/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.19 - (hide annotations) (download) (as text)
Mon Aug 30 23:09:20 2010 UTC (14 years, 10 months ago) by jmc
Branch: MAIN
Changes since 1.18: +63 -53 lines
File MIME type: application/x-tex
clean-up latex built:
 (remove multiple definition of label; fix missing reference; replace
  non-standard latex stuff; ...)

1 jmc 1.19 % $Header: /u/gcmpack/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex,v 1.18 2010/08/27 13:25:32 jmc Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4 jmc 1.17 \section[Global Ocean MITgcm Example]{Global Ocean Simulation at $4^\circ$ Resolution}
5 jmc 1.19 %\label{www:tutorials}
6     \label{sec:eg-global}
7 edhill 1.12 \begin{rawhtml}
8     <!-- CMIREDIR:eg-global: -->
9     \end{rawhtml}
10 jmc 1.16 \begin{center}
11     (in directory: {\it verification/tutorial\_global\_oce\_latlon/})
12     \end{center}
13 adcroft 1.1
14     \bodytext{bgcolor="#FFFFFFFF"}
15    
16     %\begin{center}
17 cnh 1.3 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
18 adcroft 1.1 %At Four Degree Resolution with Asynchronous Time Stepping}
19     %
20     %\vspace*{4mm}
21     %
22     %\vspace*{3mm}
23     %{\large May 2001}
24     %\end{center}
25    
26    
27     This example experiment demonstrates using the MITgcm to simulate
28     the planetary ocean circulation. The simulation is configured
29     with realistic geography and bathymetry on a
30     $4^{\circ} \times 4^{\circ}$ spherical polar grid.
31 molod 1.14 The files for this experiment are in the verification directory
32     under tutorial\_global\_oce\_latlon.
33 adcroft 1.1 Twenty levels are used in the vertical, ranging in thickness
34     from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
35     giving a maximum model depth of $6\,{\rm km}$.
36     At this resolution, the configuration
37     can be integrated forward for thousands of years on a single
38     processor desktop computer.
39     \\
40 cnh 1.8 \subsection{Overview}
41 jmc 1.19 %\label{www:tutorials}
42 adcroft 1.1
43 cnh 1.3 The model is forced with climatological wind stress data and surface
44     flux data from DaSilva \cite{DaSilva94}. Climatological data
45     from Levitus \cite{Levitus94} is used to initialize the model hydrography.
46     Levitus seasonal climatology data is also used throughout the calculation
47 adcroft 1.1 to provide additional air-sea fluxes.
48 cnh 1.3 These fluxes are combined with the DaSilva climatological estimates of
49 adcroft 1.1 surface heat flux and fresh water, resulting in a mixed boundary
50 cnh 1.3 condition of the style described in Haney \cite{Haney}.
51 adcroft 1.1 Altogether, this yields the following forcing applied
52     in the model surface layer.
53    
54     \begin{eqnarray}
55 jmc 1.19 \label{eq:eg-global-global_forcing}
56     \label{eq:eg-global-global_forcing_fu}
57 adcroft 1.1 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
58     \\
59 jmc 1.19 \label{eq:eg-global-global_forcing_fv}
60 adcroft 1.1 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
61     \\
62 jmc 1.19 \label{eq:eg-global-global_forcing_ft}
63 adcroft 1.1 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
64     - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
65     \\
66 jmc 1.19 \label{eq:eg-global-global_forcing_fs}
67 adcroft 1.1 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
68     + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
69     \end{eqnarray}
70    
71     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
72     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
73     momentum and in the potential temperature and salinity
74     equations respectively.
75     The term $\Delta z_{s}$ represents the top ocean layer thickness in
76     meters.
77     It is used in conjunction with a reference density, $\rho_{0}$
78     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
79     reference salinity, $S_{0}$ (here set to 35~ppt),
80     and a specific heat capacity, $C_{p}$ (here set to
81     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
82     input dataset values into time tendencies of
83     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
84     salinity (with units ${\rm ppt}~s^{-1}$) and
85     velocity (with units ${\rm m}~{\rm s}^{-2}$).
86     The externally supplied forcing fields used in this
87     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
88     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
89     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
90     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
91     respectively. The salinity forcing fields ($S^{\ast}$ and
92     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
93 cnh 1.8 respectively. The source files and procedures for ingesting this data into the
94     simulation are described in the experiment configuration discussion in section
95 jmc 1.19 \ref{sec:eg-global-clim_ocn_examp_exp_config}.
96 adcroft 1.1
97    
98     \subsection{Discrete Numerical Configuration}
99 jmc 1.19 %\label{www:tutorials}
100 adcroft 1.1
101    
102     The model is configured in hydrostatic form. The domain is discretised with
103     a uniform grid spacing in latitude and longitude on the sphere
104     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
105     that there are ninety grid cells in the zonal and forty in the
106     meridional direction. The internal model coordinate variables
107 cnh 1.3 $x$ and $y$ are initialized according to
108 adcroft 1.1 \begin{eqnarray}
109     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
110 cnh 1.8 y=r\lambda,~\Delta y &= &r\Delta \lambda
111 adcroft 1.1 \end{eqnarray}
112    
113     Arctic polar regions are not
114     included in this experiment. Meridionally the model extends from
115     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
116     Vertically the model is configured with twenty layers with the
117     following thicknesses
118     $\Delta z_{1} = 50\,{\rm m},\,
119     \Delta z_{2} = 50\,{\rm m},\,
120     \Delta z_{3} = 55\,{\rm m},\,
121     \Delta z_{4} = 60\,{\rm m},\,
122     \Delta z_{5} = 65\,{\rm m},\,
123     $
124     $
125     \Delta z_{6}~=~70\,{\rm m},\,
126     \Delta z_{7}~=~80\,{\rm m},\,
127     \Delta z_{8}~=95\,{\rm m},\,
128     \Delta z_{9}=120\,{\rm m},\,
129     \Delta z_{10}=155\,{\rm m},\,
130     $
131     $
132     \Delta z_{11}=200\,{\rm m},\,
133     \Delta z_{12}=260\,{\rm m},\,
134     \Delta z_{13}=320\,{\rm m},\,
135     \Delta z_{14}=400\,{\rm m},\,
136     \Delta z_{15}=480\,{\rm m},\,
137     $
138     $
139     \Delta z_{16}=570\,{\rm m},\,
140     \Delta z_{17}=655\,{\rm m},\,
141     \Delta z_{18}=725\,{\rm m},\,
142     \Delta z_{19}=775\,{\rm m},\,
143     \Delta z_{20}=815\,{\rm m}
144 cnh 1.8 $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
145     give a total depth, $H$, of $-5450{\rm m}$.
146 adcroft 1.1 The implicit free surface form of the pressure equation described in Marshall et. al
147 adcroft 1.6 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
148 cnh 1.3 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
149 adcroft 1.1
150 jmc 1.19 Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations})
151 cnh 1.8 for both the zonal flow, $u$ and the meridional flow $v$, according to equations
152 jmc 1.19 (\ref{eq:eg-global-global_forcing_fu}) and (\ref{eq:eg-global-global_forcing_fv}).
153 cnh 1.8 Thermodynamic forcing inputs are added to the equations
154 jmc 1.19 in (\ref{eq:eg-global-model_equations}) for
155 adcroft 1.1 potential temperature, $\theta$, and salinity, $S$, according to equations
156 jmc 1.19 (\ref{eq:eg-global-global_forcing_ft}) and (\ref{eq:eg-global-global_forcing_fs}).
157 adcroft 1.1 This produces a set of equations solved in this configuration as follows:
158    
159     \begin{eqnarray}
160 jmc 1.19 \label{eq:eg-global-model_equations}
161 adcroft 1.1 \frac{Du}{Dt} - fv +
162     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
163     \nabla_{h}\cdot A_{h}\nabla_{h}u -
164     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
165     & = &
166     \begin{cases}
167     {\cal F}_u & \text{(surface)} \\
168     0 & \text{(interior)}
169     \end{cases}
170     \\
171     \frac{Dv}{Dt} + fu +
172     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
173     \nabla_{h}\cdot A_{h}\nabla_{h}v -
174     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
175     & = &
176     \begin{cases}
177     {\cal F}_v & \text{(surface)} \\
178     0 & \text{(interior)}
179     \end{cases}
180     \\
181     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
182     &=&
183     0
184     \\
185     \frac{D\theta}{Dt} -
186     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
187     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
188     & = &
189     \begin{cases}
190     {\cal F}_\theta & \text{(surface)} \\
191     0 & \text{(interior)}
192     \end{cases}
193     \\
194     \frac{D s}{Dt} -
195     \nabla_{h}\cdot K_{h}\nabla_{h}s
196     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
197     & = &
198     \begin{cases}
199     {\cal F}_s & \text{(surface)} \\
200     0 & \text{(interior)}
201     \end{cases}
202     \\
203     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
204     \end{eqnarray}
205    
206     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
207     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
208     are the zonal and meridional components of the
209     flow vector, $\vec{u}$, on the sphere. As described in
210 adcroft 1.5 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
211 adcroft 1.1 evolution of potential temperature, $\theta$, equation is solved prognostically.
212     The total pressure, $p$, is diagnosed by summing pressure due to surface
213     elevation $\eta$ and the hydrostatic pressure.
214     \\
215    
216     \subsubsection{Numerical Stability Criteria}
217 jmc 1.19 %\label{www:tutorials}
218 adcroft 1.1
219 cnh 1.3 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
220 adcroft 1.4 This value is chosen to yield a Munk layer width \cite{adcroft:95},
221 adcroft 1.1 \begin{eqnarray}
222 jmc 1.19 \label{eq:eg-global-munk_layer}
223 adcroft 1.10 && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
224 adcroft 1.1 \end{eqnarray}
225    
226     \noindent of $\approx 600$km. This is greater than the model
227     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
228     boundary layer is adequately resolved.
229     \\
230    
231     \noindent The model is stepped forward with a
232     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
233     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
234 adcroft 1.4 parameter to the horizontal Laplacian friction \cite{adcroft:95}
235 adcroft 1.1 \begin{eqnarray}
236 jmc 1.19 \label{eq:eg-global-laplacian_stability}
237 adcroft 1.10 && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
238 adcroft 1.1 \end{eqnarray}
239    
240     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
241     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
242     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
243     \\
244    
245     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
246     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
247     \begin{eqnarray}
248 jmc 1.19 \label{eq:eg-global-laplacian_stability_z}
249 adcroft 1.1 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
250     \end{eqnarray}
251    
252     \noindent evaluates to $0.015$ for the smallest model
253 cnh 1.3 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
254 adcroft 1.1 the upper stability limit.
255     \\
256    
257     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
258     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
259     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
260     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
261     Here the stability parameter
262     \begin{eqnarray}
263 jmc 1.19 \label{eq:eg-global-laplacian_stability_xtheta}
264 adcroft 1.1 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
265     \end{eqnarray}
266 cnh 1.3 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
267 adcroft 1.1 stability parameter related to $K_{z}$
268     \begin{eqnarray}
269 jmc 1.19 \label{eq:eg-global-laplacian_stability_ztheta}
270 adcroft 1.1 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
271     \end{eqnarray}
272     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
273     of $S_{l} \approx 0.5$.
274     \\
275    
276     \noindent The numerical stability for inertial oscillations
277 adcroft 1.4 \cite{adcroft:95}
278 adcroft 1.1
279     \begin{eqnarray}
280 jmc 1.19 \label{eq:eg-global-inertial_stability}
281 adcroft 1.1 S_{i} = f^{2} {\delta t_v}^2
282     \end{eqnarray}
283    
284     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
285     the $S_{i} < 1$ upper limit for stability.
286     \\
287    
288 adcroft 1.4 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
289 adcroft 1.1 horizontal flow
290     speed of $ | \vec{u} | = 2 ms^{-1}$
291    
292     \begin{eqnarray}
293 jmc 1.19 \label{eq:eg-global-cfl_stability}
294 adcroft 1.1 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
295     \end{eqnarray}
296    
297     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
298     limit of 0.5.
299     \\
300    
301 cnh 1.3 \noindent The stability parameter for internal gravity waves propagating
302 adcroft 1.1 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
303 adcroft 1.4 \cite{adcroft:95}
304 adcroft 1.1
305     \begin{eqnarray}
306 jmc 1.19 \label{eq:eg-global-gfl_stability}
307 adcroft 1.1 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
308     \end{eqnarray}
309    
310     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
311     stability limit of 0.5.
312    
313     \subsection{Experiment Configuration}
314 jmc 1.19 %\label{www:tutorials}
315     \label{sec:eg-global-clim_ocn_examp_exp_config}
316 adcroft 1.1
317     The model configuration for this experiment resides under the
318 cnh 1.8 directory {\it tutorial\_examples/global\_ocean\_circulation/}.
319     The experiment files
320    
321 adcroft 1.1 \begin{itemize}
322     \item {\it input/data}
323     \item {\it input/data.pkg}
324     \item {\it input/eedata},
325     \item {\it input/windx.bin},
326     \item {\it input/windy.bin},
327     \item {\it input/salt.bin},
328     \item {\it input/theta.bin},
329     \item {\it input/SSS.bin},
330     \item {\it input/SST.bin},
331     \item {\it input/topog.bin},
332     \item {\it code/CPP\_EEOPTIONS.h}
333     \item {\it code/CPP\_OPTIONS.h},
334     \item {\it code/SIZE.h}.
335     \end{itemize}
336 cnh 1.3 contain the code customizations and parameter settings for these
337     experiments. Below we describe the customizations
338 adcroft 1.1 to these files associated with this experiment.
339 cnh 1.8
340     \subsubsection{Driving Datasets}
341 jmc 1.19 %\label{www:tutorials}
342 cnh 1.8
343 jmc 1.19 Figures ({\it --- missing figures ---})
344     %(\ref{fig:sim_config_tclim}-\ref{fig:sim_config_empmr})
345     show the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$)
346     fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
347 cnh 1.8 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
348 jmc 1.19 in equations
349     (\ref{eq:eg-global-global_forcing_fu}-\ref{eq:eg-global-global_forcing_fs}).
350     The figures also indicate the lateral extent and coastline used in the
351     experiment. Figure ({\it --- missing figure --- }) %ref{fig:model_bathymetry})
352     shows the depth contours of the model domain.
353 adcroft 1.1
354     \subsubsection{File {\it input/data}}
355 jmc 1.19 %\label{www:tutorials}
356 adcroft 1.1
357     This file, reproduced completely below, specifies the main parameters
358     for the experiment. The parameters that are significant for this configuration
359     are
360    
361     \begin{itemize}
362    
363     \item Lines 7-10 and 11-14
364     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
365     $\cdots$ \\
366     set reference values for potential
367 edhill 1.13 temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and
368 adcroft 1.1 ${\rm ppt}$. The entries are ordered from surface to depth.
369     Density is calculated from anomalies at each level evaluated
370     with respect to the reference values set here.\\
371     \fbox{
372     \begin{minipage}{5.0in}
373     {\it S/R INI\_THETA}({\it ini\_theta.F})
374     \end{minipage}
375     }
376    
377    
378     \item Line 15,
379     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
380 cnh 1.3 this line sets the vertical Laplacian dissipation coefficient to
381 adcroft 1.1 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
382     for this operator are specified later. This variable is copied into
383     model general vertical coordinate variable {\bf viscAr}.
384    
385     \fbox{
386     \begin{minipage}{5.0in}
387     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
388     \end{minipage}
389     }
390    
391     \item Line 16,
392     \begin{verbatim}
393     viscAh=5.E5,
394     \end{verbatim}
395 cnh 1.3 this line sets the horizontal Laplacian frictional dissipation coefficient to
396 adcroft 1.1 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
397     for this operator are specified later.
398    
399     \item Lines 17,
400     \begin{verbatim}
401     no_slip_sides=.FALSE.
402     \end{verbatim}
403     this line selects a free-slip lateral boundary condition for
404 cnh 1.3 the horizontal Laplacian friction operator
405 adcroft 1.1 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
406     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
407    
408     \item Lines 9,
409     \begin{verbatim}
410     no_slip_bottom=.TRUE.
411     \end{verbatim}
412     this line selects a no-slip boundary condition for bottom
413 cnh 1.3 boundary condition in the vertical Laplacian friction operator
414 adcroft 1.1 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
415    
416     \item Line 19,
417     \begin{verbatim}
418     diffKhT=1.E3,
419     \end{verbatim}
420     this line sets the horizontal diffusion coefficient for temperature
421     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
422     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
423     all boundaries.
424    
425     \item Line 20,
426     \begin{verbatim}
427     diffKzT=3.E-5,
428     \end{verbatim}
429     this line sets the vertical diffusion coefficient for temperature
430     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
431     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
432     the upper and lower boundaries.
433    
434     \item Line 21,
435     \begin{verbatim}
436     diffKhS=1.E3,
437     \end{verbatim}
438     this line sets the horizontal diffusion coefficient for salinity
439     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
440     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
441     all boundaries.
442    
443     \item Line 22,
444     \begin{verbatim}
445     diffKzS=3.E-5,
446     \end{verbatim}
447     this line sets the vertical diffusion coefficient for salinity
448     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
449     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
450     the upper and lower boundaries.
451    
452     \item Lines 23-26
453     \begin{verbatim}
454     beta=1.E-11,
455     \end{verbatim}
456     \vspace{-5mm}$\cdots$\\
457     These settings do not apply for this experiment.
458    
459     \item Line 27,
460     \begin{verbatim}
461     gravity=9.81,
462     \end{verbatim}
463 cnh 1.3 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
464 adcroft 1.1 \fbox{
465     \begin{minipage}{5.0in}
466     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
467     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
468     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
469     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
470     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
471     \end{minipage}
472     }
473    
474    
475     \item Line 28-29,
476     \begin{verbatim}
477     rigidLid=.FALSE.,
478     implicitFreeSurface=.TRUE.,
479     \end{verbatim}
480     Selects the barotropic pressure equation to be the implicit free surface
481     formulation.
482    
483     \item Line 30,
484     \begin{verbatim}
485     eosType='POLY3',
486     \end{verbatim}
487     Selects the third order polynomial form of the equation of state.\\
488     \fbox{
489     \begin{minipage}{5.0in}
490     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
491     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
492     \end{minipage}
493     }
494    
495     \item Line 31,
496     \begin{verbatim}
497     readBinaryPrec=32,
498     \end{verbatim}
499     Sets format for reading binary input datasets holding model fields to
500     use 32-bit representation for floating-point numbers.\\
501     \fbox{
502     \begin{minipage}{5.0in}
503     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
504     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
505     \end{minipage}
506     }
507    
508     \item Line 36,
509     \begin{verbatim}
510     cg2dMaxIters=1000,
511     \end{verbatim}
512     Sets maximum number of iterations the two-dimensional, conjugate
513     gradient solver will use, {\bf irrespective of convergence
514     criteria being met}.\\
515     \fbox{
516     \begin{minipage}{5.0in}
517     {\it S/R CG2D}~({\it cg2d.F})
518     \end{minipage}
519     }
520    
521     \item Line 37,
522     \begin{verbatim}
523     cg2dTargetResidual=1.E-13,
524     \end{verbatim}
525     Sets the tolerance which the two-dimensional, conjugate
526     gradient solver will use to test for convergence in equation
527 jmc 1.19 %- note: Description of Conjugate gradient method (& related params) is missing
528     % in the mean time, substitute this eq ref:
529     \ref{eq:elliptic-backward-free-surface} %\ref{eq:congrad_2d_resid}
530     to $1 \times 10^{-13}$.
531     Solver will iterate until tolerance falls below this value or until the
532     maximum number of solver iterations is reached.\\
533 adcroft 1.1 \fbox{
534     \begin{minipage}{5.0in}
535     {\it S/R CG2D}~({\it cg2d.F})
536     \end{minipage}
537     }
538    
539     \item Line 42,
540     \begin{verbatim}
541     startTime=0,
542     \end{verbatim}
543     Sets the starting time for the model internal time counter.
544     When set to non-zero this option implicitly requests a
545     checkpoint file be read for initial state.
546     By default the checkpoint file is named according to
547     the integer number of time steps in the {\bf startTime} value.
548     The internal time counter works in seconds.
549    
550     \item Line 43,
551     \begin{verbatim}
552     endTime=2808000.,
553     \end{verbatim}
554     Sets the time (in seconds) at which this simulation will terminate.
555     At the end of a simulation a checkpoint file is automatically
556     written so that a numerical experiment can consist of multiple
557     stages.
558    
559     \item Line 44,
560     \begin{verbatim}
561     #endTime=62208000000,
562     \end{verbatim}
563     A commented out setting for endTime for a 2000 year simulation.
564    
565     \item Line 45,
566     \begin{verbatim}
567     deltaTmom=2400.0,
568     \end{verbatim}
569     Sets the timestep $\delta t_{v}$ used in the momentum equations to
570     $20~{\rm mins}$.
571 jmc 1.19 %- note: Distord Physics (using different time-steps) is not described
572     % in the mean time, put this section ref:
573     See section \ref{sec:time_stepping}. %\ref{sec:mom_time_stepping}.
574 adcroft 1.1
575     \fbox{
576     \begin{minipage}{5.0in}
577     {\it S/R TIMESTEP}({\it timestep.F})
578     \end{minipage}
579     }
580    
581     \item Line 46,
582     \begin{verbatim}
583     tauCD=321428.,
584     \end{verbatim}
585 jmc 1.19 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$
586     used in the momentum equations.
587     %- note: description of CD-scheme pkg (and related params) is missing;
588     % in the mean time, comment out this ref.
589     %See section \ref{sec:cd_scheme}.
590 adcroft 1.1
591     \fbox{
592     \begin{minipage}{5.0in}
593     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
594 jmc 1.15 {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F})
595 adcroft 1.1 \end{minipage}
596     }
597    
598     \item Line 47,
599     \begin{verbatim}
600     deltaTtracer=108000.,
601     \end{verbatim}
602     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
603     $30~{\rm hours}$.
604 jmc 1.19 %- note: Distord Physics (using different time-steps) is not described
605     % in the mean time, put this section ref:
606     See section \ref{sec:time_stepping}. %\ref{sec:tracer_time_stepping}.
607 adcroft 1.1
608     \fbox{
609     \begin{minipage}{5.0in}
610     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
611     \end{minipage}
612     }
613    
614     \item Line 47,
615     \begin{verbatim}
616     bathyFile='topog.box'
617     \end{verbatim}
618     This line specifies the name of the file from which the domain
619     bathymetry is read. This file is a two-dimensional ($x,y$) map of
620     depths. This file is assumed to contain 64-bit binary numbers
621     giving the depth of the model at each grid cell, ordered with the x
622     coordinate varying fastest. The points are ordered from low coordinate
623     to high coordinate for both axes. The units and orientation of the
624     depths in this file are the same as used in the MITgcm code. In this
625     experiment, a depth of $0m$ indicates a solid wall and a depth
626     of $-2000m$ indicates open ocean. The matlab program
627     {\it input/gendata.m} shows an example of how to generate a
628     bathymetry file.
629    
630    
631     \item Line 50,
632     \begin{verbatim}
633     zonalWindFile='windx.sin_y'
634     \end{verbatim}
635     This line specifies the name of the file from which the x-direction
636     surface wind stress is read. This file is also a two-dimensional
637     ($x,y$) map and is enumerated and formatted in the same manner as the
638     bathymetry file. The matlab program {\it input/gendata.m} includes example
639     code to generate a valid
640     {\bf zonalWindFile}
641     file.
642    
643     \end{itemize}
644    
645     \noindent other lines in the file {\it input/data} are standard values
646     that are described in the MITgcm Getting Started and MITgcm Parameters
647     notes.
648    
649     \begin{small}
650 jmc 1.18 \input{s_examples/global_oce_latlon/input/data}
651 adcroft 1.1 \end{small}
652    
653     \subsubsection{File {\it input/data.pkg}}
654 jmc 1.19 %\label{www:tutorials}
655 adcroft 1.1
656     This file uses standard default values and does not contain
657     customisations for this experiment.
658    
659     \subsubsection{File {\it input/eedata}}
660 jmc 1.19 %\label{www:tutorials}
661 adcroft 1.1
662     This file uses standard default values and does not contain
663     customisations for this experiment.
664    
665     \subsubsection{File {\it input/windx.sin\_y}}
666 jmc 1.19 %\label{www:tutorials}
667 adcroft 1.1
668     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
669     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
670     Although $\tau_{x}$ is only a function of $y$n in this experiment
671     this file must still define a complete two-dimensional map in order
672     to be compatible with the standard code for loading forcing fields
673     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
674     code for creating the {\it input/windx.sin\_y} file.
675    
676     \subsubsection{File {\it input/topog.box}}
677 jmc 1.19 %\label{www:tutorials}
678 adcroft 1.1
679    
680     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
681     map of depth values. For this experiment values are either
682     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
683     ocean. The file contains a raw binary stream of data that is enumerated
684     in the same way as standard MITgcm two-dimensional, horizontal arrays.
685     The included matlab program {\it input/gendata.m} gives a complete
686     code for creating the {\it input/topog.box} file.
687    
688     \subsubsection{File {\it code/SIZE.h}}
689 jmc 1.19 %\label{www:tutorials}
690 adcroft 1.1
691     Two lines are customized in this file for the current experiment
692    
693     \begin{itemize}
694    
695     \item Line 39,
696     \begin{verbatim} sNx=60, \end{verbatim} this line sets
697     the lateral domain extent in grid points for the
698     axis aligned with the x-coordinate.
699    
700     \item Line 40,
701     \begin{verbatim} sNy=60, \end{verbatim} this line sets
702     the lateral domain extent in grid points for the
703     axis aligned with the y-coordinate.
704    
705     \item Line 49,
706     \begin{verbatim} Nr=4, \end{verbatim} this line sets
707     the vertical domain extent in grid points.
708    
709     \end{itemize}
710    
711     \begin{small}
712 jmc 1.18 \input{s_examples/global_oce_latlon/code/SIZE.h}
713 adcroft 1.1 \end{small}
714    
715     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
716 jmc 1.19 %\label{www:tutorials}
717 adcroft 1.1
718     This file uses standard default values and does not contain
719     customisations for this experiment.
720    
721    
722     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
723 jmc 1.19 %\label{www:tutorials}
724 adcroft 1.1
725     This file uses standard default values and does not contain
726     customisations for this experiment.
727    
728     \subsubsection{Other Files }
729 jmc 1.19 %\label{www:tutorials}
730 adcroft 1.1
731     Other files relevant to this experiment are
732     \begin{itemize}
733     \item {\it model/src/ini\_cori.F}. This file initializes the model
734     coriolis variables {\bf fCorU}.
735     \item {\it model/src/ini\_spherical\_polar\_grid.F}
736     \item {\it model/src/ini\_parms.F},
737     \item {\it input/windx.sin\_y},
738     \end{itemize}
739     contain the code customisations and parameter settings for this
740 cnh 1.3 experiments. Below we describe the customisations
741 adcroft 1.1 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22