| 1 | mlosch | 1.22 | % $Header: /u/gcmpack/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex,v 1.21 2011/04/21 21:27:16 jmc Exp $ | 
| 2 | cnh | 1.2 | % $Name:  $ | 
| 3 | adcroft | 1.1 |  | 
| 4 | jmc | 1.17 | \section[Global Ocean MITgcm Example]{Global Ocean Simulation at $4^\circ$ Resolution} | 
| 5 | jmc | 1.19 | %\label{www:tutorials} | 
| 6 |  |  | \label{sec:eg-global} | 
| 7 | edhill | 1.12 | \begin{rawhtml} | 
| 8 |  |  | <!-- CMIREDIR:eg-global: --> | 
| 9 |  |  | \end{rawhtml} | 
| 10 | jmc | 1.16 | \begin{center} | 
| 11 |  |  | (in directory: {\it verification/tutorial\_global\_oce\_latlon/}) | 
| 12 |  |  | \end{center} | 
| 13 | adcroft | 1.1 |  | 
| 14 |  |  | \bodytext{bgcolor="#FFFFFFFF"} | 
| 15 |  |  |  | 
| 16 | mlosch | 1.22 | \noindent {\bf WARNING: the description of this experiment is not complete. | 
| 17 |  |  | In particular, many parameters are not yet described.}\\ | 
| 18 | jmc | 1.21 |  | 
| 19 | adcroft | 1.1 | %\begin{center} | 
| 20 | cnh | 1.3 | %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation | 
| 21 | adcroft | 1.1 | %At Four Degree Resolution with Asynchronous Time Stepping} | 
| 22 |  |  | % | 
| 23 |  |  | %\vspace*{4mm} | 
| 24 |  |  | % | 
| 25 |  |  | %\vspace*{3mm} | 
| 26 |  |  | %{\large May 2001} | 
| 27 |  |  | %\end{center} | 
| 28 |  |  |  | 
| 29 |  |  |  | 
| 30 | mlosch | 1.22 | This example experiment demonstrates using the MITgcm to simulate the | 
| 31 |  |  | planetary ocean circulation. The simulation is configured with | 
| 32 |  |  | realistic geography and bathymetry on a $4^{\circ} \times 4^{\circ}$ | 
| 33 |  |  | spherical polar grid. The files for this experiment are in the | 
| 34 |  |  | verification directory under tutorial\_global\_oce\_latlon. Fifteen | 
| 35 |  |  | levels are used in the vertical, ranging in thickness from $50\,{\rm | 
| 36 |  |  | m}$ at the surface to $690\,{\rm m}$ at depth, giving a maximum | 
| 37 |  |  | model depth of $5200\,{\rm m}$.  At this resolution, the configuration | 
| 38 |  |  | can be integrated forward for thousands of years on a single processor | 
| 39 |  |  | desktop computer. | 
| 40 | adcroft | 1.1 | \\ | 
| 41 | cnh | 1.8 | \subsection{Overview} | 
| 42 | jmc | 1.19 | %\label{www:tutorials} | 
| 43 | adcroft | 1.1 |  | 
| 44 | mlosch | 1.22 | The model is forced with climatological wind stress data from | 
| 45 |  |  | \citet{trenberth90} and NCEP surface flux data from | 
| 46 |  |  | \citet{kalnay96}. Climatological data \citep{Levitus94} is | 
| 47 |  |  | used to initialize the model hydrography. \citeauthor{Levitus94} seasonal | 
| 48 |  |  | climatology data is also used throughout the calculation to provide | 
| 49 |  |  | additional air-sea fluxes.  These fluxes are combined with the NCEP | 
| 50 |  |  | climatological estimates of surface heat flux, resulting in a mixed | 
| 51 |  |  | boundary condition of the style described in \citet{Haney}. | 
| 52 |  |  | Altogether, this yields the following forcing applied in the model | 
| 53 |  |  | surface layer. | 
| 54 | adcroft | 1.1 |  | 
| 55 |  |  | \begin{eqnarray} | 
| 56 | jmc | 1.19 | \label{eq:eg-global-global_forcing} | 
| 57 |  |  | \label{eq:eg-global-global_forcing_fu} | 
| 58 | adcroft | 1.1 | {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} | 
| 59 |  |  | \\ | 
| 60 | jmc | 1.19 | \label{eq:eg-global-global_forcing_fv} | 
| 61 | adcroft | 1.1 | {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} | 
| 62 |  |  | \\ | 
| 63 | jmc | 1.19 | \label{eq:eg-global-global_forcing_ft} | 
| 64 | adcroft | 1.1 | {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) | 
| 65 |  |  | - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} | 
| 66 |  |  | \\ | 
| 67 | jmc | 1.19 | \label{eq:eg-global-global_forcing_fs} | 
| 68 | adcroft | 1.1 | {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) | 
| 69 |  |  | + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) | 
| 70 |  |  | \end{eqnarray} | 
| 71 |  |  |  | 
| 72 |  |  | \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, | 
| 73 |  |  | ${\cal F}_{s}$ are the forcing terms in the zonal and meridional | 
| 74 |  |  | momentum and in the potential temperature and salinity | 
| 75 |  |  | equations respectively. | 
| 76 |  |  | The term $\Delta z_{s}$ represents the top ocean layer thickness in | 
| 77 |  |  | meters. | 
| 78 |  |  | It is used in conjunction with a reference density, $\rho_{0}$ | 
| 79 |  |  | (here set to $999.8\,{\rm kg\,m^{-3}}$), a | 
| 80 |  |  | reference salinity, $S_{0}$ (here set to 35~ppt), | 
| 81 |  |  | and a specific heat capacity, $C_{p}$ (here set to | 
| 82 |  |  | $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert | 
| 83 |  |  | input dataset values into time tendencies of | 
| 84 |  |  | potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$), | 
| 85 |  |  | salinity (with units ${\rm ppt}~s^{-1}$) and | 
| 86 |  |  | velocity (with units ${\rm m}~{\rm s}^{-2}$). | 
| 87 |  |  | The externally supplied forcing fields used in this | 
| 88 |  |  | experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$, | 
| 89 |  |  | $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$) | 
| 90 |  |  | have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields | 
| 91 |  |  | ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ | 
| 92 |  |  | respectively. The salinity forcing fields ($S^{\ast}$ and | 
| 93 |  |  | $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ | 
| 94 | cnh | 1.8 | respectively. The source files and procedures for ingesting this data into the | 
| 95 |  |  | simulation are described in the experiment configuration discussion in section | 
| 96 | jmc | 1.19 | \ref{sec:eg-global-clim_ocn_examp_exp_config}. | 
| 97 | adcroft | 1.1 |  | 
| 98 |  |  |  | 
| 99 |  |  | \subsection{Discrete Numerical Configuration} | 
| 100 | jmc | 1.19 | %\label{www:tutorials} | 
| 101 | adcroft | 1.1 |  | 
| 102 |  |  |  | 
| 103 | mlosch | 1.22 | The model is configured in hydrostatic form.  The domain is | 
| 104 |  |  | discretised with a uniform grid spacing in latitude and longitude on | 
| 105 |  |  | the sphere $\Delta \phi=\Delta \lambda=4^{\circ}$, so that there are | 
| 106 |  |  | ninety grid cells in the zonal and forty in the meridional | 
| 107 |  |  | direction. The internal model coordinate variables $x$ and $y$ are | 
| 108 |  |  | initialized according to | 
| 109 | adcroft | 1.1 | \begin{eqnarray} | 
| 110 |  |  | x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ | 
| 111 | cnh | 1.8 | y=r\lambda,~\Delta y &= &r\Delta \lambda | 
| 112 | adcroft | 1.1 | \end{eqnarray} | 
| 113 |  |  |  | 
| 114 |  |  | Arctic polar regions are not | 
| 115 |  |  | included in this experiment. Meridionally the model extends from | 
| 116 |  |  | $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. | 
| 117 | mlosch | 1.22 | Vertically the model is configured with fifteen layers with the | 
| 118 | adcroft | 1.1 | following thicknesses | 
| 119 |  |  | $\Delta z_{1} = 50\,{\rm m},\, | 
| 120 | mlosch | 1.22 | \Delta z_{2} = 70\,{\rm m},\, | 
| 121 |  |  | \Delta z_{3} = 100\,{\rm m},\, | 
| 122 |  |  | \Delta z_{4} = 140\,{\rm m},\, | 
| 123 |  |  | \Delta z_{5} = 190\,{\rm m},\, | 
| 124 |  |  | \Delta z_{6}~=~240\,{\rm m},\, | 
| 125 |  |  | \Delta z_{7}~=~290\,{\rm m},\, | 
| 126 |  |  | \Delta z_{8}~=340\,{\rm m},\, | 
| 127 |  |  | \Delta z_{9}=390\,{\rm m},\, | 
| 128 |  |  | \Delta z_{10}=440\,{\rm m},\, | 
| 129 |  |  | \Delta z_{11}=490\,{\rm m},\, | 
| 130 |  |  | \Delta z_{12}=540\,{\rm m},\, | 
| 131 |  |  | \Delta z_{13}=590\,{\rm m},\, | 
| 132 |  |  | \Delta z_{14}=640\,{\rm m},\, | 
| 133 |  |  | \Delta z_{15}=690\,{\rm m} | 
| 134 | cnh | 1.8 | $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to | 
| 135 | mlosch | 1.22 | give a total depth, $H$, of $-5200{\rm m}$. | 
| 136 |  |  | The implicit free surface form of the pressure equation described in | 
| 137 |  |  | \citet{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous | 
| 138 | cnh | 1.3 | dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. | 
| 139 | adcroft | 1.1 |  | 
| 140 | jmc | 1.19 | Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations}) | 
| 141 | cnh | 1.8 | for both the zonal flow, $u$ and the meridional flow $v$, according to equations | 
| 142 | jmc | 1.19 | (\ref{eq:eg-global-global_forcing_fu}) and (\ref{eq:eg-global-global_forcing_fv}). | 
| 143 | cnh | 1.8 | Thermodynamic forcing inputs are added to the equations | 
| 144 | jmc | 1.19 | in (\ref{eq:eg-global-model_equations}) for | 
| 145 | adcroft | 1.1 | potential temperature, $\theta$, and salinity, $S$, according to equations | 
| 146 | jmc | 1.19 | (\ref{eq:eg-global-global_forcing_ft}) and (\ref{eq:eg-global-global_forcing_fs}). | 
| 147 | adcroft | 1.1 | This produces a set of equations solved in this configuration as follows: | 
| 148 |  |  |  | 
| 149 |  |  | \begin{eqnarray} | 
| 150 | jmc | 1.19 | \label{eq:eg-global-model_equations} | 
| 151 | adcroft | 1.1 | \frac{Du}{Dt} - fv + | 
| 152 |  |  | \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - | 
| 153 |  |  | \nabla_{h}\cdot A_{h}\nabla_{h}u - | 
| 154 |  |  | \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} | 
| 155 |  |  | & = & | 
| 156 |  |  | \begin{cases} | 
| 157 |  |  | {\cal F}_u & \text{(surface)} \\ | 
| 158 |  |  | 0 & \text{(interior)} | 
| 159 |  |  | \end{cases} | 
| 160 |  |  | \\ | 
| 161 |  |  | \frac{Dv}{Dt} + fu + | 
| 162 |  |  | \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - | 
| 163 |  |  | \nabla_{h}\cdot A_{h}\nabla_{h}v - | 
| 164 |  |  | \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} | 
| 165 |  |  | & = & | 
| 166 |  |  | \begin{cases} | 
| 167 |  |  | {\cal F}_v & \text{(surface)} \\ | 
| 168 |  |  | 0 & \text{(interior)} | 
| 169 |  |  | \end{cases} | 
| 170 |  |  | \\ | 
| 171 |  |  | \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} | 
| 172 |  |  | &=& | 
| 173 |  |  | 0 | 
| 174 |  |  | \\ | 
| 175 |  |  | \frac{D\theta}{Dt} - | 
| 176 |  |  | \nabla_{h}\cdot K_{h}\nabla_{h}\theta | 
| 177 |  |  | - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z} | 
| 178 |  |  | & = & | 
| 179 |  |  | \begin{cases} | 
| 180 |  |  | {\cal F}_\theta & \text{(surface)} \\ | 
| 181 |  |  | 0 & \text{(interior)} | 
| 182 |  |  | \end{cases} | 
| 183 |  |  | \\ | 
| 184 |  |  | \frac{D s}{Dt} - | 
| 185 |  |  | \nabla_{h}\cdot K_{h}\nabla_{h}s | 
| 186 |  |  | - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z} | 
| 187 |  |  | & = & | 
| 188 |  |  | \begin{cases} | 
| 189 |  |  | {\cal F}_s & \text{(surface)} \\ | 
| 190 |  |  | 0 & \text{(interior)} | 
| 191 |  |  | \end{cases} | 
| 192 |  |  | \\ | 
| 193 |  |  | g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} | 
| 194 |  |  | \end{eqnarray} | 
| 195 |  |  |  | 
| 196 |  |  | \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and | 
| 197 |  |  | $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ | 
| 198 |  |  | are the zonal and meridional components of the | 
| 199 |  |  | flow vector, $\vec{u}$, on the sphere. As described in | 
| 200 | adcroft | 1.5 | MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time | 
| 201 | adcroft | 1.1 | evolution of potential temperature, $\theta$, equation is solved prognostically. | 
| 202 |  |  | The total pressure, $p$, is diagnosed by summing pressure due to surface | 
| 203 |  |  | elevation $\eta$ and the hydrostatic pressure. | 
| 204 |  |  | \\ | 
| 205 |  |  |  | 
| 206 |  |  | \subsubsection{Numerical Stability Criteria} | 
| 207 | jmc | 1.19 | %\label{www:tutorials} | 
| 208 | adcroft | 1.1 |  | 
| 209 | cnh | 1.3 | The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. | 
| 210 | mlosch | 1.22 | This value is chosen to yield a Munk layer width \citep{adcroft:95}, | 
| 211 | adcroft | 1.1 | \begin{eqnarray} | 
| 212 | jmc | 1.19 | \label{eq:eg-global-munk_layer} | 
| 213 | adcroft | 1.10 | && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} | 
| 214 | adcroft | 1.1 | \end{eqnarray} | 
| 215 |  |  |  | 
| 216 |  |  | \noindent  of $\approx 600$km. This is greater than the model | 
| 217 |  |  | resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional | 
| 218 |  |  | boundary layer is adequately resolved. | 
| 219 |  |  | \\ | 
| 220 |  |  |  | 
| 221 | mlosch | 1.22 | \noindent The model is stepped forward with a time step $\delta | 
| 222 |  |  | t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $\delta | 
| 223 |  |  | t_{v}=30~{\rm minutes}$ for momentum terms. With this time step, the | 
| 224 |  |  | stability parameter to the horizontal Laplacian friction | 
| 225 |  |  | \citep{adcroft:95} | 
| 226 | adcroft | 1.1 | \begin{eqnarray} | 
| 227 | jmc | 1.19 | \label{eq:eg-global-laplacian_stability} | 
| 228 | adcroft | 1.10 | && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} | 
| 229 | adcroft | 1.1 | \end{eqnarray} | 
| 230 |  |  |  | 
| 231 | mlosch | 1.22 | \noindent evaluates to 0.6 at a latitude of $\phi=80^{\circ}$, which | 
| 232 |  |  | is above the 0.3 upper limit for stability, but the zonal grid spacing | 
| 233 |  |  | $\Delta x$ is smallest at $\phi=80^{\circ}$ where $\Delta | 
| 234 |  |  | x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$ and the stability | 
| 235 |  |  | criterion is already met 1 grid cell equatorwards (at $\phi=76^{\circ}$). | 
| 236 |  |  |  | 
| 237 | adcroft | 1.1 |  | 
| 238 |  |  | \noindent The vertical dissipation coefficient, $A_{z}$, is set to | 
| 239 |  |  | $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit | 
| 240 |  |  | \begin{eqnarray} | 
| 241 | jmc | 1.19 | \label{eq:eg-global-laplacian_stability_z} | 
| 242 | adcroft | 1.1 | S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} | 
| 243 |  |  | \end{eqnarray} | 
| 244 |  |  |  | 
| 245 | mlosch | 1.22 | \noindent evaluates to $0.0029$ for the smallest model | 
| 246 |  |  | level spacing ($\Delta z_{1}=50{\rm m}$) which is well below | 
| 247 | adcroft | 1.1 | the upper stability limit. | 
| 248 |  |  | \\ | 
| 249 |  |  |  | 
| 250 | mlosch | 1.22 | % The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients | 
| 251 |  |  | % for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ | 
| 252 |  |  | % and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit | 
| 253 |  |  | % related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. | 
| 254 |  |  | % Here the stability parameter | 
| 255 |  |  | % \begin{eqnarray} | 
| 256 |  |  | % \label{eq:eg-global-laplacian_stability_xtheta} | 
| 257 |  |  | % S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} | 
| 258 |  |  | % \end{eqnarray} | 
| 259 |  |  | % evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The | 
| 260 |  |  | % stability parameter related to $K_{z}$ | 
| 261 |  |  | % \begin{eqnarray} | 
| 262 |  |  | % \label{eq:eg-global-laplacian_stability_ztheta} | 
| 263 |  |  | % S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} | 
| 264 |  |  | % \end{eqnarray} | 
| 265 |  |  | % evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit | 
| 266 |  |  | % of $S_{l} \approx 0.5$. | 
| 267 |  |  | % \\ | 
| 268 | adcroft | 1.1 |  | 
| 269 |  |  | \noindent The numerical stability for inertial oscillations | 
| 270 | mlosch | 1.22 | \citep{adcroft:95} | 
| 271 | adcroft | 1.1 |  | 
| 272 |  |  | \begin{eqnarray} | 
| 273 | jmc | 1.19 | \label{eq:eg-global-inertial_stability} | 
| 274 | adcroft | 1.1 | S_{i} = f^{2} {\delta t_v}^2 | 
| 275 |  |  | \end{eqnarray} | 
| 276 |  |  |  | 
| 277 | mlosch | 1.22 | \noindent evaluates to $0.07$ for | 
| 278 |  |  | $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is | 
| 279 |  |  | below the $S_{i} < 1$ upper limit for stability. | 
| 280 | adcroft | 1.1 | \\ | 
| 281 |  |  |  | 
| 282 | mlosch | 1.22 | \noindent The advective CFL \citep{adcroft:95} for a extreme maximum | 
| 283 | adcroft | 1.1 | horizontal flow | 
| 284 |  |  | speed of $ | \vec{u} | = 2 ms^{-1}$ | 
| 285 |  |  |  | 
| 286 |  |  | \begin{eqnarray} | 
| 287 | jmc | 1.19 | \label{eq:eg-global-cfl_stability} | 
| 288 | adcroft | 1.1 | S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} | 
| 289 |  |  | \end{eqnarray} | 
| 290 |  |  |  | 
| 291 | mlosch | 1.22 | \noindent evaluates to $5 \times 10^{-2}$. This is well below the stability | 
| 292 | adcroft | 1.1 | limit of 0.5. | 
| 293 |  |  | \\ | 
| 294 |  |  |  | 
| 295 | cnh | 1.3 | \noindent The stability parameter for internal gravity waves propagating | 
| 296 | mlosch | 1.22 | with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ | 
| 297 |  |  | \citep{adcroft:95} | 
| 298 | adcroft | 1.1 |  | 
| 299 |  |  | \begin{eqnarray} | 
| 300 | jmc | 1.19 | \label{eq:eg-global-gfl_stability} | 
| 301 | adcroft | 1.1 | S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} | 
| 302 |  |  | \end{eqnarray} | 
| 303 |  |  |  | 
| 304 | mlosch | 1.22 | \noindent evaluates to $2.3 \times 10^{-1}$. This is close to the linear | 
| 305 | adcroft | 1.1 | stability limit of 0.5. | 
| 306 |  |  |  | 
| 307 |  |  | \subsection{Experiment Configuration} | 
| 308 | jmc | 1.19 | %\label{www:tutorials} | 
| 309 |  |  | \label{sec:eg-global-clim_ocn_examp_exp_config} | 
| 310 | adcroft | 1.1 |  | 
| 311 | mlosch | 1.22 | The model configuration for this experiment resides under the | 
| 312 |  |  | directory {\it tutorial\_global\_oce\_latlon/}. The experiment files | 
| 313 | cnh | 1.8 |  | 
| 314 | adcroft | 1.1 | \begin{itemize} | 
| 315 |  |  | \item {\it input/data} | 
| 316 |  |  | \item {\it input/data.pkg} | 
| 317 |  |  | \item {\it input/eedata}, | 
| 318 | mlosch | 1.22 | \item {\it input/trenberth\_taux.bin}, | 
| 319 |  |  | \item {\it input/trenberth\_tauy.bin}, | 
| 320 |  |  | \item {\it input/lev\_s.bin}, | 
| 321 |  |  | \item {\it input/lev\_t.bin}, | 
| 322 |  |  | \item {\it input/lev\_sss.bin}, | 
| 323 |  |  | \item {\it input/lev\_sst.bin}, | 
| 324 |  |  | \item {\it input/bathymetry.bin}, | 
| 325 | adcroft | 1.1 | \item {\it code/CPP\_EEOPTIONS.h} | 
| 326 |  |  | \item {\it code/CPP\_OPTIONS.h}, | 
| 327 |  |  | \item {\it code/SIZE.h}. | 
| 328 |  |  | \end{itemize} | 
| 329 | cnh | 1.3 | contain the code customizations and parameter settings for these | 
| 330 |  |  | experiments. Below we describe the customizations | 
| 331 | adcroft | 1.1 | to these files associated with this experiment. | 
| 332 | cnh | 1.8 |  | 
| 333 |  |  | \subsubsection{Driving Datasets} | 
| 334 | jmc | 1.19 | %\label{www:tutorials} | 
| 335 | cnh | 1.8 |  | 
| 336 | mlosch | 1.22 | %% New figures are included before | 
| 337 |  |  | %% Relaxation temperature | 
| 338 |  |  | %\begin{figure} | 
| 339 |  |  | %\centering | 
| 340 |  |  | %\includegraphics[]{relax_temperature.eps} | 
| 341 |  |  | %\caption{Relaxation temperature for January} | 
| 342 |  |  | %\label{fig:relax_temperature} | 
| 343 |  |  | %\end{figure} | 
| 344 |  |  |  | 
| 345 |  |  | %% Relaxation salinity | 
| 346 |  |  | %\begin{figure} | 
| 347 |  |  | %\centering | 
| 348 |  |  | %\includegraphics[]{relax_salinity.eps} | 
| 349 |  |  | %\caption{Relaxation salinity for January} | 
| 350 |  |  | %\label{fig:relax_salinity} | 
| 351 |  |  | %\end{figure} | 
| 352 |  |  |  | 
| 353 |  |  | %% tau_x | 
| 354 |  |  | %\begin{figure} | 
| 355 |  |  | %\centering | 
| 356 |  |  | %\includegraphics[]{tau_x.eps} | 
| 357 |  |  | %\caption{zonal wind stress for January} | 
| 358 |  |  | %\label{fig:tau_x} | 
| 359 |  |  | %\end{figure} | 
| 360 |  |  |  | 
| 361 |  |  | %% tau_y | 
| 362 |  |  | %\begin{figure} | 
| 363 |  |  | %\centering | 
| 364 |  |  | %\includegraphics[]{tau_y.eps} | 
| 365 |  |  | %\caption{meridional wind stress for January} | 
| 366 |  |  | %\label{fig:tau_y} | 
| 367 |  |  | %\end{figure} | 
| 368 |  |  |  | 
| 369 |  |  | %% Qnet | 
| 370 |  |  | %\begin{figure} | 
| 371 |  |  | %\centering | 
| 372 |  |  | %\includegraphics[]{qnet.eps} | 
| 373 |  |  | %\caption{Heat flux for January} | 
| 374 |  |  | %\label{fig:qnet} | 
| 375 |  |  | %\end{figure} | 
| 376 |  |  |  | 
| 377 |  |  | %% EmPmR | 
| 378 |  |  | %\begin{figure} | 
| 379 |  |  | %\centering | 
| 380 |  |  | %\includegraphics[]{empmr.eps} | 
| 381 |  |  | %\caption{Fresh water flux for January} | 
| 382 |  |  | %\label{fig:empmr} | 
| 383 |  |  | %\end{figure} | 
| 384 |  |  |  | 
| 385 |  |  | %% Bathymetry | 
| 386 |  |  | %\begin{figure} | 
| 387 |  |  | %\centering | 
| 388 |  |  | %\includegraphics[]{bathymetry.eps} | 
| 389 |  |  | %\caption{Bathymetry} | 
| 390 |  |  | %\label{fig:bathymetry} | 
| 391 |  |  | %\end{figure} | 
| 392 |  |  |  | 
| 393 |  |  |  | 
| 394 |  |  | Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord}) | 
| 395 | jmc | 1.19 | %(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr}) | 
| 396 |  |  | show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) | 
| 397 |  |  | fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) | 
| 398 | cnh | 1.8 | and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used | 
| 399 | jmc | 1.19 | in equations | 
| 400 |  |  | (\ref{eq:eg-global-global_forcing_fu}-\ref{eq:eg-global-global_forcing_fs}). | 
| 401 |  |  | The figures also indicate the lateral extent and coastline used in the | 
| 402 |  |  | experiment. Figure ({\it --- missing figure --- }) %ref{fig:model_bathymetry}) | 
| 403 |  |  | shows the depth contours of the model domain. | 
| 404 | adcroft | 1.1 |  | 
| 405 |  |  | \subsubsection{File {\it input/data}} | 
| 406 | jmc | 1.19 | %\label{www:tutorials} | 
| 407 | adcroft | 1.1 |  | 
| 408 | jmc | 1.20 | \input{s_examples/global_oce_latlon/inp_data} | 
| 409 | adcroft | 1.1 |  | 
| 410 |  |  | \subsubsection{File {\it input/data.pkg}} | 
| 411 | jmc | 1.19 | %\label{www:tutorials} | 
| 412 | adcroft | 1.1 |  | 
| 413 |  |  | This file uses standard default values and does not contain | 
| 414 |  |  | customisations for this experiment. | 
| 415 |  |  |  | 
| 416 |  |  | \subsubsection{File {\it input/eedata}} | 
| 417 | jmc | 1.19 | %\label{www:tutorials} | 
| 418 | adcroft | 1.1 |  | 
| 419 |  |  | This file uses standard default values and does not contain | 
| 420 |  |  | customisations for this experiment. | 
| 421 |  |  |  | 
| 422 | mlosch | 1.22 | \subsubsection{Files{\it input/trenberth\_taux.bin} and {\it | 
| 423 |  |  | input/trenberth\_tauy.bin}} | 
| 424 | jmc | 1.19 | %\label{www:tutorials} | 
| 425 | adcroft | 1.1 |  | 
| 426 | mlosch | 1.22 | The {\it input/trenberth\_taux.bin} and {\it | 
| 427 |  |  | input/trenberth\_tauy.bin} files specify a three-dimensional | 
| 428 |  |  | ($x,y,time$) map of wind stress, $(\tau_{x},\tau_{y})$, values | 
| 429 |  |  | \citep{trenberth90}. The units used are $Nm^{-2}$. | 
| 430 | adcroft | 1.1 |  | 
| 431 | mlosch | 1.22 | \subsubsection{File {\it input/bathymetry.bin}} | 
| 432 | jmc | 1.19 | %\label{www:tutorials} | 
| 433 | adcroft | 1.1 |  | 
| 434 |  |  |  | 
| 435 |  |  | The {\it input/topog.box} file specifies a two-dimensional ($x,y$) | 
| 436 |  |  | map of depth values. For this experiment values are either | 
| 437 | mlosch | 1.22 | $0m$ or $-5200\,{\rm m}$, corresponding respectively to a wall or to deep | 
| 438 | adcroft | 1.1 | ocean. The file contains a raw binary stream of data that is enumerated | 
| 439 |  |  | in the same way as standard MITgcm two-dimensional, horizontal arrays. | 
| 440 |  |  | The included matlab program {\it input/gendata.m} gives a complete | 
| 441 |  |  | code for creating the {\it input/topog.box} file. | 
| 442 |  |  |  | 
| 443 |  |  | \subsubsection{File {\it code/SIZE.h}} | 
| 444 | jmc | 1.19 | %\label{www:tutorials} | 
| 445 | adcroft | 1.1 |  | 
| 446 |  |  | Two lines are customized in this file for the current experiment | 
| 447 |  |  |  | 
| 448 |  |  | \begin{itemize} | 
| 449 |  |  |  | 
| 450 |  |  | \item Line 39, | 
| 451 | mlosch | 1.22 | \begin{verbatim} sNx=45, \end{verbatim} this line sets | 
| 452 | adcroft | 1.1 | the lateral domain extent in grid points for the | 
| 453 |  |  | axis aligned with the x-coordinate. | 
| 454 |  |  |  | 
| 455 |  |  | \item Line 40, | 
| 456 | mlosch | 1.22 | \begin{verbatim} sNy=40, \end{verbatim} this line sets | 
| 457 | adcroft | 1.1 | the lateral domain extent in grid points for the | 
| 458 |  |  | axis aligned with the y-coordinate. | 
| 459 |  |  |  | 
| 460 |  |  | \item Line 49, | 
| 461 | mlosch | 1.22 | \begin{verbatim} | 
| 462 |  |  | Nr=15, | 
| 463 |  |  | \end{verbatim} this line sets | 
| 464 | adcroft | 1.1 | the vertical domain extent in grid points. | 
| 465 |  |  |  | 
| 466 |  |  | \end{itemize} | 
| 467 |  |  |  | 
| 468 |  |  | \begin{small} | 
| 469 | jmc | 1.18 | \input{s_examples/global_oce_latlon/code/SIZE.h} | 
| 470 | adcroft | 1.1 | \end{small} | 
| 471 |  |  |  | 
| 472 |  |  | \subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
| 473 | jmc | 1.19 | %\label{www:tutorials} | 
| 474 | adcroft | 1.1 |  | 
| 475 |  |  | This file uses standard default values and does not contain | 
| 476 |  |  | customisations for this experiment. | 
| 477 |  |  |  | 
| 478 |  |  |  | 
| 479 |  |  | \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
| 480 | jmc | 1.19 | %\label{www:tutorials} | 
| 481 | adcroft | 1.1 |  | 
| 482 |  |  | This file uses standard default values and does not contain | 
| 483 |  |  | customisations for this experiment. | 
| 484 |  |  |  | 
| 485 |  |  | \subsubsection{Other Files } | 
| 486 | jmc | 1.19 | %\label{www:tutorials} | 
| 487 | adcroft | 1.1 |  | 
| 488 | mlosch | 1.22 | % Other files relevant to this experiment are | 
| 489 |  |  | % \begin{itemize} | 
| 490 |  |  | % \item {\it model/src/ini\_cori.F}. This file initializes the model | 
| 491 |  |  | % coriolis variables {\bf fCorU}. | 
| 492 |  |  | % \item {\it model/src/ini\_spherical\_polar\_grid.F} | 
| 493 |  |  | % \item {\it model/src/ini\_parms.F}, | 
| 494 |  |  | % \item {\it input/windx.sin\_y}, | 
| 495 |  |  | % \end{itemize} | 
| 496 |  |  | % contain the code customisations and parameter settings for this | 
| 497 |  |  | % experiments. Below we describe the customisations | 
| 498 |  |  | % to these files associated with this experiment. |