  |  | 
| 659 |  |  | \subsubsection{File {\it code/SIZE.h}} | 
| 660 |  |  |  | 
| 661 |  |  | Two lines are customized in this file for the current experiment | 
| 662 |  |  |  | 
| 663 |  |  | \begin{itemize} | 
| 664 |  |  |  | 
| 665 |  |  | \item Line 39, | 
| 666 |  |  | \begin{verbatim} sNx=60, \end{verbatim} this line sets | 
| 667 |  |  | the lateral domain extent in grid points for the | 
| 668 |  |  | axis aligned with the x-coordinate. | 
| 669 |  |  |  | 
| 670 |  |  | \item Line 40, | 
| 671 |  |  | \begin{verbatim} sNy=60, \end{verbatim} this line sets | 
| 672 |  |  | the lateral domain extent in grid points for the | 
| 673 |  |  | axis aligned with the y-coordinate. | 
| 674 |  |  |  | 
| 675 |  |  | \item Line 49, | 
| 676 |  |  | \begin{verbatim} Nr=4,   \end{verbatim} this line sets | 
| 677 |  |  | the vertical domain extent in grid points. | 
| 678 |  |  |  | 
| 679 |  |  | \end{itemize} | 
| 680 |  |  |  | 
| 681 |  |  | \begin{small} | 
| 682 |  |  | \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h} | 
| 683 |  |  | \end{small} | 
| 684 |  |  |  | 
| 685 |  |  | \subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
| 686 |  |  |  | 
| 687 |  |  | This file uses standard default values and does not contain | 
| 688 |  |  | customisations for this experiment. | 
| 689 |  |  |  | 
| 690 |  |  |  | 
| 691 |  |  | \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
| 692 |  |  |  | 
| 693 |  |  | This file uses standard default values and does not contain | 
| 694 |  |  | customisations for this experiment. | 
| 695 |  |  |  | 
| 696 |  |  | \subsubsection{Other Files } | 
| 697 |  |  |  | 
| 698 |  |  | Other files relevant to this experiment are | 
| 699 |  |  | \begin{itemize} | 
| 700 |  |  | \item {\it model/src/ini\_cori.F}. This file initializes the model | 
| 701 |  |  | coriolis variables {\bf fCorU}. | 
| 702 |  |  | \item {\it model/src/ini\_spherical\_polar\_grid.F} | 
| 703 |  |  | \item {\it model/src/ini\_parms.F}, | 
| 704 |  |  | \item {\it input/windx.sin\_y}, | 
| 705 |  |  | \end{itemize} | 
| 706 |  |  | contain the code customisations and parameter settings for this | 
| 707 | cnh | 1.3 | experiments. Below we describe the customisations | 
| 708 | adcroft | 1.1 | to these files associated with this experiment. |