/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.14 - (hide annotations) (download) (as text)
Tue Jun 27 19:08:22 2006 UTC (19 years ago) by molod
Branch: MAIN
Changes since 1.13: +3 -1 lines
File MIME type: application/x-tex
Add cross references between tutorials and verification file system directories

1 molod 1.14 % $Header: /u/gcmpack/manual/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.13 2006/04/08 01:50:50 edhill Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4 edhill 1.13 \section[Global Ocean MITgcm Exmaple]{Global Ocean Simulation at $4^\circ$ Resolution}
5 adcroft 1.9 \label{www:tutorials}
6 adcroft 1.7 \label{sect:eg-global}
7 edhill 1.12 \begin{rawhtml}
8     <!-- CMIREDIR:eg-global: -->
9     \end{rawhtml}
10 adcroft 1.1
11     \bodytext{bgcolor="#FFFFFFFF"}
12    
13     %\begin{center}
14 cnh 1.3 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
15 adcroft 1.1 %At Four Degree Resolution with Asynchronous Time Stepping}
16     %
17     %\vspace*{4mm}
18     %
19     %\vspace*{3mm}
20     %{\large May 2001}
21     %\end{center}
22    
23    
24     This example experiment demonstrates using the MITgcm to simulate
25     the planetary ocean circulation. The simulation is configured
26     with realistic geography and bathymetry on a
27     $4^{\circ} \times 4^{\circ}$ spherical polar grid.
28 molod 1.14 The files for this experiment are in the verification directory
29     under tutorial\_global\_oce\_latlon.
30 adcroft 1.1 Twenty levels are used in the vertical, ranging in thickness
31     from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
32     giving a maximum model depth of $6\,{\rm km}$.
33     At this resolution, the configuration
34     can be integrated forward for thousands of years on a single
35     processor desktop computer.
36     \\
37 cnh 1.8 \subsection{Overview}
38 adcroft 1.9 \label{www:tutorials}
39 adcroft 1.1
40 cnh 1.3 The model is forced with climatological wind stress data and surface
41     flux data from DaSilva \cite{DaSilva94}. Climatological data
42     from Levitus \cite{Levitus94} is used to initialize the model hydrography.
43     Levitus seasonal climatology data is also used throughout the calculation
44 adcroft 1.1 to provide additional air-sea fluxes.
45 cnh 1.3 These fluxes are combined with the DaSilva climatological estimates of
46 adcroft 1.1 surface heat flux and fresh water, resulting in a mixed boundary
47 cnh 1.3 condition of the style described in Haney \cite{Haney}.
48 adcroft 1.1 Altogether, this yields the following forcing applied
49     in the model surface layer.
50    
51     \begin{eqnarray}
52 cnh 1.8 \label{EQ:eg-global-global_forcing}
53     \label{EQ:eg-global-global_forcing_fu}
54 adcroft 1.1 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
55     \\
56 cnh 1.8 \label{EQ:eg-global-global_forcing_fv}
57 adcroft 1.1 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
58     \\
59 cnh 1.8 \label{EQ:eg-global-global_forcing_ft}
60 adcroft 1.1 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
61     - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
62     \\
63 cnh 1.8 \label{EQ:eg-global-global_forcing_fs}
64 adcroft 1.1 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
65     + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
66     \end{eqnarray}
67    
68     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
69     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
70     momentum and in the potential temperature and salinity
71     equations respectively.
72     The term $\Delta z_{s}$ represents the top ocean layer thickness in
73     meters.
74     It is used in conjunction with a reference density, $\rho_{0}$
75     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
76     reference salinity, $S_{0}$ (here set to 35~ppt),
77     and a specific heat capacity, $C_{p}$ (here set to
78     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
79     input dataset values into time tendencies of
80     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
81     salinity (with units ${\rm ppt}~s^{-1}$) and
82     velocity (with units ${\rm m}~{\rm s}^{-2}$).
83     The externally supplied forcing fields used in this
84     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
85     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
86     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
87     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
88     respectively. The salinity forcing fields ($S^{\ast}$ and
89     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
90 cnh 1.8 respectively. The source files and procedures for ingesting this data into the
91     simulation are described in the experiment configuration discussion in section
92     \ref{SEC:eg-global-clim_ocn_examp_exp_config}.
93 adcroft 1.1
94    
95     \subsection{Discrete Numerical Configuration}
96 adcroft 1.9 \label{www:tutorials}
97 adcroft 1.1
98    
99     The model is configured in hydrostatic form. The domain is discretised with
100     a uniform grid spacing in latitude and longitude on the sphere
101     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
102     that there are ninety grid cells in the zonal and forty in the
103     meridional direction. The internal model coordinate variables
104 cnh 1.3 $x$ and $y$ are initialized according to
105 adcroft 1.1 \begin{eqnarray}
106     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
107 cnh 1.8 y=r\lambda,~\Delta y &= &r\Delta \lambda
108 adcroft 1.1 \end{eqnarray}
109    
110     Arctic polar regions are not
111     included in this experiment. Meridionally the model extends from
112     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
113     Vertically the model is configured with twenty layers with the
114     following thicknesses
115     $\Delta z_{1} = 50\,{\rm m},\,
116     \Delta z_{2} = 50\,{\rm m},\,
117     \Delta z_{3} = 55\,{\rm m},\,
118     \Delta z_{4} = 60\,{\rm m},\,
119     \Delta z_{5} = 65\,{\rm m},\,
120     $
121     $
122     \Delta z_{6}~=~70\,{\rm m},\,
123     \Delta z_{7}~=~80\,{\rm m},\,
124     \Delta z_{8}~=95\,{\rm m},\,
125     \Delta z_{9}=120\,{\rm m},\,
126     \Delta z_{10}=155\,{\rm m},\,
127     $
128     $
129     \Delta z_{11}=200\,{\rm m},\,
130     \Delta z_{12}=260\,{\rm m},\,
131     \Delta z_{13}=320\,{\rm m},\,
132     \Delta z_{14}=400\,{\rm m},\,
133     \Delta z_{15}=480\,{\rm m},\,
134     $
135     $
136     \Delta z_{16}=570\,{\rm m},\,
137     \Delta z_{17}=655\,{\rm m},\,
138     \Delta z_{18}=725\,{\rm m},\,
139     \Delta z_{19}=775\,{\rm m},\,
140     \Delta z_{20}=815\,{\rm m}
141 cnh 1.8 $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
142     give a total depth, $H$, of $-5450{\rm m}$.
143 adcroft 1.1 The implicit free surface form of the pressure equation described in Marshall et. al
144 adcroft 1.6 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
145 cnh 1.3 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
146 adcroft 1.1
147 cnh 1.8 Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations})
148     for both the zonal flow, $u$ and the meridional flow $v$, according to equations
149     (\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}).
150     Thermodynamic forcing inputs are added to the equations
151     in (\ref{EQ:eg-global-model_equations}) for
152 adcroft 1.1 potential temperature, $\theta$, and salinity, $S$, according to equations
153 cnh 1.8 (\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}).
154 adcroft 1.1 This produces a set of equations solved in this configuration as follows:
155    
156     \begin{eqnarray}
157 cnh 1.8 \label{EQ:eg-global-model_equations}
158 adcroft 1.1 \frac{Du}{Dt} - fv +
159     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
160     \nabla_{h}\cdot A_{h}\nabla_{h}u -
161     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
162     & = &
163     \begin{cases}
164     {\cal F}_u & \text{(surface)} \\
165     0 & \text{(interior)}
166     \end{cases}
167     \\
168     \frac{Dv}{Dt} + fu +
169     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
170     \nabla_{h}\cdot A_{h}\nabla_{h}v -
171     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
172     & = &
173     \begin{cases}
174     {\cal F}_v & \text{(surface)} \\
175     0 & \text{(interior)}
176     \end{cases}
177     \\
178     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
179     &=&
180     0
181     \\
182     \frac{D\theta}{Dt} -
183     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
184     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
185     & = &
186     \begin{cases}
187     {\cal F}_\theta & \text{(surface)} \\
188     0 & \text{(interior)}
189     \end{cases}
190     \\
191     \frac{D s}{Dt} -
192     \nabla_{h}\cdot K_{h}\nabla_{h}s
193     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
194     & = &
195     \begin{cases}
196     {\cal F}_s & \text{(surface)} \\
197     0 & \text{(interior)}
198     \end{cases}
199     \\
200     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
201     \end{eqnarray}
202    
203     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
204     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
205     are the zonal and meridional components of the
206     flow vector, $\vec{u}$, on the sphere. As described in
207 adcroft 1.5 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
208 adcroft 1.1 evolution of potential temperature, $\theta$, equation is solved prognostically.
209     The total pressure, $p$, is diagnosed by summing pressure due to surface
210     elevation $\eta$ and the hydrostatic pressure.
211     \\
212    
213     \subsubsection{Numerical Stability Criteria}
214 adcroft 1.9 \label{www:tutorials}
215 adcroft 1.1
216 cnh 1.3 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
217 adcroft 1.4 This value is chosen to yield a Munk layer width \cite{adcroft:95},
218 adcroft 1.1 \begin{eqnarray}
219 cnh 1.8 \label{EQ:eg-global-munk_layer}
220 adcroft 1.10 && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
221 adcroft 1.1 \end{eqnarray}
222    
223     \noindent of $\approx 600$km. This is greater than the model
224     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
225     boundary layer is adequately resolved.
226     \\
227    
228     \noindent The model is stepped forward with a
229     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
230     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
231 adcroft 1.4 parameter to the horizontal Laplacian friction \cite{adcroft:95}
232 adcroft 1.1 \begin{eqnarray}
233 cnh 1.8 \label{EQ:eg-global-laplacian_stability}
234 adcroft 1.10 && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
235 adcroft 1.1 \end{eqnarray}
236    
237     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
238     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
239     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
240     \\
241    
242     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
243     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
244     \begin{eqnarray}
245 cnh 1.8 \label{EQ:eg-global-laplacian_stability_z}
246 adcroft 1.1 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
247     \end{eqnarray}
248    
249     \noindent evaluates to $0.015$ for the smallest model
250 cnh 1.3 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
251 adcroft 1.1 the upper stability limit.
252     \\
253    
254     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
255     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
256     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
257     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
258     Here the stability parameter
259     \begin{eqnarray}
260 cnh 1.8 \label{EQ:eg-global-laplacian_stability_xtheta}
261 adcroft 1.1 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
262     \end{eqnarray}
263 cnh 1.3 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
264 adcroft 1.1 stability parameter related to $K_{z}$
265     \begin{eqnarray}
266 cnh 1.8 \label{EQ:eg-global-laplacian_stability_ztheta}
267 adcroft 1.1 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
268     \end{eqnarray}
269     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
270     of $S_{l} \approx 0.5$.
271     \\
272    
273     \noindent The numerical stability for inertial oscillations
274 adcroft 1.4 \cite{adcroft:95}
275 adcroft 1.1
276     \begin{eqnarray}
277 cnh 1.8 \label{EQ:eg-global-inertial_stability}
278 adcroft 1.1 S_{i} = f^{2} {\delta t_v}^2
279     \end{eqnarray}
280    
281     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
282     the $S_{i} < 1$ upper limit for stability.
283     \\
284    
285 adcroft 1.4 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
286 adcroft 1.1 horizontal flow
287     speed of $ | \vec{u} | = 2 ms^{-1}$
288    
289     \begin{eqnarray}
290 cnh 1.8 \label{EQ:eg-global-cfl_stability}
291 adcroft 1.1 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
292     \end{eqnarray}
293    
294     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
295     limit of 0.5.
296     \\
297    
298 cnh 1.3 \noindent The stability parameter for internal gravity waves propagating
299 adcroft 1.1 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
300 adcroft 1.4 \cite{adcroft:95}
301 adcroft 1.1
302     \begin{eqnarray}
303 cnh 1.8 \label{EQ:eg-global-gfl_stability}
304 adcroft 1.1 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
305     \end{eqnarray}
306    
307     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
308     stability limit of 0.5.
309    
310     \subsection{Experiment Configuration}
311 adcroft 1.9 \label{www:tutorials}
312 cnh 1.8 \label{SEC:eg-global-clim_ocn_examp_exp_config}
313 adcroft 1.1
314     The model configuration for this experiment resides under the
315 cnh 1.8 directory {\it tutorial\_examples/global\_ocean\_circulation/}.
316     The experiment files
317    
318 adcroft 1.1 \begin{itemize}
319     \item {\it input/data}
320     \item {\it input/data.pkg}
321     \item {\it input/eedata},
322     \item {\it input/windx.bin},
323     \item {\it input/windy.bin},
324     \item {\it input/salt.bin},
325     \item {\it input/theta.bin},
326     \item {\it input/SSS.bin},
327     \item {\it input/SST.bin},
328     \item {\it input/topog.bin},
329     \item {\it code/CPP\_EEOPTIONS.h}
330     \item {\it code/CPP\_OPTIONS.h},
331     \item {\it code/SIZE.h}.
332     \end{itemize}
333 cnh 1.3 contain the code customizations and parameter settings for these
334     experiments. Below we describe the customizations
335 adcroft 1.1 to these files associated with this experiment.
336 cnh 1.8
337     \subsubsection{Driving Datasets}
338 adcroft 1.9 \label{www:tutorials}
339 cnh 1.8
340     Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
341     relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
342     the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
343     and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
344     in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
345     also indicate the lateral extent and coastline used in the experiment.
346     Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
347     domain.
348    
349 adcroft 1.1
350     \subsubsection{File {\it input/data}}
351 adcroft 1.9 \label{www:tutorials}
352 adcroft 1.1
353     This file, reproduced completely below, specifies the main parameters
354     for the experiment. The parameters that are significant for this configuration
355     are
356    
357     \begin{itemize}
358    
359     \item Lines 7-10 and 11-14
360     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
361     $\cdots$ \\
362     set reference values for potential
363 edhill 1.13 temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and
364 adcroft 1.1 ${\rm ppt}$. The entries are ordered from surface to depth.
365     Density is calculated from anomalies at each level evaluated
366     with respect to the reference values set here.\\
367     \fbox{
368     \begin{minipage}{5.0in}
369     {\it S/R INI\_THETA}({\it ini\_theta.F})
370     \end{minipage}
371     }
372    
373    
374     \item Line 15,
375     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
376 cnh 1.3 this line sets the vertical Laplacian dissipation coefficient to
377 adcroft 1.1 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
378     for this operator are specified later. This variable is copied into
379     model general vertical coordinate variable {\bf viscAr}.
380    
381     \fbox{
382     \begin{minipage}{5.0in}
383     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
384     \end{minipage}
385     }
386    
387     \item Line 16,
388     \begin{verbatim}
389     viscAh=5.E5,
390     \end{verbatim}
391 cnh 1.3 this line sets the horizontal Laplacian frictional dissipation coefficient to
392 adcroft 1.1 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
393     for this operator are specified later.
394    
395     \item Lines 17,
396     \begin{verbatim}
397     no_slip_sides=.FALSE.
398     \end{verbatim}
399     this line selects a free-slip lateral boundary condition for
400 cnh 1.3 the horizontal Laplacian friction operator
401 adcroft 1.1 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
402     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
403    
404     \item Lines 9,
405     \begin{verbatim}
406     no_slip_bottom=.TRUE.
407     \end{verbatim}
408     this line selects a no-slip boundary condition for bottom
409 cnh 1.3 boundary condition in the vertical Laplacian friction operator
410 adcroft 1.1 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
411    
412     \item Line 19,
413     \begin{verbatim}
414     diffKhT=1.E3,
415     \end{verbatim}
416     this line sets the horizontal diffusion coefficient for temperature
417     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
418     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
419     all boundaries.
420    
421     \item Line 20,
422     \begin{verbatim}
423     diffKzT=3.E-5,
424     \end{verbatim}
425     this line sets the vertical diffusion coefficient for temperature
426     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
427     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
428     the upper and lower boundaries.
429    
430     \item Line 21,
431     \begin{verbatim}
432     diffKhS=1.E3,
433     \end{verbatim}
434     this line sets the horizontal diffusion coefficient for salinity
435     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
436     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
437     all boundaries.
438    
439     \item Line 22,
440     \begin{verbatim}
441     diffKzS=3.E-5,
442     \end{verbatim}
443     this line sets the vertical diffusion coefficient for salinity
444     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
445     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
446     the upper and lower boundaries.
447    
448     \item Lines 23-26
449     \begin{verbatim}
450     beta=1.E-11,
451     \end{verbatim}
452     \vspace{-5mm}$\cdots$\\
453     These settings do not apply for this experiment.
454    
455     \item Line 27,
456     \begin{verbatim}
457     gravity=9.81,
458     \end{verbatim}
459 cnh 1.3 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
460 adcroft 1.1 \fbox{
461     \begin{minipage}{5.0in}
462     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
463     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
464     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
465     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
466     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
467     \end{minipage}
468     }
469    
470    
471     \item Line 28-29,
472     \begin{verbatim}
473     rigidLid=.FALSE.,
474     implicitFreeSurface=.TRUE.,
475     \end{verbatim}
476     Selects the barotropic pressure equation to be the implicit free surface
477     formulation.
478    
479     \item Line 30,
480     \begin{verbatim}
481     eosType='POLY3',
482     \end{verbatim}
483     Selects the third order polynomial form of the equation of state.\\
484     \fbox{
485     \begin{minipage}{5.0in}
486     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
487     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
488     \end{minipage}
489     }
490    
491     \item Line 31,
492     \begin{verbatim}
493     readBinaryPrec=32,
494     \end{verbatim}
495     Sets format for reading binary input datasets holding model fields to
496     use 32-bit representation for floating-point numbers.\\
497     \fbox{
498     \begin{minipage}{5.0in}
499     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
500     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
501     \end{minipage}
502     }
503    
504     \item Line 36,
505     \begin{verbatim}
506     cg2dMaxIters=1000,
507     \end{verbatim}
508     Sets maximum number of iterations the two-dimensional, conjugate
509     gradient solver will use, {\bf irrespective of convergence
510     criteria being met}.\\
511     \fbox{
512     \begin{minipage}{5.0in}
513     {\it S/R CG2D}~({\it cg2d.F})
514     \end{minipage}
515     }
516    
517     \item Line 37,
518     \begin{verbatim}
519     cg2dTargetResidual=1.E-13,
520     \end{verbatim}
521     Sets the tolerance which the two-dimensional, conjugate
522     gradient solver will use to test for convergence in equation
523     \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
524     Solver will iterate until
525     tolerance falls below this value or until the maximum number of
526     solver iterations is reached.\\
527     \fbox{
528     \begin{minipage}{5.0in}
529     {\it S/R CG2D}~({\it cg2d.F})
530     \end{minipage}
531     }
532    
533     \item Line 42,
534     \begin{verbatim}
535     startTime=0,
536     \end{verbatim}
537     Sets the starting time for the model internal time counter.
538     When set to non-zero this option implicitly requests a
539     checkpoint file be read for initial state.
540     By default the checkpoint file is named according to
541     the integer number of time steps in the {\bf startTime} value.
542     The internal time counter works in seconds.
543    
544     \item Line 43,
545     \begin{verbatim}
546     endTime=2808000.,
547     \end{verbatim}
548     Sets the time (in seconds) at which this simulation will terminate.
549     At the end of a simulation a checkpoint file is automatically
550     written so that a numerical experiment can consist of multiple
551     stages.
552    
553     \item Line 44,
554     \begin{verbatim}
555     #endTime=62208000000,
556     \end{verbatim}
557     A commented out setting for endTime for a 2000 year simulation.
558    
559     \item Line 45,
560     \begin{verbatim}
561     deltaTmom=2400.0,
562     \end{verbatim}
563     Sets the timestep $\delta t_{v}$ used in the momentum equations to
564     $20~{\rm mins}$.
565     See section \ref{SEC:mom_time_stepping}.
566    
567     \fbox{
568     \begin{minipage}{5.0in}
569     {\it S/R TIMESTEP}({\it timestep.F})
570     \end{minipage}
571     }
572    
573     \item Line 46,
574     \begin{verbatim}
575     tauCD=321428.,
576     \end{verbatim}
577     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
578     See section \ref{SEC:cd_scheme}.
579    
580     \fbox{
581     \begin{minipage}{5.0in}
582     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
583     {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
584     \end{minipage}
585     }
586    
587     \item Line 47,
588     \begin{verbatim}
589     deltaTtracer=108000.,
590     \end{verbatim}
591     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
592     $30~{\rm hours}$.
593     See section \ref{SEC:tracer_time_stepping}.
594    
595     \fbox{
596     \begin{minipage}{5.0in}
597     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
598     \end{minipage}
599     }
600    
601     \item Line 47,
602     \begin{verbatim}
603     bathyFile='topog.box'
604     \end{verbatim}
605     This line specifies the name of the file from which the domain
606     bathymetry is read. This file is a two-dimensional ($x,y$) map of
607     depths. This file is assumed to contain 64-bit binary numbers
608     giving the depth of the model at each grid cell, ordered with the x
609     coordinate varying fastest. The points are ordered from low coordinate
610     to high coordinate for both axes. The units and orientation of the
611     depths in this file are the same as used in the MITgcm code. In this
612     experiment, a depth of $0m$ indicates a solid wall and a depth
613     of $-2000m$ indicates open ocean. The matlab program
614     {\it input/gendata.m} shows an example of how to generate a
615     bathymetry file.
616    
617    
618     \item Line 50,
619     \begin{verbatim}
620     zonalWindFile='windx.sin_y'
621     \end{verbatim}
622     This line specifies the name of the file from which the x-direction
623     surface wind stress is read. This file is also a two-dimensional
624     ($x,y$) map and is enumerated and formatted in the same manner as the
625     bathymetry file. The matlab program {\it input/gendata.m} includes example
626     code to generate a valid
627     {\bf zonalWindFile}
628     file.
629    
630     \end{itemize}
631    
632     \noindent other lines in the file {\it input/data} are standard values
633     that are described in the MITgcm Getting Started and MITgcm Parameters
634     notes.
635    
636     \begin{small}
637     \input{part3/case_studies/climatalogical_ogcm/input/data}
638     \end{small}
639    
640     \subsubsection{File {\it input/data.pkg}}
641 adcroft 1.9 \label{www:tutorials}
642 adcroft 1.1
643     This file uses standard default values and does not contain
644     customisations for this experiment.
645    
646     \subsubsection{File {\it input/eedata}}
647 adcroft 1.9 \label{www:tutorials}
648 adcroft 1.1
649     This file uses standard default values and does not contain
650     customisations for this experiment.
651    
652     \subsubsection{File {\it input/windx.sin\_y}}
653 adcroft 1.9 \label{www:tutorials}
654 adcroft 1.1
655     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
656     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
657     Although $\tau_{x}$ is only a function of $y$n in this experiment
658     this file must still define a complete two-dimensional map in order
659     to be compatible with the standard code for loading forcing fields
660     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
661     code for creating the {\it input/windx.sin\_y} file.
662    
663     \subsubsection{File {\it input/topog.box}}
664 adcroft 1.9 \label{www:tutorials}
665 adcroft 1.1
666    
667     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
668     map of depth values. For this experiment values are either
669     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
670     ocean. The file contains a raw binary stream of data that is enumerated
671     in the same way as standard MITgcm two-dimensional, horizontal arrays.
672     The included matlab program {\it input/gendata.m} gives a complete
673     code for creating the {\it input/topog.box} file.
674    
675     \subsubsection{File {\it code/SIZE.h}}
676 adcroft 1.9 \label{www:tutorials}
677 adcroft 1.1
678     Two lines are customized in this file for the current experiment
679    
680     \begin{itemize}
681    
682     \item Line 39,
683     \begin{verbatim} sNx=60, \end{verbatim} this line sets
684     the lateral domain extent in grid points for the
685     axis aligned with the x-coordinate.
686    
687     \item Line 40,
688     \begin{verbatim} sNy=60, \end{verbatim} this line sets
689     the lateral domain extent in grid points for the
690     axis aligned with the y-coordinate.
691    
692     \item Line 49,
693     \begin{verbatim} Nr=4, \end{verbatim} this line sets
694     the vertical domain extent in grid points.
695    
696     \end{itemize}
697    
698     \begin{small}
699     \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
700     \end{small}
701    
702     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
703 adcroft 1.9 \label{www:tutorials}
704 adcroft 1.1
705     This file uses standard default values and does not contain
706     customisations for this experiment.
707    
708    
709     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
710 adcroft 1.9 \label{www:tutorials}
711 adcroft 1.1
712     This file uses standard default values and does not contain
713     customisations for this experiment.
714    
715     \subsubsection{Other Files }
716 adcroft 1.9 \label{www:tutorials}
717 adcroft 1.1
718     Other files relevant to this experiment are
719     \begin{itemize}
720     \item {\it model/src/ini\_cori.F}. This file initializes the model
721     coriolis variables {\bf fCorU}.
722     \item {\it model/src/ini\_spherical\_polar\_grid.F}
723     \item {\it model/src/ini\_parms.F},
724     \item {\it input/windx.sin\_y},
725     \end{itemize}
726     contain the code customisations and parameter settings for this
727 cnh 1.3 experiments. Below we describe the customisations
728 adcroft 1.1 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22