/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.13 - (hide annotations) (download) (as text)
Sat Apr 8 01:50:50 2006 UTC (19 years, 3 months ago) by edhill
Branch: MAIN
Changes since 1.12: +3 -3 lines
File MIME type: application/x-tex
LaTeX syntax cleanups:
 - the degree symbols ("\circ") are now properly raised after latex2html
 - don't use $...$ when it should be \textit{...}

1 edhill 1.13 % $Header: /u/gcmpack/manual/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.12 2004/10/16 03:40:13 edhill Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4 edhill 1.13 \section[Global Ocean MITgcm Exmaple]{Global Ocean Simulation at $4^\circ$ Resolution}
5 adcroft 1.9 \label{www:tutorials}
6 adcroft 1.7 \label{sect:eg-global}
7 edhill 1.12 \begin{rawhtml}
8     <!-- CMIREDIR:eg-global: -->
9     \end{rawhtml}
10 adcroft 1.1
11     \bodytext{bgcolor="#FFFFFFFF"}
12    
13     %\begin{center}
14 cnh 1.3 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
15 adcroft 1.1 %At Four Degree Resolution with Asynchronous Time Stepping}
16     %
17     %\vspace*{4mm}
18     %
19     %\vspace*{3mm}
20     %{\large May 2001}
21     %\end{center}
22    
23    
24     This example experiment demonstrates using the MITgcm to simulate
25     the planetary ocean circulation. The simulation is configured
26     with realistic geography and bathymetry on a
27     $4^{\circ} \times 4^{\circ}$ spherical polar grid.
28     Twenty levels are used in the vertical, ranging in thickness
29     from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
30     giving a maximum model depth of $6\,{\rm km}$.
31     At this resolution, the configuration
32     can be integrated forward for thousands of years on a single
33     processor desktop computer.
34     \\
35 cnh 1.8 \subsection{Overview}
36 adcroft 1.9 \label{www:tutorials}
37 adcroft 1.1
38 cnh 1.3 The model is forced with climatological wind stress data and surface
39     flux data from DaSilva \cite{DaSilva94}. Climatological data
40     from Levitus \cite{Levitus94} is used to initialize the model hydrography.
41     Levitus seasonal climatology data is also used throughout the calculation
42 adcroft 1.1 to provide additional air-sea fluxes.
43 cnh 1.3 These fluxes are combined with the DaSilva climatological estimates of
44 adcroft 1.1 surface heat flux and fresh water, resulting in a mixed boundary
45 cnh 1.3 condition of the style described in Haney \cite{Haney}.
46 adcroft 1.1 Altogether, this yields the following forcing applied
47     in the model surface layer.
48    
49     \begin{eqnarray}
50 cnh 1.8 \label{EQ:eg-global-global_forcing}
51     \label{EQ:eg-global-global_forcing_fu}
52 adcroft 1.1 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
53     \\
54 cnh 1.8 \label{EQ:eg-global-global_forcing_fv}
55 adcroft 1.1 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
56     \\
57 cnh 1.8 \label{EQ:eg-global-global_forcing_ft}
58 adcroft 1.1 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
59     - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
60     \\
61 cnh 1.8 \label{EQ:eg-global-global_forcing_fs}
62 adcroft 1.1 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
63     + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
64     \end{eqnarray}
65    
66     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
67     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
68     momentum and in the potential temperature and salinity
69     equations respectively.
70     The term $\Delta z_{s}$ represents the top ocean layer thickness in
71     meters.
72     It is used in conjunction with a reference density, $\rho_{0}$
73     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
74     reference salinity, $S_{0}$ (here set to 35~ppt),
75     and a specific heat capacity, $C_{p}$ (here set to
76     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
77     input dataset values into time tendencies of
78     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
79     salinity (with units ${\rm ppt}~s^{-1}$) and
80     velocity (with units ${\rm m}~{\rm s}^{-2}$).
81     The externally supplied forcing fields used in this
82     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
83     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
84     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
85     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
86     respectively. The salinity forcing fields ($S^{\ast}$ and
87     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
88 cnh 1.8 respectively. The source files and procedures for ingesting this data into the
89     simulation are described in the experiment configuration discussion in section
90     \ref{SEC:eg-global-clim_ocn_examp_exp_config}.
91 adcroft 1.1
92    
93     \subsection{Discrete Numerical Configuration}
94 adcroft 1.9 \label{www:tutorials}
95 adcroft 1.1
96    
97     The model is configured in hydrostatic form. The domain is discretised with
98     a uniform grid spacing in latitude and longitude on the sphere
99     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
100     that there are ninety grid cells in the zonal and forty in the
101     meridional direction. The internal model coordinate variables
102 cnh 1.3 $x$ and $y$ are initialized according to
103 adcroft 1.1 \begin{eqnarray}
104     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
105 cnh 1.8 y=r\lambda,~\Delta y &= &r\Delta \lambda
106 adcroft 1.1 \end{eqnarray}
107    
108     Arctic polar regions are not
109     included in this experiment. Meridionally the model extends from
110     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
111     Vertically the model is configured with twenty layers with the
112     following thicknesses
113     $\Delta z_{1} = 50\,{\rm m},\,
114     \Delta z_{2} = 50\,{\rm m},\,
115     \Delta z_{3} = 55\,{\rm m},\,
116     \Delta z_{4} = 60\,{\rm m},\,
117     \Delta z_{5} = 65\,{\rm m},\,
118     $
119     $
120     \Delta z_{6}~=~70\,{\rm m},\,
121     \Delta z_{7}~=~80\,{\rm m},\,
122     \Delta z_{8}~=95\,{\rm m},\,
123     \Delta z_{9}=120\,{\rm m},\,
124     \Delta z_{10}=155\,{\rm m},\,
125     $
126     $
127     \Delta z_{11}=200\,{\rm m},\,
128     \Delta z_{12}=260\,{\rm m},\,
129     \Delta z_{13}=320\,{\rm m},\,
130     \Delta z_{14}=400\,{\rm m},\,
131     \Delta z_{15}=480\,{\rm m},\,
132     $
133     $
134     \Delta z_{16}=570\,{\rm m},\,
135     \Delta z_{17}=655\,{\rm m},\,
136     \Delta z_{18}=725\,{\rm m},\,
137     \Delta z_{19}=775\,{\rm m},\,
138     \Delta z_{20}=815\,{\rm m}
139 cnh 1.8 $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
140     give a total depth, $H$, of $-5450{\rm m}$.
141 adcroft 1.1 The implicit free surface form of the pressure equation described in Marshall et. al
142 adcroft 1.6 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
143 cnh 1.3 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
144 adcroft 1.1
145 cnh 1.8 Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations})
146     for both the zonal flow, $u$ and the meridional flow $v$, according to equations
147     (\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}).
148     Thermodynamic forcing inputs are added to the equations
149     in (\ref{EQ:eg-global-model_equations}) for
150 adcroft 1.1 potential temperature, $\theta$, and salinity, $S$, according to equations
151 cnh 1.8 (\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}).
152 adcroft 1.1 This produces a set of equations solved in this configuration as follows:
153    
154     \begin{eqnarray}
155 cnh 1.8 \label{EQ:eg-global-model_equations}
156 adcroft 1.1 \frac{Du}{Dt} - fv +
157     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
158     \nabla_{h}\cdot A_{h}\nabla_{h}u -
159     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
160     & = &
161     \begin{cases}
162     {\cal F}_u & \text{(surface)} \\
163     0 & \text{(interior)}
164     \end{cases}
165     \\
166     \frac{Dv}{Dt} + fu +
167     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
168     \nabla_{h}\cdot A_{h}\nabla_{h}v -
169     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
170     & = &
171     \begin{cases}
172     {\cal F}_v & \text{(surface)} \\
173     0 & \text{(interior)}
174     \end{cases}
175     \\
176     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
177     &=&
178     0
179     \\
180     \frac{D\theta}{Dt} -
181     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
182     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
183     & = &
184     \begin{cases}
185     {\cal F}_\theta & \text{(surface)} \\
186     0 & \text{(interior)}
187     \end{cases}
188     \\
189     \frac{D s}{Dt} -
190     \nabla_{h}\cdot K_{h}\nabla_{h}s
191     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
192     & = &
193     \begin{cases}
194     {\cal F}_s & \text{(surface)} \\
195     0 & \text{(interior)}
196     \end{cases}
197     \\
198     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
199     \end{eqnarray}
200    
201     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
202     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
203     are the zonal and meridional components of the
204     flow vector, $\vec{u}$, on the sphere. As described in
205 adcroft 1.5 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
206 adcroft 1.1 evolution of potential temperature, $\theta$, equation is solved prognostically.
207     The total pressure, $p$, is diagnosed by summing pressure due to surface
208     elevation $\eta$ and the hydrostatic pressure.
209     \\
210    
211     \subsubsection{Numerical Stability Criteria}
212 adcroft 1.9 \label{www:tutorials}
213 adcroft 1.1
214 cnh 1.3 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
215 adcroft 1.4 This value is chosen to yield a Munk layer width \cite{adcroft:95},
216 adcroft 1.1 \begin{eqnarray}
217 cnh 1.8 \label{EQ:eg-global-munk_layer}
218 adcroft 1.10 && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
219 adcroft 1.1 \end{eqnarray}
220    
221     \noindent of $\approx 600$km. This is greater than the model
222     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
223     boundary layer is adequately resolved.
224     \\
225    
226     \noindent The model is stepped forward with a
227     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
228     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
229 adcroft 1.4 parameter to the horizontal Laplacian friction \cite{adcroft:95}
230 adcroft 1.1 \begin{eqnarray}
231 cnh 1.8 \label{EQ:eg-global-laplacian_stability}
232 adcroft 1.10 && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
233 adcroft 1.1 \end{eqnarray}
234    
235     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
236     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
237     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
238     \\
239    
240     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
241     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
242     \begin{eqnarray}
243 cnh 1.8 \label{EQ:eg-global-laplacian_stability_z}
244 adcroft 1.1 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
245     \end{eqnarray}
246    
247     \noindent evaluates to $0.015$ for the smallest model
248 cnh 1.3 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
249 adcroft 1.1 the upper stability limit.
250     \\
251    
252     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
253     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
254     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
255     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
256     Here the stability parameter
257     \begin{eqnarray}
258 cnh 1.8 \label{EQ:eg-global-laplacian_stability_xtheta}
259 adcroft 1.1 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
260     \end{eqnarray}
261 cnh 1.3 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
262 adcroft 1.1 stability parameter related to $K_{z}$
263     \begin{eqnarray}
264 cnh 1.8 \label{EQ:eg-global-laplacian_stability_ztheta}
265 adcroft 1.1 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
266     \end{eqnarray}
267     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
268     of $S_{l} \approx 0.5$.
269     \\
270    
271     \noindent The numerical stability for inertial oscillations
272 adcroft 1.4 \cite{adcroft:95}
273 adcroft 1.1
274     \begin{eqnarray}
275 cnh 1.8 \label{EQ:eg-global-inertial_stability}
276 adcroft 1.1 S_{i} = f^{2} {\delta t_v}^2
277     \end{eqnarray}
278    
279     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
280     the $S_{i} < 1$ upper limit for stability.
281     \\
282    
283 adcroft 1.4 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
284 adcroft 1.1 horizontal flow
285     speed of $ | \vec{u} | = 2 ms^{-1}$
286    
287     \begin{eqnarray}
288 cnh 1.8 \label{EQ:eg-global-cfl_stability}
289 adcroft 1.1 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
290     \end{eqnarray}
291    
292     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
293     limit of 0.5.
294     \\
295    
296 cnh 1.3 \noindent The stability parameter for internal gravity waves propagating
297 adcroft 1.1 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
298 adcroft 1.4 \cite{adcroft:95}
299 adcroft 1.1
300     \begin{eqnarray}
301 cnh 1.8 \label{EQ:eg-global-gfl_stability}
302 adcroft 1.1 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
303     \end{eqnarray}
304    
305     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
306     stability limit of 0.5.
307    
308     \subsection{Experiment Configuration}
309 adcroft 1.9 \label{www:tutorials}
310 cnh 1.8 \label{SEC:eg-global-clim_ocn_examp_exp_config}
311 adcroft 1.1
312     The model configuration for this experiment resides under the
313 cnh 1.8 directory {\it tutorial\_examples/global\_ocean\_circulation/}.
314     The experiment files
315    
316 adcroft 1.1 \begin{itemize}
317     \item {\it input/data}
318     \item {\it input/data.pkg}
319     \item {\it input/eedata},
320     \item {\it input/windx.bin},
321     \item {\it input/windy.bin},
322     \item {\it input/salt.bin},
323     \item {\it input/theta.bin},
324     \item {\it input/SSS.bin},
325     \item {\it input/SST.bin},
326     \item {\it input/topog.bin},
327     \item {\it code/CPP\_EEOPTIONS.h}
328     \item {\it code/CPP\_OPTIONS.h},
329     \item {\it code/SIZE.h}.
330     \end{itemize}
331 cnh 1.3 contain the code customizations and parameter settings for these
332     experiments. Below we describe the customizations
333 adcroft 1.1 to these files associated with this experiment.
334 cnh 1.8
335     \subsubsection{Driving Datasets}
336 adcroft 1.9 \label{www:tutorials}
337 cnh 1.8
338     Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
339     relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
340     the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
341     and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
342     in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
343     also indicate the lateral extent and coastline used in the experiment.
344     Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
345     domain.
346    
347 adcroft 1.1
348     \subsubsection{File {\it input/data}}
349 adcroft 1.9 \label{www:tutorials}
350 adcroft 1.1
351     This file, reproduced completely below, specifies the main parameters
352     for the experiment. The parameters that are significant for this configuration
353     are
354    
355     \begin{itemize}
356    
357     \item Lines 7-10 and 11-14
358     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
359     $\cdots$ \\
360     set reference values for potential
361 edhill 1.13 temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and
362 adcroft 1.1 ${\rm ppt}$. The entries are ordered from surface to depth.
363     Density is calculated from anomalies at each level evaluated
364     with respect to the reference values set here.\\
365     \fbox{
366     \begin{minipage}{5.0in}
367     {\it S/R INI\_THETA}({\it ini\_theta.F})
368     \end{minipage}
369     }
370    
371    
372     \item Line 15,
373     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
374 cnh 1.3 this line sets the vertical Laplacian dissipation coefficient to
375 adcroft 1.1 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
376     for this operator are specified later. This variable is copied into
377     model general vertical coordinate variable {\bf viscAr}.
378    
379     \fbox{
380     \begin{minipage}{5.0in}
381     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
382     \end{minipage}
383     }
384    
385     \item Line 16,
386     \begin{verbatim}
387     viscAh=5.E5,
388     \end{verbatim}
389 cnh 1.3 this line sets the horizontal Laplacian frictional dissipation coefficient to
390 adcroft 1.1 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
391     for this operator are specified later.
392    
393     \item Lines 17,
394     \begin{verbatim}
395     no_slip_sides=.FALSE.
396     \end{verbatim}
397     this line selects a free-slip lateral boundary condition for
398 cnh 1.3 the horizontal Laplacian friction operator
399 adcroft 1.1 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
400     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
401    
402     \item Lines 9,
403     \begin{verbatim}
404     no_slip_bottom=.TRUE.
405     \end{verbatim}
406     this line selects a no-slip boundary condition for bottom
407 cnh 1.3 boundary condition in the vertical Laplacian friction operator
408 adcroft 1.1 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
409    
410     \item Line 19,
411     \begin{verbatim}
412     diffKhT=1.E3,
413     \end{verbatim}
414     this line sets the horizontal diffusion coefficient for temperature
415     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
416     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
417     all boundaries.
418    
419     \item Line 20,
420     \begin{verbatim}
421     diffKzT=3.E-5,
422     \end{verbatim}
423     this line sets the vertical diffusion coefficient for temperature
424     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
425     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
426     the upper and lower boundaries.
427    
428     \item Line 21,
429     \begin{verbatim}
430     diffKhS=1.E3,
431     \end{verbatim}
432     this line sets the horizontal diffusion coefficient for salinity
433     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
434     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
435     all boundaries.
436    
437     \item Line 22,
438     \begin{verbatim}
439     diffKzS=3.E-5,
440     \end{verbatim}
441     this line sets the vertical diffusion coefficient for salinity
442     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
443     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
444     the upper and lower boundaries.
445    
446     \item Lines 23-26
447     \begin{verbatim}
448     beta=1.E-11,
449     \end{verbatim}
450     \vspace{-5mm}$\cdots$\\
451     These settings do not apply for this experiment.
452    
453     \item Line 27,
454     \begin{verbatim}
455     gravity=9.81,
456     \end{verbatim}
457 cnh 1.3 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
458 adcroft 1.1 \fbox{
459     \begin{minipage}{5.0in}
460     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
461     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
462     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
463     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
464     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
465     \end{minipage}
466     }
467    
468    
469     \item Line 28-29,
470     \begin{verbatim}
471     rigidLid=.FALSE.,
472     implicitFreeSurface=.TRUE.,
473     \end{verbatim}
474     Selects the barotropic pressure equation to be the implicit free surface
475     formulation.
476    
477     \item Line 30,
478     \begin{verbatim}
479     eosType='POLY3',
480     \end{verbatim}
481     Selects the third order polynomial form of the equation of state.\\
482     \fbox{
483     \begin{minipage}{5.0in}
484     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
485     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
486     \end{minipage}
487     }
488    
489     \item Line 31,
490     \begin{verbatim}
491     readBinaryPrec=32,
492     \end{verbatim}
493     Sets format for reading binary input datasets holding model fields to
494     use 32-bit representation for floating-point numbers.\\
495     \fbox{
496     \begin{minipage}{5.0in}
497     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
498     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
499     \end{minipage}
500     }
501    
502     \item Line 36,
503     \begin{verbatim}
504     cg2dMaxIters=1000,
505     \end{verbatim}
506     Sets maximum number of iterations the two-dimensional, conjugate
507     gradient solver will use, {\bf irrespective of convergence
508     criteria being met}.\\
509     \fbox{
510     \begin{minipage}{5.0in}
511     {\it S/R CG2D}~({\it cg2d.F})
512     \end{minipage}
513     }
514    
515     \item Line 37,
516     \begin{verbatim}
517     cg2dTargetResidual=1.E-13,
518     \end{verbatim}
519     Sets the tolerance which the two-dimensional, conjugate
520     gradient solver will use to test for convergence in equation
521     \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
522     Solver will iterate until
523     tolerance falls below this value or until the maximum number of
524     solver iterations is reached.\\
525     \fbox{
526     \begin{minipage}{5.0in}
527     {\it S/R CG2D}~({\it cg2d.F})
528     \end{minipage}
529     }
530    
531     \item Line 42,
532     \begin{verbatim}
533     startTime=0,
534     \end{verbatim}
535     Sets the starting time for the model internal time counter.
536     When set to non-zero this option implicitly requests a
537     checkpoint file be read for initial state.
538     By default the checkpoint file is named according to
539     the integer number of time steps in the {\bf startTime} value.
540     The internal time counter works in seconds.
541    
542     \item Line 43,
543     \begin{verbatim}
544     endTime=2808000.,
545     \end{verbatim}
546     Sets the time (in seconds) at which this simulation will terminate.
547     At the end of a simulation a checkpoint file is automatically
548     written so that a numerical experiment can consist of multiple
549     stages.
550    
551     \item Line 44,
552     \begin{verbatim}
553     #endTime=62208000000,
554     \end{verbatim}
555     A commented out setting for endTime for a 2000 year simulation.
556    
557     \item Line 45,
558     \begin{verbatim}
559     deltaTmom=2400.0,
560     \end{verbatim}
561     Sets the timestep $\delta t_{v}$ used in the momentum equations to
562     $20~{\rm mins}$.
563     See section \ref{SEC:mom_time_stepping}.
564    
565     \fbox{
566     \begin{minipage}{5.0in}
567     {\it S/R TIMESTEP}({\it timestep.F})
568     \end{minipage}
569     }
570    
571     \item Line 46,
572     \begin{verbatim}
573     tauCD=321428.,
574     \end{verbatim}
575     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
576     See section \ref{SEC:cd_scheme}.
577    
578     \fbox{
579     \begin{minipage}{5.0in}
580     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
581     {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
582     \end{minipage}
583     }
584    
585     \item Line 47,
586     \begin{verbatim}
587     deltaTtracer=108000.,
588     \end{verbatim}
589     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
590     $30~{\rm hours}$.
591     See section \ref{SEC:tracer_time_stepping}.
592    
593     \fbox{
594     \begin{minipage}{5.0in}
595     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
596     \end{minipage}
597     }
598    
599     \item Line 47,
600     \begin{verbatim}
601     bathyFile='topog.box'
602     \end{verbatim}
603     This line specifies the name of the file from which the domain
604     bathymetry is read. This file is a two-dimensional ($x,y$) map of
605     depths. This file is assumed to contain 64-bit binary numbers
606     giving the depth of the model at each grid cell, ordered with the x
607     coordinate varying fastest. The points are ordered from low coordinate
608     to high coordinate for both axes. The units and orientation of the
609     depths in this file are the same as used in the MITgcm code. In this
610     experiment, a depth of $0m$ indicates a solid wall and a depth
611     of $-2000m$ indicates open ocean. The matlab program
612     {\it input/gendata.m} shows an example of how to generate a
613     bathymetry file.
614    
615    
616     \item Line 50,
617     \begin{verbatim}
618     zonalWindFile='windx.sin_y'
619     \end{verbatim}
620     This line specifies the name of the file from which the x-direction
621     surface wind stress is read. This file is also a two-dimensional
622     ($x,y$) map and is enumerated and formatted in the same manner as the
623     bathymetry file. The matlab program {\it input/gendata.m} includes example
624     code to generate a valid
625     {\bf zonalWindFile}
626     file.
627    
628     \end{itemize}
629    
630     \noindent other lines in the file {\it input/data} are standard values
631     that are described in the MITgcm Getting Started and MITgcm Parameters
632     notes.
633    
634     \begin{small}
635     \input{part3/case_studies/climatalogical_ogcm/input/data}
636     \end{small}
637    
638     \subsubsection{File {\it input/data.pkg}}
639 adcroft 1.9 \label{www:tutorials}
640 adcroft 1.1
641     This file uses standard default values and does not contain
642     customisations for this experiment.
643    
644     \subsubsection{File {\it input/eedata}}
645 adcroft 1.9 \label{www:tutorials}
646 adcroft 1.1
647     This file uses standard default values and does not contain
648     customisations for this experiment.
649    
650     \subsubsection{File {\it input/windx.sin\_y}}
651 adcroft 1.9 \label{www:tutorials}
652 adcroft 1.1
653     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
654     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
655     Although $\tau_{x}$ is only a function of $y$n in this experiment
656     this file must still define a complete two-dimensional map in order
657     to be compatible with the standard code for loading forcing fields
658     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
659     code for creating the {\it input/windx.sin\_y} file.
660    
661     \subsubsection{File {\it input/topog.box}}
662 adcroft 1.9 \label{www:tutorials}
663 adcroft 1.1
664    
665     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
666     map of depth values. For this experiment values are either
667     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
668     ocean. The file contains a raw binary stream of data that is enumerated
669     in the same way as standard MITgcm two-dimensional, horizontal arrays.
670     The included matlab program {\it input/gendata.m} gives a complete
671     code for creating the {\it input/topog.box} file.
672    
673     \subsubsection{File {\it code/SIZE.h}}
674 adcroft 1.9 \label{www:tutorials}
675 adcroft 1.1
676     Two lines are customized in this file for the current experiment
677    
678     \begin{itemize}
679    
680     \item Line 39,
681     \begin{verbatim} sNx=60, \end{verbatim} this line sets
682     the lateral domain extent in grid points for the
683     axis aligned with the x-coordinate.
684    
685     \item Line 40,
686     \begin{verbatim} sNy=60, \end{verbatim} this line sets
687     the lateral domain extent in grid points for the
688     axis aligned with the y-coordinate.
689    
690     \item Line 49,
691     \begin{verbatim} Nr=4, \end{verbatim} this line sets
692     the vertical domain extent in grid points.
693    
694     \end{itemize}
695    
696     \begin{small}
697     \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
698     \end{small}
699    
700     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
701 adcroft 1.9 \label{www:tutorials}
702 adcroft 1.1
703     This file uses standard default values and does not contain
704     customisations for this experiment.
705    
706    
707     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
708 adcroft 1.9 \label{www:tutorials}
709 adcroft 1.1
710     This file uses standard default values and does not contain
711     customisations for this experiment.
712    
713     \subsubsection{Other Files }
714 adcroft 1.9 \label{www:tutorials}
715 adcroft 1.1
716     Other files relevant to this experiment are
717     \begin{itemize}
718     \item {\it model/src/ini\_cori.F}. This file initializes the model
719     coriolis variables {\bf fCorU}.
720     \item {\it model/src/ini\_spherical\_polar\_grid.F}
721     \item {\it model/src/ini\_parms.F},
722     \item {\it input/windx.sin\_y},
723     \end{itemize}
724     contain the code customisations and parameter settings for this
725 cnh 1.3 experiments. Below we describe the customisations
726 adcroft 1.1 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22