/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.16 - (hide annotations) (download) (as text)
Tue Jan 15 20:04:06 2008 UTC (17 years, 6 months ago) by jmc
Branch: MAIN
Changes since 1.15: +4 -1 lines
File MIME type: application/x-tex
add directory name

1 jmc 1.16 % $Header: /u/gcmpack/manual/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.15 2006/06/28 18:57:15 jmc Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4 edhill 1.13 \section[Global Ocean MITgcm Exmaple]{Global Ocean Simulation at $4^\circ$ Resolution}
5 adcroft 1.9 \label{www:tutorials}
6 adcroft 1.7 \label{sect:eg-global}
7 edhill 1.12 \begin{rawhtml}
8     <!-- CMIREDIR:eg-global: -->
9     \end{rawhtml}
10 jmc 1.16 \begin{center}
11     (in directory: {\it verification/tutorial\_global\_oce\_latlon/})
12     \end{center}
13 adcroft 1.1
14     \bodytext{bgcolor="#FFFFFFFF"}
15    
16     %\begin{center}
17 cnh 1.3 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
18 adcroft 1.1 %At Four Degree Resolution with Asynchronous Time Stepping}
19     %
20     %\vspace*{4mm}
21     %
22     %\vspace*{3mm}
23     %{\large May 2001}
24     %\end{center}
25    
26    
27     This example experiment demonstrates using the MITgcm to simulate
28     the planetary ocean circulation. The simulation is configured
29     with realistic geography and bathymetry on a
30     $4^{\circ} \times 4^{\circ}$ spherical polar grid.
31 molod 1.14 The files for this experiment are in the verification directory
32     under tutorial\_global\_oce\_latlon.
33 adcroft 1.1 Twenty levels are used in the vertical, ranging in thickness
34     from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
35     giving a maximum model depth of $6\,{\rm km}$.
36     At this resolution, the configuration
37     can be integrated forward for thousands of years on a single
38     processor desktop computer.
39     \\
40 cnh 1.8 \subsection{Overview}
41 adcroft 1.9 \label{www:tutorials}
42 adcroft 1.1
43 cnh 1.3 The model is forced with climatological wind stress data and surface
44     flux data from DaSilva \cite{DaSilva94}. Climatological data
45     from Levitus \cite{Levitus94} is used to initialize the model hydrography.
46     Levitus seasonal climatology data is also used throughout the calculation
47 adcroft 1.1 to provide additional air-sea fluxes.
48 cnh 1.3 These fluxes are combined with the DaSilva climatological estimates of
49 adcroft 1.1 surface heat flux and fresh water, resulting in a mixed boundary
50 cnh 1.3 condition of the style described in Haney \cite{Haney}.
51 adcroft 1.1 Altogether, this yields the following forcing applied
52     in the model surface layer.
53    
54     \begin{eqnarray}
55 cnh 1.8 \label{EQ:eg-global-global_forcing}
56     \label{EQ:eg-global-global_forcing_fu}
57 adcroft 1.1 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
58     \\
59 cnh 1.8 \label{EQ:eg-global-global_forcing_fv}
60 adcroft 1.1 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
61     \\
62 cnh 1.8 \label{EQ:eg-global-global_forcing_ft}
63 adcroft 1.1 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
64     - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
65     \\
66 cnh 1.8 \label{EQ:eg-global-global_forcing_fs}
67 adcroft 1.1 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
68     + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
69     \end{eqnarray}
70    
71     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
72     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
73     momentum and in the potential temperature and salinity
74     equations respectively.
75     The term $\Delta z_{s}$ represents the top ocean layer thickness in
76     meters.
77     It is used in conjunction with a reference density, $\rho_{0}$
78     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
79     reference salinity, $S_{0}$ (here set to 35~ppt),
80     and a specific heat capacity, $C_{p}$ (here set to
81     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
82     input dataset values into time tendencies of
83     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
84     salinity (with units ${\rm ppt}~s^{-1}$) and
85     velocity (with units ${\rm m}~{\rm s}^{-2}$).
86     The externally supplied forcing fields used in this
87     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
88     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
89     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
90     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
91     respectively. The salinity forcing fields ($S^{\ast}$ and
92     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
93 cnh 1.8 respectively. The source files and procedures for ingesting this data into the
94     simulation are described in the experiment configuration discussion in section
95     \ref{SEC:eg-global-clim_ocn_examp_exp_config}.
96 adcroft 1.1
97    
98     \subsection{Discrete Numerical Configuration}
99 adcroft 1.9 \label{www:tutorials}
100 adcroft 1.1
101    
102     The model is configured in hydrostatic form. The domain is discretised with
103     a uniform grid spacing in latitude and longitude on the sphere
104     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
105     that there are ninety grid cells in the zonal and forty in the
106     meridional direction. The internal model coordinate variables
107 cnh 1.3 $x$ and $y$ are initialized according to
108 adcroft 1.1 \begin{eqnarray}
109     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
110 cnh 1.8 y=r\lambda,~\Delta y &= &r\Delta \lambda
111 adcroft 1.1 \end{eqnarray}
112    
113     Arctic polar regions are not
114     included in this experiment. Meridionally the model extends from
115     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
116     Vertically the model is configured with twenty layers with the
117     following thicknesses
118     $\Delta z_{1} = 50\,{\rm m},\,
119     \Delta z_{2} = 50\,{\rm m},\,
120     \Delta z_{3} = 55\,{\rm m},\,
121     \Delta z_{4} = 60\,{\rm m},\,
122     \Delta z_{5} = 65\,{\rm m},\,
123     $
124     $
125     \Delta z_{6}~=~70\,{\rm m},\,
126     \Delta z_{7}~=~80\,{\rm m},\,
127     \Delta z_{8}~=95\,{\rm m},\,
128     \Delta z_{9}=120\,{\rm m},\,
129     \Delta z_{10}=155\,{\rm m},\,
130     $
131     $
132     \Delta z_{11}=200\,{\rm m},\,
133     \Delta z_{12}=260\,{\rm m},\,
134     \Delta z_{13}=320\,{\rm m},\,
135     \Delta z_{14}=400\,{\rm m},\,
136     \Delta z_{15}=480\,{\rm m},\,
137     $
138     $
139     \Delta z_{16}=570\,{\rm m},\,
140     \Delta z_{17}=655\,{\rm m},\,
141     \Delta z_{18}=725\,{\rm m},\,
142     \Delta z_{19}=775\,{\rm m},\,
143     \Delta z_{20}=815\,{\rm m}
144 cnh 1.8 $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
145     give a total depth, $H$, of $-5450{\rm m}$.
146 adcroft 1.1 The implicit free surface form of the pressure equation described in Marshall et. al
147 adcroft 1.6 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
148 cnh 1.3 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
149 adcroft 1.1
150 cnh 1.8 Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations})
151     for both the zonal flow, $u$ and the meridional flow $v$, according to equations
152     (\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}).
153     Thermodynamic forcing inputs are added to the equations
154     in (\ref{EQ:eg-global-model_equations}) for
155 adcroft 1.1 potential temperature, $\theta$, and salinity, $S$, according to equations
156 cnh 1.8 (\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}).
157 adcroft 1.1 This produces a set of equations solved in this configuration as follows:
158    
159     \begin{eqnarray}
160 cnh 1.8 \label{EQ:eg-global-model_equations}
161 adcroft 1.1 \frac{Du}{Dt} - fv +
162     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
163     \nabla_{h}\cdot A_{h}\nabla_{h}u -
164     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
165     & = &
166     \begin{cases}
167     {\cal F}_u & \text{(surface)} \\
168     0 & \text{(interior)}
169     \end{cases}
170     \\
171     \frac{Dv}{Dt} + fu +
172     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
173     \nabla_{h}\cdot A_{h}\nabla_{h}v -
174     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
175     & = &
176     \begin{cases}
177     {\cal F}_v & \text{(surface)} \\
178     0 & \text{(interior)}
179     \end{cases}
180     \\
181     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
182     &=&
183     0
184     \\
185     \frac{D\theta}{Dt} -
186     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
187     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
188     & = &
189     \begin{cases}
190     {\cal F}_\theta & \text{(surface)} \\
191     0 & \text{(interior)}
192     \end{cases}
193     \\
194     \frac{D s}{Dt} -
195     \nabla_{h}\cdot K_{h}\nabla_{h}s
196     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
197     & = &
198     \begin{cases}
199     {\cal F}_s & \text{(surface)} \\
200     0 & \text{(interior)}
201     \end{cases}
202     \\
203     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
204     \end{eqnarray}
205    
206     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
207     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
208     are the zonal and meridional components of the
209     flow vector, $\vec{u}$, on the sphere. As described in
210 adcroft 1.5 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
211 adcroft 1.1 evolution of potential temperature, $\theta$, equation is solved prognostically.
212     The total pressure, $p$, is diagnosed by summing pressure due to surface
213     elevation $\eta$ and the hydrostatic pressure.
214     \\
215    
216     \subsubsection{Numerical Stability Criteria}
217 adcroft 1.9 \label{www:tutorials}
218 adcroft 1.1
219 cnh 1.3 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
220 adcroft 1.4 This value is chosen to yield a Munk layer width \cite{adcroft:95},
221 adcroft 1.1 \begin{eqnarray}
222 cnh 1.8 \label{EQ:eg-global-munk_layer}
223 adcroft 1.10 && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
224 adcroft 1.1 \end{eqnarray}
225    
226     \noindent of $\approx 600$km. This is greater than the model
227     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
228     boundary layer is adequately resolved.
229     \\
230    
231     \noindent The model is stepped forward with a
232     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
233     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
234 adcroft 1.4 parameter to the horizontal Laplacian friction \cite{adcroft:95}
235 adcroft 1.1 \begin{eqnarray}
236 cnh 1.8 \label{EQ:eg-global-laplacian_stability}
237 adcroft 1.10 && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
238 adcroft 1.1 \end{eqnarray}
239    
240     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
241     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
242     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
243     \\
244    
245     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
246     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
247     \begin{eqnarray}
248 cnh 1.8 \label{EQ:eg-global-laplacian_stability_z}
249 adcroft 1.1 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
250     \end{eqnarray}
251    
252     \noindent evaluates to $0.015$ for the smallest model
253 cnh 1.3 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
254 adcroft 1.1 the upper stability limit.
255     \\
256    
257     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
258     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
259     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
260     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
261     Here the stability parameter
262     \begin{eqnarray}
263 cnh 1.8 \label{EQ:eg-global-laplacian_stability_xtheta}
264 adcroft 1.1 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
265     \end{eqnarray}
266 cnh 1.3 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
267 adcroft 1.1 stability parameter related to $K_{z}$
268     \begin{eqnarray}
269 cnh 1.8 \label{EQ:eg-global-laplacian_stability_ztheta}
270 adcroft 1.1 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
271     \end{eqnarray}
272     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
273     of $S_{l} \approx 0.5$.
274     \\
275    
276     \noindent The numerical stability for inertial oscillations
277 adcroft 1.4 \cite{adcroft:95}
278 adcroft 1.1
279     \begin{eqnarray}
280 cnh 1.8 \label{EQ:eg-global-inertial_stability}
281 adcroft 1.1 S_{i} = f^{2} {\delta t_v}^2
282     \end{eqnarray}
283    
284     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
285     the $S_{i} < 1$ upper limit for stability.
286     \\
287    
288 adcroft 1.4 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
289 adcroft 1.1 horizontal flow
290     speed of $ | \vec{u} | = 2 ms^{-1}$
291    
292     \begin{eqnarray}
293 cnh 1.8 \label{EQ:eg-global-cfl_stability}
294 adcroft 1.1 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
295     \end{eqnarray}
296    
297     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
298     limit of 0.5.
299     \\
300    
301 cnh 1.3 \noindent The stability parameter for internal gravity waves propagating
302 adcroft 1.1 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
303 adcroft 1.4 \cite{adcroft:95}
304 adcroft 1.1
305     \begin{eqnarray}
306 cnh 1.8 \label{EQ:eg-global-gfl_stability}
307 adcroft 1.1 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
308     \end{eqnarray}
309    
310     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
311     stability limit of 0.5.
312    
313     \subsection{Experiment Configuration}
314 adcroft 1.9 \label{www:tutorials}
315 cnh 1.8 \label{SEC:eg-global-clim_ocn_examp_exp_config}
316 adcroft 1.1
317     The model configuration for this experiment resides under the
318 cnh 1.8 directory {\it tutorial\_examples/global\_ocean\_circulation/}.
319     The experiment files
320    
321 adcroft 1.1 \begin{itemize}
322     \item {\it input/data}
323     \item {\it input/data.pkg}
324     \item {\it input/eedata},
325     \item {\it input/windx.bin},
326     \item {\it input/windy.bin},
327     \item {\it input/salt.bin},
328     \item {\it input/theta.bin},
329     \item {\it input/SSS.bin},
330     \item {\it input/SST.bin},
331     \item {\it input/topog.bin},
332     \item {\it code/CPP\_EEOPTIONS.h}
333     \item {\it code/CPP\_OPTIONS.h},
334     \item {\it code/SIZE.h}.
335     \end{itemize}
336 cnh 1.3 contain the code customizations and parameter settings for these
337     experiments. Below we describe the customizations
338 adcroft 1.1 to these files associated with this experiment.
339 cnh 1.8
340     \subsubsection{Driving Datasets}
341 adcroft 1.9 \label{www:tutorials}
342 cnh 1.8
343     Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
344     relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
345     the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
346     and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
347     in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
348     also indicate the lateral extent and coastline used in the experiment.
349     Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
350     domain.
351    
352 adcroft 1.1
353     \subsubsection{File {\it input/data}}
354 adcroft 1.9 \label{www:tutorials}
355 adcroft 1.1
356     This file, reproduced completely below, specifies the main parameters
357     for the experiment. The parameters that are significant for this configuration
358     are
359    
360     \begin{itemize}
361    
362     \item Lines 7-10 and 11-14
363     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
364     $\cdots$ \\
365     set reference values for potential
366 edhill 1.13 temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and
367 adcroft 1.1 ${\rm ppt}$. The entries are ordered from surface to depth.
368     Density is calculated from anomalies at each level evaluated
369     with respect to the reference values set here.\\
370     \fbox{
371     \begin{minipage}{5.0in}
372     {\it S/R INI\_THETA}({\it ini\_theta.F})
373     \end{minipage}
374     }
375    
376    
377     \item Line 15,
378     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
379 cnh 1.3 this line sets the vertical Laplacian dissipation coefficient to
380 adcroft 1.1 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
381     for this operator are specified later. This variable is copied into
382     model general vertical coordinate variable {\bf viscAr}.
383    
384     \fbox{
385     \begin{minipage}{5.0in}
386     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
387     \end{minipage}
388     }
389    
390     \item Line 16,
391     \begin{verbatim}
392     viscAh=5.E5,
393     \end{verbatim}
394 cnh 1.3 this line sets the horizontal Laplacian frictional dissipation coefficient to
395 adcroft 1.1 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
396     for this operator are specified later.
397    
398     \item Lines 17,
399     \begin{verbatim}
400     no_slip_sides=.FALSE.
401     \end{verbatim}
402     this line selects a free-slip lateral boundary condition for
403 cnh 1.3 the horizontal Laplacian friction operator
404 adcroft 1.1 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
405     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
406    
407     \item Lines 9,
408     \begin{verbatim}
409     no_slip_bottom=.TRUE.
410     \end{verbatim}
411     this line selects a no-slip boundary condition for bottom
412 cnh 1.3 boundary condition in the vertical Laplacian friction operator
413 adcroft 1.1 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
414    
415     \item Line 19,
416     \begin{verbatim}
417     diffKhT=1.E3,
418     \end{verbatim}
419     this line sets the horizontal diffusion coefficient for temperature
420     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
421     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
422     all boundaries.
423    
424     \item Line 20,
425     \begin{verbatim}
426     diffKzT=3.E-5,
427     \end{verbatim}
428     this line sets the vertical diffusion coefficient for temperature
429     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
430     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
431     the upper and lower boundaries.
432    
433     \item Line 21,
434     \begin{verbatim}
435     diffKhS=1.E3,
436     \end{verbatim}
437     this line sets the horizontal diffusion coefficient for salinity
438     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
439     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
440     all boundaries.
441    
442     \item Line 22,
443     \begin{verbatim}
444     diffKzS=3.E-5,
445     \end{verbatim}
446     this line sets the vertical diffusion coefficient for salinity
447     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
448     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
449     the upper and lower boundaries.
450    
451     \item Lines 23-26
452     \begin{verbatim}
453     beta=1.E-11,
454     \end{verbatim}
455     \vspace{-5mm}$\cdots$\\
456     These settings do not apply for this experiment.
457    
458     \item Line 27,
459     \begin{verbatim}
460     gravity=9.81,
461     \end{verbatim}
462 cnh 1.3 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
463 adcroft 1.1 \fbox{
464     \begin{minipage}{5.0in}
465     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
466     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
467     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
468     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
469     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
470     \end{minipage}
471     }
472    
473    
474     \item Line 28-29,
475     \begin{verbatim}
476     rigidLid=.FALSE.,
477     implicitFreeSurface=.TRUE.,
478     \end{verbatim}
479     Selects the barotropic pressure equation to be the implicit free surface
480     formulation.
481    
482     \item Line 30,
483     \begin{verbatim}
484     eosType='POLY3',
485     \end{verbatim}
486     Selects the third order polynomial form of the equation of state.\\
487     \fbox{
488     \begin{minipage}{5.0in}
489     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
490     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
491     \end{minipage}
492     }
493    
494     \item Line 31,
495     \begin{verbatim}
496     readBinaryPrec=32,
497     \end{verbatim}
498     Sets format for reading binary input datasets holding model fields to
499     use 32-bit representation for floating-point numbers.\\
500     \fbox{
501     \begin{minipage}{5.0in}
502     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
503     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
504     \end{minipage}
505     }
506    
507     \item Line 36,
508     \begin{verbatim}
509     cg2dMaxIters=1000,
510     \end{verbatim}
511     Sets maximum number of iterations the two-dimensional, conjugate
512     gradient solver will use, {\bf irrespective of convergence
513     criteria being met}.\\
514     \fbox{
515     \begin{minipage}{5.0in}
516     {\it S/R CG2D}~({\it cg2d.F})
517     \end{minipage}
518     }
519    
520     \item Line 37,
521     \begin{verbatim}
522     cg2dTargetResidual=1.E-13,
523     \end{verbatim}
524     Sets the tolerance which the two-dimensional, conjugate
525     gradient solver will use to test for convergence in equation
526     \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
527     Solver will iterate until
528     tolerance falls below this value or until the maximum number of
529     solver iterations is reached.\\
530     \fbox{
531     \begin{minipage}{5.0in}
532     {\it S/R CG2D}~({\it cg2d.F})
533     \end{minipage}
534     }
535    
536     \item Line 42,
537     \begin{verbatim}
538     startTime=0,
539     \end{verbatim}
540     Sets the starting time for the model internal time counter.
541     When set to non-zero this option implicitly requests a
542     checkpoint file be read for initial state.
543     By default the checkpoint file is named according to
544     the integer number of time steps in the {\bf startTime} value.
545     The internal time counter works in seconds.
546    
547     \item Line 43,
548     \begin{verbatim}
549     endTime=2808000.,
550     \end{verbatim}
551     Sets the time (in seconds) at which this simulation will terminate.
552     At the end of a simulation a checkpoint file is automatically
553     written so that a numerical experiment can consist of multiple
554     stages.
555    
556     \item Line 44,
557     \begin{verbatim}
558     #endTime=62208000000,
559     \end{verbatim}
560     A commented out setting for endTime for a 2000 year simulation.
561    
562     \item Line 45,
563     \begin{verbatim}
564     deltaTmom=2400.0,
565     \end{verbatim}
566     Sets the timestep $\delta t_{v}$ used in the momentum equations to
567     $20~{\rm mins}$.
568     See section \ref{SEC:mom_time_stepping}.
569    
570     \fbox{
571     \begin{minipage}{5.0in}
572     {\it S/R TIMESTEP}({\it timestep.F})
573     \end{minipage}
574     }
575    
576     \item Line 46,
577     \begin{verbatim}
578     tauCD=321428.,
579     \end{verbatim}
580     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
581     See section \ref{SEC:cd_scheme}.
582    
583     \fbox{
584     \begin{minipage}{5.0in}
585     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
586 jmc 1.15 {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F})
587 adcroft 1.1 \end{minipage}
588     }
589    
590     \item Line 47,
591     \begin{verbatim}
592     deltaTtracer=108000.,
593     \end{verbatim}
594     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
595     $30~{\rm hours}$.
596     See section \ref{SEC:tracer_time_stepping}.
597    
598     \fbox{
599     \begin{minipage}{5.0in}
600     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
601     \end{minipage}
602     }
603    
604     \item Line 47,
605     \begin{verbatim}
606     bathyFile='topog.box'
607     \end{verbatim}
608     This line specifies the name of the file from which the domain
609     bathymetry is read. This file is a two-dimensional ($x,y$) map of
610     depths. This file is assumed to contain 64-bit binary numbers
611     giving the depth of the model at each grid cell, ordered with the x
612     coordinate varying fastest. The points are ordered from low coordinate
613     to high coordinate for both axes. The units and orientation of the
614     depths in this file are the same as used in the MITgcm code. In this
615     experiment, a depth of $0m$ indicates a solid wall and a depth
616     of $-2000m$ indicates open ocean. The matlab program
617     {\it input/gendata.m} shows an example of how to generate a
618     bathymetry file.
619    
620    
621     \item Line 50,
622     \begin{verbatim}
623     zonalWindFile='windx.sin_y'
624     \end{verbatim}
625     This line specifies the name of the file from which the x-direction
626     surface wind stress is read. This file is also a two-dimensional
627     ($x,y$) map and is enumerated and formatted in the same manner as the
628     bathymetry file. The matlab program {\it input/gendata.m} includes example
629     code to generate a valid
630     {\bf zonalWindFile}
631     file.
632    
633     \end{itemize}
634    
635     \noindent other lines in the file {\it input/data} are standard values
636     that are described in the MITgcm Getting Started and MITgcm Parameters
637     notes.
638    
639     \begin{small}
640     \input{part3/case_studies/climatalogical_ogcm/input/data}
641     \end{small}
642    
643     \subsubsection{File {\it input/data.pkg}}
644 adcroft 1.9 \label{www:tutorials}
645 adcroft 1.1
646     This file uses standard default values and does not contain
647     customisations for this experiment.
648    
649     \subsubsection{File {\it input/eedata}}
650 adcroft 1.9 \label{www:tutorials}
651 adcroft 1.1
652     This file uses standard default values and does not contain
653     customisations for this experiment.
654    
655     \subsubsection{File {\it input/windx.sin\_y}}
656 adcroft 1.9 \label{www:tutorials}
657 adcroft 1.1
658     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
659     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
660     Although $\tau_{x}$ is only a function of $y$n in this experiment
661     this file must still define a complete two-dimensional map in order
662     to be compatible with the standard code for loading forcing fields
663     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
664     code for creating the {\it input/windx.sin\_y} file.
665    
666     \subsubsection{File {\it input/topog.box}}
667 adcroft 1.9 \label{www:tutorials}
668 adcroft 1.1
669    
670     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
671     map of depth values. For this experiment values are either
672     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
673     ocean. The file contains a raw binary stream of data that is enumerated
674     in the same way as standard MITgcm two-dimensional, horizontal arrays.
675     The included matlab program {\it input/gendata.m} gives a complete
676     code for creating the {\it input/topog.box} file.
677    
678     \subsubsection{File {\it code/SIZE.h}}
679 adcroft 1.9 \label{www:tutorials}
680 adcroft 1.1
681     Two lines are customized in this file for the current experiment
682    
683     \begin{itemize}
684    
685     \item Line 39,
686     \begin{verbatim} sNx=60, \end{verbatim} this line sets
687     the lateral domain extent in grid points for the
688     axis aligned with the x-coordinate.
689    
690     \item Line 40,
691     \begin{verbatim} sNy=60, \end{verbatim} this line sets
692     the lateral domain extent in grid points for the
693     axis aligned with the y-coordinate.
694    
695     \item Line 49,
696     \begin{verbatim} Nr=4, \end{verbatim} this line sets
697     the vertical domain extent in grid points.
698    
699     \end{itemize}
700    
701     \begin{small}
702     \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
703     \end{small}
704    
705     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
706 adcroft 1.9 \label{www:tutorials}
707 adcroft 1.1
708     This file uses standard default values and does not contain
709     customisations for this experiment.
710    
711    
712     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
713 adcroft 1.9 \label{www:tutorials}
714 adcroft 1.1
715     This file uses standard default values and does not contain
716     customisations for this experiment.
717    
718     \subsubsection{Other Files }
719 adcroft 1.9 \label{www:tutorials}
720 adcroft 1.1
721     Other files relevant to this experiment are
722     \begin{itemize}
723     \item {\it model/src/ini\_cori.F}. This file initializes the model
724     coriolis variables {\bf fCorU}.
725     \item {\it model/src/ini\_spherical\_polar\_grid.F}
726     \item {\it model/src/ini\_parms.F},
727     \item {\it input/windx.sin\_y},
728     \end{itemize}
729     contain the code customisations and parameter settings for this
730 cnh 1.3 experiments. Below we describe the customisations
731 adcroft 1.1 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22