| 1 |
jmc |
1.20 |
% $Header: /u/gcmpack/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex,v 1.19 2010/08/30 23:09:20 jmc Exp $ |
| 2 |
cnh |
1.2 |
% $Name: $ |
| 3 |
adcroft |
1.1 |
|
| 4 |
jmc |
1.17 |
\section[Global Ocean MITgcm Example]{Global Ocean Simulation at $4^\circ$ Resolution} |
| 5 |
jmc |
1.19 |
%\label{www:tutorials} |
| 6 |
|
|
\label{sec:eg-global} |
| 7 |
edhill |
1.12 |
\begin{rawhtml} |
| 8 |
|
|
<!-- CMIREDIR:eg-global: --> |
| 9 |
|
|
\end{rawhtml} |
| 10 |
jmc |
1.16 |
\begin{center} |
| 11 |
|
|
(in directory: {\it verification/tutorial\_global\_oce\_latlon/}) |
| 12 |
|
|
\end{center} |
| 13 |
adcroft |
1.1 |
|
| 14 |
|
|
\bodytext{bgcolor="#FFFFFFFF"} |
| 15 |
|
|
|
| 16 |
|
|
%\begin{center} |
| 17 |
cnh |
1.3 |
%{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation |
| 18 |
adcroft |
1.1 |
%At Four Degree Resolution with Asynchronous Time Stepping} |
| 19 |
|
|
% |
| 20 |
|
|
%\vspace*{4mm} |
| 21 |
|
|
% |
| 22 |
|
|
%\vspace*{3mm} |
| 23 |
|
|
%{\large May 2001} |
| 24 |
|
|
%\end{center} |
| 25 |
|
|
|
| 26 |
|
|
|
| 27 |
|
|
This example experiment demonstrates using the MITgcm to simulate |
| 28 |
|
|
the planetary ocean circulation. The simulation is configured |
| 29 |
|
|
with realistic geography and bathymetry on a |
| 30 |
|
|
$4^{\circ} \times 4^{\circ}$ spherical polar grid. |
| 31 |
molod |
1.14 |
The files for this experiment are in the verification directory |
| 32 |
|
|
under tutorial\_global\_oce\_latlon. |
| 33 |
adcroft |
1.1 |
Twenty levels are used in the vertical, ranging in thickness |
| 34 |
|
|
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, |
| 35 |
|
|
giving a maximum model depth of $6\,{\rm km}$. |
| 36 |
|
|
At this resolution, the configuration |
| 37 |
|
|
can be integrated forward for thousands of years on a single |
| 38 |
|
|
processor desktop computer. |
| 39 |
|
|
\\ |
| 40 |
cnh |
1.8 |
\subsection{Overview} |
| 41 |
jmc |
1.19 |
%\label{www:tutorials} |
| 42 |
adcroft |
1.1 |
|
| 43 |
cnh |
1.3 |
The model is forced with climatological wind stress data and surface |
| 44 |
|
|
flux data from DaSilva \cite{DaSilva94}. Climatological data |
| 45 |
|
|
from Levitus \cite{Levitus94} is used to initialize the model hydrography. |
| 46 |
|
|
Levitus seasonal climatology data is also used throughout the calculation |
| 47 |
adcroft |
1.1 |
to provide additional air-sea fluxes. |
| 48 |
cnh |
1.3 |
These fluxes are combined with the DaSilva climatological estimates of |
| 49 |
adcroft |
1.1 |
surface heat flux and fresh water, resulting in a mixed boundary |
| 50 |
cnh |
1.3 |
condition of the style described in Haney \cite{Haney}. |
| 51 |
adcroft |
1.1 |
Altogether, this yields the following forcing applied |
| 52 |
|
|
in the model surface layer. |
| 53 |
|
|
|
| 54 |
|
|
\begin{eqnarray} |
| 55 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing} |
| 56 |
|
|
\label{eq:eg-global-global_forcing_fu} |
| 57 |
adcroft |
1.1 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
| 58 |
|
|
\\ |
| 59 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing_fv} |
| 60 |
adcroft |
1.1 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
| 61 |
|
|
\\ |
| 62 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing_ft} |
| 63 |
adcroft |
1.1 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
| 64 |
|
|
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
| 65 |
|
|
\\ |
| 66 |
jmc |
1.19 |
\label{eq:eg-global-global_forcing_fs} |
| 67 |
adcroft |
1.1 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
| 68 |
|
|
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
| 69 |
|
|
\end{eqnarray} |
| 70 |
|
|
|
| 71 |
|
|
\noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, |
| 72 |
|
|
${\cal F}_{s}$ are the forcing terms in the zonal and meridional |
| 73 |
|
|
momentum and in the potential temperature and salinity |
| 74 |
|
|
equations respectively. |
| 75 |
|
|
The term $\Delta z_{s}$ represents the top ocean layer thickness in |
| 76 |
|
|
meters. |
| 77 |
|
|
It is used in conjunction with a reference density, $\rho_{0}$ |
| 78 |
|
|
(here set to $999.8\,{\rm kg\,m^{-3}}$), a |
| 79 |
|
|
reference salinity, $S_{0}$ (here set to 35~ppt), |
| 80 |
|
|
and a specific heat capacity, $C_{p}$ (here set to |
| 81 |
|
|
$4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert |
| 82 |
|
|
input dataset values into time tendencies of |
| 83 |
|
|
potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$), |
| 84 |
|
|
salinity (with units ${\rm ppt}~s^{-1}$) and |
| 85 |
|
|
velocity (with units ${\rm m}~{\rm s}^{-2}$). |
| 86 |
|
|
The externally supplied forcing fields used in this |
| 87 |
|
|
experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$, |
| 88 |
|
|
$\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$) |
| 89 |
|
|
have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields |
| 90 |
|
|
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
| 91 |
|
|
respectively. The salinity forcing fields ($S^{\ast}$ and |
| 92 |
|
|
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
| 93 |
cnh |
1.8 |
respectively. The source files and procedures for ingesting this data into the |
| 94 |
|
|
simulation are described in the experiment configuration discussion in section |
| 95 |
jmc |
1.19 |
\ref{sec:eg-global-clim_ocn_examp_exp_config}. |
| 96 |
adcroft |
1.1 |
|
| 97 |
|
|
|
| 98 |
|
|
\subsection{Discrete Numerical Configuration} |
| 99 |
jmc |
1.19 |
%\label{www:tutorials} |
| 100 |
adcroft |
1.1 |
|
| 101 |
|
|
|
| 102 |
|
|
The model is configured in hydrostatic form. The domain is discretised with |
| 103 |
|
|
a uniform grid spacing in latitude and longitude on the sphere |
| 104 |
|
|
$\Delta \phi=\Delta \lambda=4^{\circ}$, so |
| 105 |
|
|
that there are ninety grid cells in the zonal and forty in the |
| 106 |
|
|
meridional direction. The internal model coordinate variables |
| 107 |
cnh |
1.3 |
$x$ and $y$ are initialized according to |
| 108 |
adcroft |
1.1 |
\begin{eqnarray} |
| 109 |
|
|
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
| 110 |
cnh |
1.8 |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
| 111 |
adcroft |
1.1 |
\end{eqnarray} |
| 112 |
|
|
|
| 113 |
|
|
Arctic polar regions are not |
| 114 |
|
|
included in this experiment. Meridionally the model extends from |
| 115 |
|
|
$80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. |
| 116 |
|
|
Vertically the model is configured with twenty layers with the |
| 117 |
|
|
following thicknesses |
| 118 |
|
|
$\Delta z_{1} = 50\,{\rm m},\, |
| 119 |
|
|
\Delta z_{2} = 50\,{\rm m},\, |
| 120 |
|
|
\Delta z_{3} = 55\,{\rm m},\, |
| 121 |
|
|
\Delta z_{4} = 60\,{\rm m},\, |
| 122 |
|
|
\Delta z_{5} = 65\,{\rm m},\, |
| 123 |
|
|
$ |
| 124 |
|
|
$ |
| 125 |
|
|
\Delta z_{6}~=~70\,{\rm m},\, |
| 126 |
|
|
\Delta z_{7}~=~80\,{\rm m},\, |
| 127 |
|
|
\Delta z_{8}~=95\,{\rm m},\, |
| 128 |
|
|
\Delta z_{9}=120\,{\rm m},\, |
| 129 |
|
|
\Delta z_{10}=155\,{\rm m},\, |
| 130 |
|
|
$ |
| 131 |
|
|
$ |
| 132 |
|
|
\Delta z_{11}=200\,{\rm m},\, |
| 133 |
|
|
\Delta z_{12}=260\,{\rm m},\, |
| 134 |
|
|
\Delta z_{13}=320\,{\rm m},\, |
| 135 |
|
|
\Delta z_{14}=400\,{\rm m},\, |
| 136 |
|
|
\Delta z_{15}=480\,{\rm m},\, |
| 137 |
|
|
$ |
| 138 |
|
|
$ |
| 139 |
|
|
\Delta z_{16}=570\,{\rm m},\, |
| 140 |
|
|
\Delta z_{17}=655\,{\rm m},\, |
| 141 |
|
|
\Delta z_{18}=725\,{\rm m},\, |
| 142 |
|
|
\Delta z_{19}=775\,{\rm m},\, |
| 143 |
|
|
\Delta z_{20}=815\,{\rm m} |
| 144 |
cnh |
1.8 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$) to |
| 145 |
|
|
give a total depth, $H$, of $-5450{\rm m}$. |
| 146 |
adcroft |
1.1 |
The implicit free surface form of the pressure equation described in Marshall et. al |
| 147 |
adcroft |
1.6 |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
| 148 |
cnh |
1.3 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
| 149 |
adcroft |
1.1 |
|
| 150 |
jmc |
1.19 |
Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations}) |
| 151 |
cnh |
1.8 |
for both the zonal flow, $u$ and the meridional flow $v$, according to equations |
| 152 |
jmc |
1.19 |
(\ref{eq:eg-global-global_forcing_fu}) and (\ref{eq:eg-global-global_forcing_fv}). |
| 153 |
cnh |
1.8 |
Thermodynamic forcing inputs are added to the equations |
| 154 |
jmc |
1.19 |
in (\ref{eq:eg-global-model_equations}) for |
| 155 |
adcroft |
1.1 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
| 156 |
jmc |
1.19 |
(\ref{eq:eg-global-global_forcing_ft}) and (\ref{eq:eg-global-global_forcing_fs}). |
| 157 |
adcroft |
1.1 |
This produces a set of equations solved in this configuration as follows: |
| 158 |
|
|
|
| 159 |
|
|
\begin{eqnarray} |
| 160 |
jmc |
1.19 |
\label{eq:eg-global-model_equations} |
| 161 |
adcroft |
1.1 |
\frac{Du}{Dt} - fv + |
| 162 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
| 163 |
|
|
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
| 164 |
|
|
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} |
| 165 |
|
|
& = & |
| 166 |
|
|
\begin{cases} |
| 167 |
|
|
{\cal F}_u & \text{(surface)} \\ |
| 168 |
|
|
0 & \text{(interior)} |
| 169 |
|
|
\end{cases} |
| 170 |
|
|
\\ |
| 171 |
|
|
\frac{Dv}{Dt} + fu + |
| 172 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
| 173 |
|
|
\nabla_{h}\cdot A_{h}\nabla_{h}v - |
| 174 |
|
|
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} |
| 175 |
|
|
& = & |
| 176 |
|
|
\begin{cases} |
| 177 |
|
|
{\cal F}_v & \text{(surface)} \\ |
| 178 |
|
|
0 & \text{(interior)} |
| 179 |
|
|
\end{cases} |
| 180 |
|
|
\\ |
| 181 |
|
|
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} |
| 182 |
|
|
&=& |
| 183 |
|
|
0 |
| 184 |
|
|
\\ |
| 185 |
|
|
\frac{D\theta}{Dt} - |
| 186 |
|
|
\nabla_{h}\cdot K_{h}\nabla_{h}\theta |
| 187 |
|
|
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z} |
| 188 |
|
|
& = & |
| 189 |
|
|
\begin{cases} |
| 190 |
|
|
{\cal F}_\theta & \text{(surface)} \\ |
| 191 |
|
|
0 & \text{(interior)} |
| 192 |
|
|
\end{cases} |
| 193 |
|
|
\\ |
| 194 |
|
|
\frac{D s}{Dt} - |
| 195 |
|
|
\nabla_{h}\cdot K_{h}\nabla_{h}s |
| 196 |
|
|
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z} |
| 197 |
|
|
& = & |
| 198 |
|
|
\begin{cases} |
| 199 |
|
|
{\cal F}_s & \text{(surface)} \\ |
| 200 |
|
|
0 & \text{(interior)} |
| 201 |
|
|
\end{cases} |
| 202 |
|
|
\\ |
| 203 |
|
|
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
| 204 |
|
|
\end{eqnarray} |
| 205 |
|
|
|
| 206 |
|
|
\noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and |
| 207 |
|
|
$v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ |
| 208 |
|
|
are the zonal and meridional components of the |
| 209 |
|
|
flow vector, $\vec{u}$, on the sphere. As described in |
| 210 |
adcroft |
1.5 |
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
| 211 |
adcroft |
1.1 |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
| 212 |
|
|
The total pressure, $p$, is diagnosed by summing pressure due to surface |
| 213 |
|
|
elevation $\eta$ and the hydrostatic pressure. |
| 214 |
|
|
\\ |
| 215 |
|
|
|
| 216 |
|
|
\subsubsection{Numerical Stability Criteria} |
| 217 |
jmc |
1.19 |
%\label{www:tutorials} |
| 218 |
adcroft |
1.1 |
|
| 219 |
cnh |
1.3 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
| 220 |
adcroft |
1.4 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
| 221 |
adcroft |
1.1 |
\begin{eqnarray} |
| 222 |
jmc |
1.19 |
\label{eq:eg-global-munk_layer} |
| 223 |
adcroft |
1.10 |
&& M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
| 224 |
adcroft |
1.1 |
\end{eqnarray} |
| 225 |
|
|
|
| 226 |
|
|
\noindent of $\approx 600$km. This is greater than the model |
| 227 |
|
|
resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional |
| 228 |
|
|
boundary layer is adequately resolved. |
| 229 |
|
|
\\ |
| 230 |
|
|
|
| 231 |
|
|
\noindent The model is stepped forward with a |
| 232 |
|
|
time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and |
| 233 |
|
|
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
| 234 |
adcroft |
1.4 |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
| 235 |
adcroft |
1.1 |
\begin{eqnarray} |
| 236 |
jmc |
1.19 |
\label{eq:eg-global-laplacian_stability} |
| 237 |
adcroft |
1.10 |
&& S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
| 238 |
adcroft |
1.1 |
\end{eqnarray} |
| 239 |
|
|
|
| 240 |
|
|
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
| 241 |
|
|
0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at |
| 242 |
|
|
$\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$. |
| 243 |
|
|
\\ |
| 244 |
|
|
|
| 245 |
|
|
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
| 246 |
|
|
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
| 247 |
|
|
\begin{eqnarray} |
| 248 |
jmc |
1.19 |
\label{eq:eg-global-laplacian_stability_z} |
| 249 |
adcroft |
1.1 |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
| 250 |
|
|
\end{eqnarray} |
| 251 |
|
|
|
| 252 |
|
|
\noindent evaluates to $0.015$ for the smallest model |
| 253 |
cnh |
1.3 |
level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below |
| 254 |
adcroft |
1.1 |
the upper stability limit. |
| 255 |
|
|
\\ |
| 256 |
|
|
|
| 257 |
|
|
The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients |
| 258 |
|
|
for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ |
| 259 |
|
|
and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit |
| 260 |
|
|
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
| 261 |
|
|
Here the stability parameter |
| 262 |
|
|
\begin{eqnarray} |
| 263 |
jmc |
1.19 |
\label{eq:eg-global-laplacian_stability_xtheta} |
| 264 |
adcroft |
1.1 |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
| 265 |
|
|
\end{eqnarray} |
| 266 |
cnh |
1.3 |
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
| 267 |
adcroft |
1.1 |
stability parameter related to $K_{z}$ |
| 268 |
|
|
\begin{eqnarray} |
| 269 |
jmc |
1.19 |
\label{eq:eg-global-laplacian_stability_ztheta} |
| 270 |
adcroft |
1.1 |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
| 271 |
|
|
\end{eqnarray} |
| 272 |
|
|
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
| 273 |
|
|
of $S_{l} \approx 0.5$. |
| 274 |
|
|
\\ |
| 275 |
|
|
|
| 276 |
|
|
\noindent The numerical stability for inertial oscillations |
| 277 |
adcroft |
1.4 |
\cite{adcroft:95} |
| 278 |
adcroft |
1.1 |
|
| 279 |
|
|
\begin{eqnarray} |
| 280 |
jmc |
1.19 |
\label{eq:eg-global-inertial_stability} |
| 281 |
adcroft |
1.1 |
S_{i} = f^{2} {\delta t_v}^2 |
| 282 |
|
|
\end{eqnarray} |
| 283 |
|
|
|
| 284 |
|
|
\noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to |
| 285 |
|
|
the $S_{i} < 1$ upper limit for stability. |
| 286 |
|
|
\\ |
| 287 |
|
|
|
| 288 |
adcroft |
1.4 |
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum |
| 289 |
adcroft |
1.1 |
horizontal flow |
| 290 |
|
|
speed of $ | \vec{u} | = 2 ms^{-1}$ |
| 291 |
|
|
|
| 292 |
|
|
\begin{eqnarray} |
| 293 |
jmc |
1.19 |
\label{eq:eg-global-cfl_stability} |
| 294 |
adcroft |
1.1 |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
| 295 |
|
|
\end{eqnarray} |
| 296 |
|
|
|
| 297 |
|
|
\noindent evaluates to $6 \times 10^{-2}$. This is well below the stability |
| 298 |
|
|
limit of 0.5. |
| 299 |
|
|
\\ |
| 300 |
|
|
|
| 301 |
cnh |
1.3 |
\noindent The stability parameter for internal gravity waves propagating |
| 302 |
adcroft |
1.1 |
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
| 303 |
adcroft |
1.4 |
\cite{adcroft:95} |
| 304 |
adcroft |
1.1 |
|
| 305 |
|
|
\begin{eqnarray} |
| 306 |
jmc |
1.19 |
\label{eq:eg-global-gfl_stability} |
| 307 |
adcroft |
1.1 |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
| 308 |
|
|
\end{eqnarray} |
| 309 |
|
|
|
| 310 |
|
|
\noindent evaluates to $3 \times 10^{-1}$. This is close to the linear |
| 311 |
|
|
stability limit of 0.5. |
| 312 |
|
|
|
| 313 |
|
|
\subsection{Experiment Configuration} |
| 314 |
jmc |
1.19 |
%\label{www:tutorials} |
| 315 |
|
|
\label{sec:eg-global-clim_ocn_examp_exp_config} |
| 316 |
adcroft |
1.1 |
|
| 317 |
|
|
The model configuration for this experiment resides under the |
| 318 |
cnh |
1.8 |
directory {\it tutorial\_examples/global\_ocean\_circulation/}. |
| 319 |
|
|
The experiment files |
| 320 |
|
|
|
| 321 |
adcroft |
1.1 |
\begin{itemize} |
| 322 |
|
|
\item {\it input/data} |
| 323 |
|
|
\item {\it input/data.pkg} |
| 324 |
|
|
\item {\it input/eedata}, |
| 325 |
|
|
\item {\it input/windx.bin}, |
| 326 |
|
|
\item {\it input/windy.bin}, |
| 327 |
|
|
\item {\it input/salt.bin}, |
| 328 |
|
|
\item {\it input/theta.bin}, |
| 329 |
|
|
\item {\it input/SSS.bin}, |
| 330 |
|
|
\item {\it input/SST.bin}, |
| 331 |
|
|
\item {\it input/topog.bin}, |
| 332 |
|
|
\item {\it code/CPP\_EEOPTIONS.h} |
| 333 |
|
|
\item {\it code/CPP\_OPTIONS.h}, |
| 334 |
|
|
\item {\it code/SIZE.h}. |
| 335 |
|
|
\end{itemize} |
| 336 |
cnh |
1.3 |
contain the code customizations and parameter settings for these |
| 337 |
|
|
experiments. Below we describe the customizations |
| 338 |
adcroft |
1.1 |
to these files associated with this experiment. |
| 339 |
cnh |
1.8 |
|
| 340 |
|
|
\subsubsection{Driving Datasets} |
| 341 |
jmc |
1.19 |
%\label{www:tutorials} |
| 342 |
cnh |
1.8 |
|
| 343 |
jmc |
1.19 |
Figures ({\it --- missing figures ---}) |
| 344 |
|
|
%(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr}) |
| 345 |
|
|
show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) |
| 346 |
|
|
fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
| 347 |
cnh |
1.8 |
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
| 348 |
jmc |
1.19 |
in equations |
| 349 |
|
|
(\ref{eq:eg-global-global_forcing_fu}-\ref{eq:eg-global-global_forcing_fs}). |
| 350 |
|
|
The figures also indicate the lateral extent and coastline used in the |
| 351 |
|
|
experiment. Figure ({\it --- missing figure --- }) %ref{fig:model_bathymetry}) |
| 352 |
|
|
shows the depth contours of the model domain. |
| 353 |
adcroft |
1.1 |
|
| 354 |
|
|
\subsubsection{File {\it input/data}} |
| 355 |
jmc |
1.19 |
%\label{www:tutorials} |
| 356 |
adcroft |
1.1 |
|
| 357 |
jmc |
1.20 |
\input{s_examples/global_oce_latlon/inp_data} |
| 358 |
adcroft |
1.1 |
|
| 359 |
|
|
\subsubsection{File {\it input/data.pkg}} |
| 360 |
jmc |
1.19 |
%\label{www:tutorials} |
| 361 |
adcroft |
1.1 |
|
| 362 |
|
|
This file uses standard default values and does not contain |
| 363 |
|
|
customisations for this experiment. |
| 364 |
|
|
|
| 365 |
|
|
\subsubsection{File {\it input/eedata}} |
| 366 |
jmc |
1.19 |
%\label{www:tutorials} |
| 367 |
adcroft |
1.1 |
|
| 368 |
|
|
This file uses standard default values and does not contain |
| 369 |
|
|
customisations for this experiment. |
| 370 |
|
|
|
| 371 |
|
|
\subsubsection{File {\it input/windx.sin\_y}} |
| 372 |
jmc |
1.19 |
%\label{www:tutorials} |
| 373 |
adcroft |
1.1 |
|
| 374 |
|
|
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
| 375 |
|
|
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
| 376 |
|
|
Although $\tau_{x}$ is only a function of $y$n in this experiment |
| 377 |
|
|
this file must still define a complete two-dimensional map in order |
| 378 |
|
|
to be compatible with the standard code for loading forcing fields |
| 379 |
|
|
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
| 380 |
|
|
code for creating the {\it input/windx.sin\_y} file. |
| 381 |
|
|
|
| 382 |
|
|
\subsubsection{File {\it input/topog.box}} |
| 383 |
jmc |
1.19 |
%\label{www:tutorials} |
| 384 |
adcroft |
1.1 |
|
| 385 |
|
|
|
| 386 |
|
|
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
| 387 |
|
|
map of depth values. For this experiment values are either |
| 388 |
|
|
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
| 389 |
|
|
ocean. The file contains a raw binary stream of data that is enumerated |
| 390 |
|
|
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
| 391 |
|
|
The included matlab program {\it input/gendata.m} gives a complete |
| 392 |
|
|
code for creating the {\it input/topog.box} file. |
| 393 |
|
|
|
| 394 |
|
|
\subsubsection{File {\it code/SIZE.h}} |
| 395 |
jmc |
1.19 |
%\label{www:tutorials} |
| 396 |
adcroft |
1.1 |
|
| 397 |
|
|
Two lines are customized in this file for the current experiment |
| 398 |
|
|
|
| 399 |
|
|
\begin{itemize} |
| 400 |
|
|
|
| 401 |
|
|
\item Line 39, |
| 402 |
|
|
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
| 403 |
|
|
the lateral domain extent in grid points for the |
| 404 |
|
|
axis aligned with the x-coordinate. |
| 405 |
|
|
|
| 406 |
|
|
\item Line 40, |
| 407 |
|
|
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
| 408 |
|
|
the lateral domain extent in grid points for the |
| 409 |
|
|
axis aligned with the y-coordinate. |
| 410 |
|
|
|
| 411 |
|
|
\item Line 49, |
| 412 |
|
|
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
| 413 |
|
|
the vertical domain extent in grid points. |
| 414 |
|
|
|
| 415 |
|
|
\end{itemize} |
| 416 |
|
|
|
| 417 |
|
|
\begin{small} |
| 418 |
jmc |
1.18 |
\input{s_examples/global_oce_latlon/code/SIZE.h} |
| 419 |
adcroft |
1.1 |
\end{small} |
| 420 |
|
|
|
| 421 |
|
|
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
| 422 |
jmc |
1.19 |
%\label{www:tutorials} |
| 423 |
adcroft |
1.1 |
|
| 424 |
|
|
This file uses standard default values and does not contain |
| 425 |
|
|
customisations for this experiment. |
| 426 |
|
|
|
| 427 |
|
|
|
| 428 |
|
|
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
| 429 |
jmc |
1.19 |
%\label{www:tutorials} |
| 430 |
adcroft |
1.1 |
|
| 431 |
|
|
This file uses standard default values and does not contain |
| 432 |
|
|
customisations for this experiment. |
| 433 |
|
|
|
| 434 |
|
|
\subsubsection{Other Files } |
| 435 |
jmc |
1.19 |
%\label{www:tutorials} |
| 436 |
adcroft |
1.1 |
|
| 437 |
|
|
Other files relevant to this experiment are |
| 438 |
|
|
\begin{itemize} |
| 439 |
|
|
\item {\it model/src/ini\_cori.F}. This file initializes the model |
| 440 |
|
|
coriolis variables {\bf fCorU}. |
| 441 |
|
|
\item {\it model/src/ini\_spherical\_polar\_grid.F} |
| 442 |
|
|
\item {\it model/src/ini\_parms.F}, |
| 443 |
|
|
\item {\it input/windx.sin\_y}, |
| 444 |
|
|
\end{itemize} |
| 445 |
|
|
contain the code customisations and parameter settings for this |
| 446 |
cnh |
1.3 |
experiments. Below we describe the customisations |
| 447 |
adcroft |
1.1 |
to these files associated with this experiment. |