/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.23 - (hide annotations) (download) (as text)
Sun May 8 16:24:24 2011 UTC (14 years, 2 months ago) by jmc
Branch: MAIN
Changes since 1.22: +10 -34 lines
File MIME type: application/x-tex
put SIZE.h description into a separated file (with line number from code/SIZE.h)

1 jmc 1.23 % $Header: /u/gcmpack/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex,v 1.22 2011/05/02 10:46:28 mlosch Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4 jmc 1.17 \section[Global Ocean MITgcm Example]{Global Ocean Simulation at $4^\circ$ Resolution}
5 jmc 1.19 %\label{www:tutorials}
6     \label{sec:eg-global}
7 edhill 1.12 \begin{rawhtml}
8     <!-- CMIREDIR:eg-global: -->
9     \end{rawhtml}
10 jmc 1.16 \begin{center}
11     (in directory: {\it verification/tutorial\_global\_oce\_latlon/})
12     \end{center}
13 adcroft 1.1
14     \bodytext{bgcolor="#FFFFFFFF"}
15    
16 mlosch 1.22 \noindent {\bf WARNING: the description of this experiment is not complete.
17     In particular, many parameters are not yet described.}\\
18 jmc 1.21
19 adcroft 1.1 %\begin{center}
20 cnh 1.3 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
21 adcroft 1.1 %At Four Degree Resolution with Asynchronous Time Stepping}
22     %
23     %\vspace*{4mm}
24     %
25     %\vspace*{3mm}
26     %{\large May 2001}
27     %\end{center}
28    
29    
30 mlosch 1.22 This example experiment demonstrates using the MITgcm to simulate the
31     planetary ocean circulation. The simulation is configured with
32     realistic geography and bathymetry on a $4^{\circ} \times 4^{\circ}$
33     spherical polar grid. The files for this experiment are in the
34     verification directory under tutorial\_global\_oce\_latlon. Fifteen
35     levels are used in the vertical, ranging in thickness from $50\,{\rm
36     m}$ at the surface to $690\,{\rm m}$ at depth, giving a maximum
37     model depth of $5200\,{\rm m}$. At this resolution, the configuration
38     can be integrated forward for thousands of years on a single processor
39     desktop computer.
40 adcroft 1.1 \\
41 cnh 1.8 \subsection{Overview}
42 jmc 1.19 %\label{www:tutorials}
43 adcroft 1.1
44 mlosch 1.22 The model is forced with climatological wind stress data from
45     \citet{trenberth90} and NCEP surface flux data from
46     \citet{kalnay96}. Climatological data \citep{Levitus94} is
47     used to initialize the model hydrography. \citeauthor{Levitus94} seasonal
48     climatology data is also used throughout the calculation to provide
49     additional air-sea fluxes. These fluxes are combined with the NCEP
50     climatological estimates of surface heat flux, resulting in a mixed
51     boundary condition of the style described in \citet{Haney}.
52     Altogether, this yields the following forcing applied in the model
53     surface layer.
54 adcroft 1.1
55     \begin{eqnarray}
56 jmc 1.19 \label{eq:eg-global-global_forcing}
57     \label{eq:eg-global-global_forcing_fu}
58 adcroft 1.1 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
59     \\
60 jmc 1.19 \label{eq:eg-global-global_forcing_fv}
61 adcroft 1.1 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
62     \\
63 jmc 1.19 \label{eq:eg-global-global_forcing_ft}
64 adcroft 1.1 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
65     - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
66     \\
67 jmc 1.19 \label{eq:eg-global-global_forcing_fs}
68 adcroft 1.1 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
69     + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
70     \end{eqnarray}
71    
72     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
73     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
74     momentum and in the potential temperature and salinity
75     equations respectively.
76     The term $\Delta z_{s}$ represents the top ocean layer thickness in
77     meters.
78     It is used in conjunction with a reference density, $\rho_{0}$
79     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
80     reference salinity, $S_{0}$ (here set to 35~ppt),
81     and a specific heat capacity, $C_{p}$ (here set to
82     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
83     input dataset values into time tendencies of
84     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
85     salinity (with units ${\rm ppt}~s^{-1}$) and
86     velocity (with units ${\rm m}~{\rm s}^{-2}$).
87     The externally supplied forcing fields used in this
88     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
89     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
90     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
91     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
92     respectively. The salinity forcing fields ($S^{\ast}$ and
93     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
94 cnh 1.8 respectively. The source files and procedures for ingesting this data into the
95     simulation are described in the experiment configuration discussion in section
96 jmc 1.19 \ref{sec:eg-global-clim_ocn_examp_exp_config}.
97 adcroft 1.1
98    
99     \subsection{Discrete Numerical Configuration}
100 jmc 1.19 %\label{www:tutorials}
101 adcroft 1.1
102    
103 mlosch 1.22 The model is configured in hydrostatic form. The domain is
104     discretised with a uniform grid spacing in latitude and longitude on
105     the sphere $\Delta \phi=\Delta \lambda=4^{\circ}$, so that there are
106     ninety grid cells in the zonal and forty in the meridional
107     direction. The internal model coordinate variables $x$ and $y$ are
108     initialized according to
109 adcroft 1.1 \begin{eqnarray}
110     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
111 cnh 1.8 y=r\lambda,~\Delta y &= &r\Delta \lambda
112 adcroft 1.1 \end{eqnarray}
113    
114     Arctic polar regions are not
115     included in this experiment. Meridionally the model extends from
116     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
117 mlosch 1.22 Vertically the model is configured with fifteen layers with the
118 adcroft 1.1 following thicknesses
119     $\Delta z_{1} = 50\,{\rm m},\,
120 mlosch 1.22 \Delta z_{2} = 70\,{\rm m},\,
121     \Delta z_{3} = 100\,{\rm m},\,
122     \Delta z_{4} = 140\,{\rm m},\,
123     \Delta z_{5} = 190\,{\rm m},\,
124     \Delta z_{6}~=~240\,{\rm m},\,
125     \Delta z_{7}~=~290\,{\rm m},\,
126     \Delta z_{8}~=340\,{\rm m},\,
127     \Delta z_{9}=390\,{\rm m},\,
128     \Delta z_{10}=440\,{\rm m},\,
129     \Delta z_{11}=490\,{\rm m},\,
130     \Delta z_{12}=540\,{\rm m},\,
131     \Delta z_{13}=590\,{\rm m},\,
132     \Delta z_{14}=640\,{\rm m},\,
133     \Delta z_{15}=690\,{\rm m}
134 cnh 1.8 $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
135 mlosch 1.22 give a total depth, $H$, of $-5200{\rm m}$.
136     The implicit free surface form of the pressure equation described in
137     \citet{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
138 cnh 1.3 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
139 adcroft 1.1
140 jmc 1.19 Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations})
141 cnh 1.8 for both the zonal flow, $u$ and the meridional flow $v$, according to equations
142 jmc 1.19 (\ref{eq:eg-global-global_forcing_fu}) and (\ref{eq:eg-global-global_forcing_fv}).
143 cnh 1.8 Thermodynamic forcing inputs are added to the equations
144 jmc 1.19 in (\ref{eq:eg-global-model_equations}) for
145 adcroft 1.1 potential temperature, $\theta$, and salinity, $S$, according to equations
146 jmc 1.19 (\ref{eq:eg-global-global_forcing_ft}) and (\ref{eq:eg-global-global_forcing_fs}).
147 adcroft 1.1 This produces a set of equations solved in this configuration as follows:
148    
149     \begin{eqnarray}
150 jmc 1.19 \label{eq:eg-global-model_equations}
151 adcroft 1.1 \frac{Du}{Dt} - fv +
152     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
153     \nabla_{h}\cdot A_{h}\nabla_{h}u -
154     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
155     & = &
156     \begin{cases}
157     {\cal F}_u & \text{(surface)} \\
158     0 & \text{(interior)}
159     \end{cases}
160     \\
161     \frac{Dv}{Dt} + fu +
162     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
163     \nabla_{h}\cdot A_{h}\nabla_{h}v -
164     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
165     & = &
166     \begin{cases}
167     {\cal F}_v & \text{(surface)} \\
168     0 & \text{(interior)}
169     \end{cases}
170     \\
171     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
172     &=&
173     0
174     \\
175     \frac{D\theta}{Dt} -
176     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
177     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
178     & = &
179     \begin{cases}
180     {\cal F}_\theta & \text{(surface)} \\
181     0 & \text{(interior)}
182     \end{cases}
183     \\
184     \frac{D s}{Dt} -
185     \nabla_{h}\cdot K_{h}\nabla_{h}s
186     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
187     & = &
188     \begin{cases}
189     {\cal F}_s & \text{(surface)} \\
190     0 & \text{(interior)}
191     \end{cases}
192     \\
193     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
194     \end{eqnarray}
195    
196     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
197     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
198     are the zonal and meridional components of the
199     flow vector, $\vec{u}$, on the sphere. As described in
200 adcroft 1.5 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
201 adcroft 1.1 evolution of potential temperature, $\theta$, equation is solved prognostically.
202     The total pressure, $p$, is diagnosed by summing pressure due to surface
203     elevation $\eta$ and the hydrostatic pressure.
204     \\
205    
206     \subsubsection{Numerical Stability Criteria}
207 jmc 1.19 %\label{www:tutorials}
208 adcroft 1.1
209 cnh 1.3 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
210 mlosch 1.22 This value is chosen to yield a Munk layer width \citep{adcroft:95},
211 adcroft 1.1 \begin{eqnarray}
212 jmc 1.19 \label{eq:eg-global-munk_layer}
213 adcroft 1.10 && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
214 adcroft 1.1 \end{eqnarray}
215    
216     \noindent of $\approx 600$km. This is greater than the model
217     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
218     boundary layer is adequately resolved.
219     \\
220    
221 mlosch 1.22 \noindent The model is stepped forward with a time step $\delta
222     t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $\delta
223     t_{v}=30~{\rm minutes}$ for momentum terms. With this time step, the
224     stability parameter to the horizontal Laplacian friction
225     \citep{adcroft:95}
226 adcroft 1.1 \begin{eqnarray}
227 jmc 1.19 \label{eq:eg-global-laplacian_stability}
228 adcroft 1.10 && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
229 adcroft 1.1 \end{eqnarray}
230    
231 mlosch 1.22 \noindent evaluates to 0.6 at a latitude of $\phi=80^{\circ}$, which
232     is above the 0.3 upper limit for stability, but the zonal grid spacing
233     $\Delta x$ is smallest at $\phi=80^{\circ}$ where $\Delta
234     x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$ and the stability
235     criterion is already met 1 grid cell equatorwards (at $\phi=76^{\circ}$).
236    
237 adcroft 1.1
238     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
239     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
240     \begin{eqnarray}
241 jmc 1.19 \label{eq:eg-global-laplacian_stability_z}
242 adcroft 1.1 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
243     \end{eqnarray}
244    
245 mlosch 1.22 \noindent evaluates to $0.0029$ for the smallest model
246     level spacing ($\Delta z_{1}=50{\rm m}$) which is well below
247 adcroft 1.1 the upper stability limit.
248     \\
249    
250 mlosch 1.22 % The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
251     % for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
252     % and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
253     % related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
254     % Here the stability parameter
255     % \begin{eqnarray}
256     % \label{eq:eg-global-laplacian_stability_xtheta}
257     % S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
258     % \end{eqnarray}
259     % evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
260     % stability parameter related to $K_{z}$
261     % \begin{eqnarray}
262     % \label{eq:eg-global-laplacian_stability_ztheta}
263     % S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
264     % \end{eqnarray}
265     % evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
266     % of $S_{l} \approx 0.5$.
267     % \\
268 adcroft 1.1
269     \noindent The numerical stability for inertial oscillations
270 mlosch 1.22 \citep{adcroft:95}
271 adcroft 1.1
272     \begin{eqnarray}
273 jmc 1.19 \label{eq:eg-global-inertial_stability}
274 adcroft 1.1 S_{i} = f^{2} {\delta t_v}^2
275     \end{eqnarray}
276    
277 mlosch 1.22 \noindent evaluates to $0.07$ for
278     $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is
279     below the $S_{i} < 1$ upper limit for stability.
280 adcroft 1.1 \\
281    
282 mlosch 1.22 \noindent The advective CFL \citep{adcroft:95} for a extreme maximum
283 adcroft 1.1 horizontal flow
284     speed of $ | \vec{u} | = 2 ms^{-1}$
285    
286     \begin{eqnarray}
287 jmc 1.19 \label{eq:eg-global-cfl_stability}
288 adcroft 1.1 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
289     \end{eqnarray}
290    
291 mlosch 1.22 \noindent evaluates to $5 \times 10^{-2}$. This is well below the stability
292 adcroft 1.1 limit of 0.5.
293     \\
294    
295 cnh 1.3 \noindent The stability parameter for internal gravity waves propagating
296 mlosch 1.22 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
297     \citep{adcroft:95}
298 adcroft 1.1
299     \begin{eqnarray}
300 jmc 1.19 \label{eq:eg-global-gfl_stability}
301 adcroft 1.1 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
302     \end{eqnarray}
303    
304 mlosch 1.22 \noindent evaluates to $2.3 \times 10^{-1}$. This is close to the linear
305 adcroft 1.1 stability limit of 0.5.
306    
307     \subsection{Experiment Configuration}
308 jmc 1.19 %\label{www:tutorials}
309     \label{sec:eg-global-clim_ocn_examp_exp_config}
310 adcroft 1.1
311 mlosch 1.22 The model configuration for this experiment resides under the
312     directory {\it tutorial\_global\_oce\_latlon/}. The experiment files
313 cnh 1.8
314 adcroft 1.1 \begin{itemize}
315     \item {\it input/data}
316     \item {\it input/data.pkg}
317     \item {\it input/eedata},
318 mlosch 1.22 \item {\it input/trenberth\_taux.bin},
319     \item {\it input/trenberth\_tauy.bin},
320     \item {\it input/lev\_s.bin},
321     \item {\it input/lev\_t.bin},
322     \item {\it input/lev\_sss.bin},
323     \item {\it input/lev\_sst.bin},
324     \item {\it input/bathymetry.bin},
325 jmc 1.23 %\item {\it code/CPP\_EEOPTIONS.h}
326     %\item {\it code/CPP\_OPTIONS.h},
327 adcroft 1.1 \item {\it code/SIZE.h}.
328     \end{itemize}
329 cnh 1.3 contain the code customizations and parameter settings for these
330     experiments. Below we describe the customizations
331 adcroft 1.1 to these files associated with this experiment.
332 cnh 1.8
333     \subsubsection{Driving Datasets}
334 jmc 1.19 %\label{www:tutorials}
335 cnh 1.8
336 mlosch 1.22 %% New figures are included before
337     %% Relaxation temperature
338     %\begin{figure}
339     %\centering
340     %\includegraphics[]{relax_temperature.eps}
341     %\caption{Relaxation temperature for January}
342     %\label{fig:relax_temperature}
343     %\end{figure}
344    
345     %% Relaxation salinity
346     %\begin{figure}
347     %\centering
348     %\includegraphics[]{relax_salinity.eps}
349     %\caption{Relaxation salinity for January}
350     %\label{fig:relax_salinity}
351     %\end{figure}
352    
353     %% tau_x
354     %\begin{figure}
355     %\centering
356     %\includegraphics[]{tau_x.eps}
357     %\caption{zonal wind stress for January}
358     %\label{fig:tau_x}
359     %\end{figure}
360    
361     %% tau_y
362     %\begin{figure}
363     %\centering
364     %\includegraphics[]{tau_y.eps}
365     %\caption{meridional wind stress for January}
366     %\label{fig:tau_y}
367     %\end{figure}
368    
369     %% Qnet
370     %\begin{figure}
371     %\centering
372     %\includegraphics[]{qnet.eps}
373     %\caption{Heat flux for January}
374     %\label{fig:qnet}
375     %\end{figure}
376    
377     %% EmPmR
378     %\begin{figure}
379     %\centering
380     %\includegraphics[]{empmr.eps}
381     %\caption{Fresh water flux for January}
382     %\label{fig:empmr}
383     %\end{figure}
384    
385     %% Bathymetry
386     %\begin{figure}
387     %\centering
388     %\includegraphics[]{bathymetry.eps}
389     %\caption{Bathymetry}
390     %\label{fig:bathymetry}
391     %\end{figure}
392    
393    
394     Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord})
395 jmc 1.19 %(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr})
396     show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$)
397     fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
398 cnh 1.8 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
399 jmc 1.19 in equations
400     (\ref{eq:eg-global-global_forcing_fu}-\ref{eq:eg-global-global_forcing_fs}).
401     The figures also indicate the lateral extent and coastline used in the
402     experiment. Figure ({\it --- missing figure --- }) %ref{fig:model_bathymetry})
403     shows the depth contours of the model domain.
404 adcroft 1.1
405     \subsubsection{File {\it input/data}}
406 jmc 1.19 %\label{www:tutorials}
407 adcroft 1.1
408 jmc 1.20 \input{s_examples/global_oce_latlon/inp_data}
409 adcroft 1.1
410     \subsubsection{File {\it input/data.pkg}}
411 jmc 1.19 %\label{www:tutorials}
412 adcroft 1.1
413     This file uses standard default values and does not contain
414     customisations for this experiment.
415    
416     \subsubsection{File {\it input/eedata}}
417 jmc 1.19 %\label{www:tutorials}
418 adcroft 1.1
419     This file uses standard default values and does not contain
420     customisations for this experiment.
421    
422 mlosch 1.22 \subsubsection{Files{\it input/trenberth\_taux.bin} and {\it
423     input/trenberth\_tauy.bin}}
424 jmc 1.19 %\label{www:tutorials}
425 adcroft 1.1
426 mlosch 1.22 The {\it input/trenberth\_taux.bin} and {\it
427     input/trenberth\_tauy.bin} files specify a three-dimensional
428     ($x,y,time$) map of wind stress, $(\tau_{x},\tau_{y})$, values
429     \citep{trenberth90}. The units used are $Nm^{-2}$.
430 adcroft 1.1
431 mlosch 1.22 \subsubsection{File {\it input/bathymetry.bin}}
432 jmc 1.19 %\label{www:tutorials}
433 adcroft 1.1
434    
435     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
436     map of depth values. For this experiment values are either
437 mlosch 1.22 $0m$ or $-5200\,{\rm m}$, corresponding respectively to a wall or to deep
438 adcroft 1.1 ocean. The file contains a raw binary stream of data that is enumerated
439     in the same way as standard MITgcm two-dimensional, horizontal arrays.
440     The included matlab program {\it input/gendata.m} gives a complete
441     code for creating the {\it input/topog.box} file.
442    
443     \subsubsection{File {\it code/SIZE.h}}
444 jmc 1.19 %\label{www:tutorials}
445 adcroft 1.1
446 jmc 1.23 \input{s_examples/global_oce_latlon/cod_SIZE.h}
447 adcroft 1.1
448 jmc 1.23 %\subsubsection{File {\it code/CPP\_OPTIONS.h}}
449 jmc 1.19 %\label{www:tutorials}
450 adcroft 1.1
451 jmc 1.23 %This file uses standard default values and does not contain
452     %customisations for this experiment.
453 adcroft 1.1
454    
455 jmc 1.23 %\subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
456 jmc 1.19 %\label{www:tutorials}
457 adcroft 1.1
458 jmc 1.23 %This file uses standard default values and does not contain
459     %customisations for this experiment.
460 adcroft 1.1
461     \subsubsection{Other Files }
462 jmc 1.19 %\label{www:tutorials}
463 adcroft 1.1
464 mlosch 1.22 % Other files relevant to this experiment are
465     % \begin{itemize}
466     % \item {\it model/src/ini\_cori.F}. This file initializes the model
467     % coriolis variables {\bf fCorU}.
468     % \item {\it model/src/ini\_spherical\_polar\_grid.F}
469     % \item {\it model/src/ini\_parms.F},
470     % \item {\it input/windx.sin\_y},
471     % \end{itemize}
472     % contain the code customisations and parameter settings for this
473     % experiments. Below we describe the customisations
474     % to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22