1 |
edhill |
1.13 |
% $Header: /u/gcmpack/manual/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.12 2004/10/16 03:40:13 edhill Exp $ |
2 |
cnh |
1.2 |
% $Name: $ |
3 |
adcroft |
1.1 |
|
4 |
edhill |
1.13 |
\section[Global Ocean MITgcm Exmaple]{Global Ocean Simulation at $4^\circ$ Resolution} |
5 |
adcroft |
1.9 |
\label{www:tutorials} |
6 |
adcroft |
1.7 |
\label{sect:eg-global} |
7 |
edhill |
1.12 |
\begin{rawhtml} |
8 |
|
|
<!-- CMIREDIR:eg-global: --> |
9 |
|
|
\end{rawhtml} |
10 |
adcroft |
1.1 |
|
11 |
|
|
\bodytext{bgcolor="#FFFFFFFF"} |
12 |
|
|
|
13 |
|
|
%\begin{center} |
14 |
cnh |
1.3 |
%{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation |
15 |
adcroft |
1.1 |
%At Four Degree Resolution with Asynchronous Time Stepping} |
16 |
|
|
% |
17 |
|
|
%\vspace*{4mm} |
18 |
|
|
% |
19 |
|
|
%\vspace*{3mm} |
20 |
|
|
%{\large May 2001} |
21 |
|
|
%\end{center} |
22 |
|
|
|
23 |
|
|
|
24 |
|
|
This example experiment demonstrates using the MITgcm to simulate |
25 |
|
|
the planetary ocean circulation. The simulation is configured |
26 |
|
|
with realistic geography and bathymetry on a |
27 |
|
|
$4^{\circ} \times 4^{\circ}$ spherical polar grid. |
28 |
|
|
Twenty levels are used in the vertical, ranging in thickness |
29 |
|
|
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, |
30 |
|
|
giving a maximum model depth of $6\,{\rm km}$. |
31 |
|
|
At this resolution, the configuration |
32 |
|
|
can be integrated forward for thousands of years on a single |
33 |
|
|
processor desktop computer. |
34 |
|
|
\\ |
35 |
cnh |
1.8 |
\subsection{Overview} |
36 |
adcroft |
1.9 |
\label{www:tutorials} |
37 |
adcroft |
1.1 |
|
38 |
cnh |
1.3 |
The model is forced with climatological wind stress data and surface |
39 |
|
|
flux data from DaSilva \cite{DaSilva94}. Climatological data |
40 |
|
|
from Levitus \cite{Levitus94} is used to initialize the model hydrography. |
41 |
|
|
Levitus seasonal climatology data is also used throughout the calculation |
42 |
adcroft |
1.1 |
to provide additional air-sea fluxes. |
43 |
cnh |
1.3 |
These fluxes are combined with the DaSilva climatological estimates of |
44 |
adcroft |
1.1 |
surface heat flux and fresh water, resulting in a mixed boundary |
45 |
cnh |
1.3 |
condition of the style described in Haney \cite{Haney}. |
46 |
adcroft |
1.1 |
Altogether, this yields the following forcing applied |
47 |
|
|
in the model surface layer. |
48 |
|
|
|
49 |
|
|
\begin{eqnarray} |
50 |
cnh |
1.8 |
\label{EQ:eg-global-global_forcing} |
51 |
|
|
\label{EQ:eg-global-global_forcing_fu} |
52 |
adcroft |
1.1 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
53 |
|
|
\\ |
54 |
cnh |
1.8 |
\label{EQ:eg-global-global_forcing_fv} |
55 |
adcroft |
1.1 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
56 |
|
|
\\ |
57 |
cnh |
1.8 |
\label{EQ:eg-global-global_forcing_ft} |
58 |
adcroft |
1.1 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
59 |
|
|
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
60 |
|
|
\\ |
61 |
cnh |
1.8 |
\label{EQ:eg-global-global_forcing_fs} |
62 |
adcroft |
1.1 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
63 |
|
|
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
64 |
|
|
\end{eqnarray} |
65 |
|
|
|
66 |
|
|
\noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, |
67 |
|
|
${\cal F}_{s}$ are the forcing terms in the zonal and meridional |
68 |
|
|
momentum and in the potential temperature and salinity |
69 |
|
|
equations respectively. |
70 |
|
|
The term $\Delta z_{s}$ represents the top ocean layer thickness in |
71 |
|
|
meters. |
72 |
|
|
It is used in conjunction with a reference density, $\rho_{0}$ |
73 |
|
|
(here set to $999.8\,{\rm kg\,m^{-3}}$), a |
74 |
|
|
reference salinity, $S_{0}$ (here set to 35~ppt), |
75 |
|
|
and a specific heat capacity, $C_{p}$ (here set to |
76 |
|
|
$4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert |
77 |
|
|
input dataset values into time tendencies of |
78 |
|
|
potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$), |
79 |
|
|
salinity (with units ${\rm ppt}~s^{-1}$) and |
80 |
|
|
velocity (with units ${\rm m}~{\rm s}^{-2}$). |
81 |
|
|
The externally supplied forcing fields used in this |
82 |
|
|
experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$, |
83 |
|
|
$\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$) |
84 |
|
|
have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields |
85 |
|
|
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
86 |
|
|
respectively. The salinity forcing fields ($S^{\ast}$ and |
87 |
|
|
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
88 |
cnh |
1.8 |
respectively. The source files and procedures for ingesting this data into the |
89 |
|
|
simulation are described in the experiment configuration discussion in section |
90 |
|
|
\ref{SEC:eg-global-clim_ocn_examp_exp_config}. |
91 |
adcroft |
1.1 |
|
92 |
|
|
|
93 |
|
|
\subsection{Discrete Numerical Configuration} |
94 |
adcroft |
1.9 |
\label{www:tutorials} |
95 |
adcroft |
1.1 |
|
96 |
|
|
|
97 |
|
|
The model is configured in hydrostatic form. The domain is discretised with |
98 |
|
|
a uniform grid spacing in latitude and longitude on the sphere |
99 |
|
|
$\Delta \phi=\Delta \lambda=4^{\circ}$, so |
100 |
|
|
that there are ninety grid cells in the zonal and forty in the |
101 |
|
|
meridional direction. The internal model coordinate variables |
102 |
cnh |
1.3 |
$x$ and $y$ are initialized according to |
103 |
adcroft |
1.1 |
\begin{eqnarray} |
104 |
|
|
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
105 |
cnh |
1.8 |
y=r\lambda,~\Delta y &= &r\Delta \lambda |
106 |
adcroft |
1.1 |
\end{eqnarray} |
107 |
|
|
|
108 |
|
|
Arctic polar regions are not |
109 |
|
|
included in this experiment. Meridionally the model extends from |
110 |
|
|
$80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. |
111 |
|
|
Vertically the model is configured with twenty layers with the |
112 |
|
|
following thicknesses |
113 |
|
|
$\Delta z_{1} = 50\,{\rm m},\, |
114 |
|
|
\Delta z_{2} = 50\,{\rm m},\, |
115 |
|
|
\Delta z_{3} = 55\,{\rm m},\, |
116 |
|
|
\Delta z_{4} = 60\,{\rm m},\, |
117 |
|
|
\Delta z_{5} = 65\,{\rm m},\, |
118 |
|
|
$ |
119 |
|
|
$ |
120 |
|
|
\Delta z_{6}~=~70\,{\rm m},\, |
121 |
|
|
\Delta z_{7}~=~80\,{\rm m},\, |
122 |
|
|
\Delta z_{8}~=95\,{\rm m},\, |
123 |
|
|
\Delta z_{9}=120\,{\rm m},\, |
124 |
|
|
\Delta z_{10}=155\,{\rm m},\, |
125 |
|
|
$ |
126 |
|
|
$ |
127 |
|
|
\Delta z_{11}=200\,{\rm m},\, |
128 |
|
|
\Delta z_{12}=260\,{\rm m},\, |
129 |
|
|
\Delta z_{13}=320\,{\rm m},\, |
130 |
|
|
\Delta z_{14}=400\,{\rm m},\, |
131 |
|
|
\Delta z_{15}=480\,{\rm m},\, |
132 |
|
|
$ |
133 |
|
|
$ |
134 |
|
|
\Delta z_{16}=570\,{\rm m},\, |
135 |
|
|
\Delta z_{17}=655\,{\rm m},\, |
136 |
|
|
\Delta z_{18}=725\,{\rm m},\, |
137 |
|
|
\Delta z_{19}=775\,{\rm m},\, |
138 |
|
|
\Delta z_{20}=815\,{\rm m} |
139 |
cnh |
1.8 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$) to |
140 |
|
|
give a total depth, $H$, of $-5450{\rm m}$. |
141 |
adcroft |
1.1 |
The implicit free surface form of the pressure equation described in Marshall et. al |
142 |
adcroft |
1.6 |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
143 |
cnh |
1.3 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
144 |
adcroft |
1.1 |
|
145 |
cnh |
1.8 |
Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations}) |
146 |
|
|
for both the zonal flow, $u$ and the meridional flow $v$, according to equations |
147 |
|
|
(\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}). |
148 |
|
|
Thermodynamic forcing inputs are added to the equations |
149 |
|
|
in (\ref{EQ:eg-global-model_equations}) for |
150 |
adcroft |
1.1 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
151 |
cnh |
1.8 |
(\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}). |
152 |
adcroft |
1.1 |
This produces a set of equations solved in this configuration as follows: |
153 |
|
|
|
154 |
|
|
\begin{eqnarray} |
155 |
cnh |
1.8 |
\label{EQ:eg-global-model_equations} |
156 |
adcroft |
1.1 |
\frac{Du}{Dt} - fv + |
157 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
158 |
|
|
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
159 |
|
|
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} |
160 |
|
|
& = & |
161 |
|
|
\begin{cases} |
162 |
|
|
{\cal F}_u & \text{(surface)} \\ |
163 |
|
|
0 & \text{(interior)} |
164 |
|
|
\end{cases} |
165 |
|
|
\\ |
166 |
|
|
\frac{Dv}{Dt} + fu + |
167 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
168 |
|
|
\nabla_{h}\cdot A_{h}\nabla_{h}v - |
169 |
|
|
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} |
170 |
|
|
& = & |
171 |
|
|
\begin{cases} |
172 |
|
|
{\cal F}_v & \text{(surface)} \\ |
173 |
|
|
0 & \text{(interior)} |
174 |
|
|
\end{cases} |
175 |
|
|
\\ |
176 |
|
|
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} |
177 |
|
|
&=& |
178 |
|
|
0 |
179 |
|
|
\\ |
180 |
|
|
\frac{D\theta}{Dt} - |
181 |
|
|
\nabla_{h}\cdot K_{h}\nabla_{h}\theta |
182 |
|
|
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z} |
183 |
|
|
& = & |
184 |
|
|
\begin{cases} |
185 |
|
|
{\cal F}_\theta & \text{(surface)} \\ |
186 |
|
|
0 & \text{(interior)} |
187 |
|
|
\end{cases} |
188 |
|
|
\\ |
189 |
|
|
\frac{D s}{Dt} - |
190 |
|
|
\nabla_{h}\cdot K_{h}\nabla_{h}s |
191 |
|
|
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z} |
192 |
|
|
& = & |
193 |
|
|
\begin{cases} |
194 |
|
|
{\cal F}_s & \text{(surface)} \\ |
195 |
|
|
0 & \text{(interior)} |
196 |
|
|
\end{cases} |
197 |
|
|
\\ |
198 |
|
|
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
199 |
|
|
\end{eqnarray} |
200 |
|
|
|
201 |
|
|
\noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and |
202 |
|
|
$v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ |
203 |
|
|
are the zonal and meridional components of the |
204 |
|
|
flow vector, $\vec{u}$, on the sphere. As described in |
205 |
adcroft |
1.5 |
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
206 |
adcroft |
1.1 |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
207 |
|
|
The total pressure, $p$, is diagnosed by summing pressure due to surface |
208 |
|
|
elevation $\eta$ and the hydrostatic pressure. |
209 |
|
|
\\ |
210 |
|
|
|
211 |
|
|
\subsubsection{Numerical Stability Criteria} |
212 |
adcroft |
1.9 |
\label{www:tutorials} |
213 |
adcroft |
1.1 |
|
214 |
cnh |
1.3 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
215 |
adcroft |
1.4 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
216 |
adcroft |
1.1 |
\begin{eqnarray} |
217 |
cnh |
1.8 |
\label{EQ:eg-global-munk_layer} |
218 |
adcroft |
1.10 |
&& M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
219 |
adcroft |
1.1 |
\end{eqnarray} |
220 |
|
|
|
221 |
|
|
\noindent of $\approx 600$km. This is greater than the model |
222 |
|
|
resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional |
223 |
|
|
boundary layer is adequately resolved. |
224 |
|
|
\\ |
225 |
|
|
|
226 |
|
|
\noindent The model is stepped forward with a |
227 |
|
|
time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and |
228 |
|
|
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
229 |
adcroft |
1.4 |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
230 |
adcroft |
1.1 |
\begin{eqnarray} |
231 |
cnh |
1.8 |
\label{EQ:eg-global-laplacian_stability} |
232 |
adcroft |
1.10 |
&& S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
233 |
adcroft |
1.1 |
\end{eqnarray} |
234 |
|
|
|
235 |
|
|
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
236 |
|
|
0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at |
237 |
|
|
$\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$. |
238 |
|
|
\\ |
239 |
|
|
|
240 |
|
|
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
241 |
|
|
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
242 |
|
|
\begin{eqnarray} |
243 |
cnh |
1.8 |
\label{EQ:eg-global-laplacian_stability_z} |
244 |
adcroft |
1.1 |
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
245 |
|
|
\end{eqnarray} |
246 |
|
|
|
247 |
|
|
\noindent evaluates to $0.015$ for the smallest model |
248 |
cnh |
1.3 |
level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below |
249 |
adcroft |
1.1 |
the upper stability limit. |
250 |
|
|
\\ |
251 |
|
|
|
252 |
|
|
The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients |
253 |
|
|
for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ |
254 |
|
|
and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit |
255 |
|
|
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
256 |
|
|
Here the stability parameter |
257 |
|
|
\begin{eqnarray} |
258 |
cnh |
1.8 |
\label{EQ:eg-global-laplacian_stability_xtheta} |
259 |
adcroft |
1.1 |
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
260 |
|
|
\end{eqnarray} |
261 |
cnh |
1.3 |
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
262 |
adcroft |
1.1 |
stability parameter related to $K_{z}$ |
263 |
|
|
\begin{eqnarray} |
264 |
cnh |
1.8 |
\label{EQ:eg-global-laplacian_stability_ztheta} |
265 |
adcroft |
1.1 |
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
266 |
|
|
\end{eqnarray} |
267 |
|
|
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
268 |
|
|
of $S_{l} \approx 0.5$. |
269 |
|
|
\\ |
270 |
|
|
|
271 |
|
|
\noindent The numerical stability for inertial oscillations |
272 |
adcroft |
1.4 |
\cite{adcroft:95} |
273 |
adcroft |
1.1 |
|
274 |
|
|
\begin{eqnarray} |
275 |
cnh |
1.8 |
\label{EQ:eg-global-inertial_stability} |
276 |
adcroft |
1.1 |
S_{i} = f^{2} {\delta t_v}^2 |
277 |
|
|
\end{eqnarray} |
278 |
|
|
|
279 |
|
|
\noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to |
280 |
|
|
the $S_{i} < 1$ upper limit for stability. |
281 |
|
|
\\ |
282 |
|
|
|
283 |
adcroft |
1.4 |
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum |
284 |
adcroft |
1.1 |
horizontal flow |
285 |
|
|
speed of $ | \vec{u} | = 2 ms^{-1}$ |
286 |
|
|
|
287 |
|
|
\begin{eqnarray} |
288 |
cnh |
1.8 |
\label{EQ:eg-global-cfl_stability} |
289 |
adcroft |
1.1 |
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
290 |
|
|
\end{eqnarray} |
291 |
|
|
|
292 |
|
|
\noindent evaluates to $6 \times 10^{-2}$. This is well below the stability |
293 |
|
|
limit of 0.5. |
294 |
|
|
\\ |
295 |
|
|
|
296 |
cnh |
1.3 |
\noindent The stability parameter for internal gravity waves propagating |
297 |
adcroft |
1.1 |
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
298 |
adcroft |
1.4 |
\cite{adcroft:95} |
299 |
adcroft |
1.1 |
|
300 |
|
|
\begin{eqnarray} |
301 |
cnh |
1.8 |
\label{EQ:eg-global-gfl_stability} |
302 |
adcroft |
1.1 |
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
303 |
|
|
\end{eqnarray} |
304 |
|
|
|
305 |
|
|
\noindent evaluates to $3 \times 10^{-1}$. This is close to the linear |
306 |
|
|
stability limit of 0.5. |
307 |
|
|
|
308 |
|
|
\subsection{Experiment Configuration} |
309 |
adcroft |
1.9 |
\label{www:tutorials} |
310 |
cnh |
1.8 |
\label{SEC:eg-global-clim_ocn_examp_exp_config} |
311 |
adcroft |
1.1 |
|
312 |
|
|
The model configuration for this experiment resides under the |
313 |
cnh |
1.8 |
directory {\it tutorial\_examples/global\_ocean\_circulation/}. |
314 |
|
|
The experiment files |
315 |
|
|
|
316 |
adcroft |
1.1 |
\begin{itemize} |
317 |
|
|
\item {\it input/data} |
318 |
|
|
\item {\it input/data.pkg} |
319 |
|
|
\item {\it input/eedata}, |
320 |
|
|
\item {\it input/windx.bin}, |
321 |
|
|
\item {\it input/windy.bin}, |
322 |
|
|
\item {\it input/salt.bin}, |
323 |
|
|
\item {\it input/theta.bin}, |
324 |
|
|
\item {\it input/SSS.bin}, |
325 |
|
|
\item {\it input/SST.bin}, |
326 |
|
|
\item {\it input/topog.bin}, |
327 |
|
|
\item {\it code/CPP\_EEOPTIONS.h} |
328 |
|
|
\item {\it code/CPP\_OPTIONS.h}, |
329 |
|
|
\item {\it code/SIZE.h}. |
330 |
|
|
\end{itemize} |
331 |
cnh |
1.3 |
contain the code customizations and parameter settings for these |
332 |
|
|
experiments. Below we describe the customizations |
333 |
adcroft |
1.1 |
to these files associated with this experiment. |
334 |
cnh |
1.8 |
|
335 |
|
|
\subsubsection{Driving Datasets} |
336 |
adcroft |
1.9 |
\label{www:tutorials} |
337 |
cnh |
1.8 |
|
338 |
|
|
Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the |
339 |
|
|
relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, |
340 |
|
|
the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
341 |
|
|
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
342 |
|
|
in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures |
343 |
|
|
also indicate the lateral extent and coastline used in the experiment. |
344 |
|
|
Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model |
345 |
|
|
domain. |
346 |
|
|
|
347 |
adcroft |
1.1 |
|
348 |
|
|
\subsubsection{File {\it input/data}} |
349 |
adcroft |
1.9 |
\label{www:tutorials} |
350 |
adcroft |
1.1 |
|
351 |
|
|
This file, reproduced completely below, specifies the main parameters |
352 |
|
|
for the experiment. The parameters that are significant for this configuration |
353 |
|
|
are |
354 |
|
|
|
355 |
|
|
\begin{itemize} |
356 |
|
|
|
357 |
|
|
\item Lines 7-10 and 11-14 |
358 |
|
|
\begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim} |
359 |
|
|
$\cdots$ \\ |
360 |
|
|
set reference values for potential |
361 |
edhill |
1.13 |
temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and |
362 |
adcroft |
1.1 |
${\rm ppt}$. The entries are ordered from surface to depth. |
363 |
|
|
Density is calculated from anomalies at each level evaluated |
364 |
|
|
with respect to the reference values set here.\\ |
365 |
|
|
\fbox{ |
366 |
|
|
\begin{minipage}{5.0in} |
367 |
|
|
{\it S/R INI\_THETA}({\it ini\_theta.F}) |
368 |
|
|
\end{minipage} |
369 |
|
|
} |
370 |
|
|
|
371 |
|
|
|
372 |
|
|
\item Line 15, |
373 |
|
|
\begin{verbatim} viscAz=1.E-3, \end{verbatim} |
374 |
cnh |
1.3 |
this line sets the vertical Laplacian dissipation coefficient to |
375 |
adcroft |
1.1 |
$1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions |
376 |
|
|
for this operator are specified later. This variable is copied into |
377 |
|
|
model general vertical coordinate variable {\bf viscAr}. |
378 |
|
|
|
379 |
|
|
\fbox{ |
380 |
|
|
\begin{minipage}{5.0in} |
381 |
|
|
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
382 |
|
|
\end{minipage} |
383 |
|
|
} |
384 |
|
|
|
385 |
|
|
\item Line 16, |
386 |
|
|
\begin{verbatim} |
387 |
|
|
viscAh=5.E5, |
388 |
|
|
\end{verbatim} |
389 |
cnh |
1.3 |
this line sets the horizontal Laplacian frictional dissipation coefficient to |
390 |
adcroft |
1.1 |
$5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions |
391 |
|
|
for this operator are specified later. |
392 |
|
|
|
393 |
|
|
\item Lines 17, |
394 |
|
|
\begin{verbatim} |
395 |
|
|
no_slip_sides=.FALSE. |
396 |
|
|
\end{verbatim} |
397 |
|
|
this line selects a free-slip lateral boundary condition for |
398 |
cnh |
1.3 |
the horizontal Laplacian friction operator |
399 |
adcroft |
1.1 |
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
400 |
|
|
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
401 |
|
|
|
402 |
|
|
\item Lines 9, |
403 |
|
|
\begin{verbatim} |
404 |
|
|
no_slip_bottom=.TRUE. |
405 |
|
|
\end{verbatim} |
406 |
|
|
this line selects a no-slip boundary condition for bottom |
407 |
cnh |
1.3 |
boundary condition in the vertical Laplacian friction operator |
408 |
adcroft |
1.1 |
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
409 |
|
|
|
410 |
|
|
\item Line 19, |
411 |
|
|
\begin{verbatim} |
412 |
|
|
diffKhT=1.E3, |
413 |
|
|
\end{verbatim} |
414 |
|
|
this line sets the horizontal diffusion coefficient for temperature |
415 |
|
|
to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
416 |
|
|
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on |
417 |
|
|
all boundaries. |
418 |
|
|
|
419 |
|
|
\item Line 20, |
420 |
|
|
\begin{verbatim} |
421 |
|
|
diffKzT=3.E-5, |
422 |
|
|
\end{verbatim} |
423 |
|
|
this line sets the vertical diffusion coefficient for temperature |
424 |
|
|
to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary |
425 |
|
|
condition on this operator is $\frac{\partial}{\partial z}=0$ at both |
426 |
|
|
the upper and lower boundaries. |
427 |
|
|
|
428 |
|
|
\item Line 21, |
429 |
|
|
\begin{verbatim} |
430 |
|
|
diffKhS=1.E3, |
431 |
|
|
\end{verbatim} |
432 |
|
|
this line sets the horizontal diffusion coefficient for salinity |
433 |
|
|
to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
434 |
|
|
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on |
435 |
|
|
all boundaries. |
436 |
|
|
|
437 |
|
|
\item Line 22, |
438 |
|
|
\begin{verbatim} |
439 |
|
|
diffKzS=3.E-5, |
440 |
|
|
\end{verbatim} |
441 |
|
|
this line sets the vertical diffusion coefficient for salinity |
442 |
|
|
to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary |
443 |
|
|
condition on this operator is $\frac{\partial}{\partial z}=0$ at both |
444 |
|
|
the upper and lower boundaries. |
445 |
|
|
|
446 |
|
|
\item Lines 23-26 |
447 |
|
|
\begin{verbatim} |
448 |
|
|
beta=1.E-11, |
449 |
|
|
\end{verbatim} |
450 |
|
|
\vspace{-5mm}$\cdots$\\ |
451 |
|
|
These settings do not apply for this experiment. |
452 |
|
|
|
453 |
|
|
\item Line 27, |
454 |
|
|
\begin{verbatim} |
455 |
|
|
gravity=9.81, |
456 |
|
|
\end{verbatim} |
457 |
cnh |
1.3 |
Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\ |
458 |
adcroft |
1.1 |
\fbox{ |
459 |
|
|
\begin{minipage}{5.0in} |
460 |
|
|
{\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\ |
461 |
|
|
{\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\ |
462 |
|
|
{\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\ |
463 |
|
|
{\it S/R INI\_PARMS}~({\it ini\_parms.F})\\ |
464 |
|
|
{\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F}) |
465 |
|
|
\end{minipage} |
466 |
|
|
} |
467 |
|
|
|
468 |
|
|
|
469 |
|
|
\item Line 28-29, |
470 |
|
|
\begin{verbatim} |
471 |
|
|
rigidLid=.FALSE., |
472 |
|
|
implicitFreeSurface=.TRUE., |
473 |
|
|
\end{verbatim} |
474 |
|
|
Selects the barotropic pressure equation to be the implicit free surface |
475 |
|
|
formulation. |
476 |
|
|
|
477 |
|
|
\item Line 30, |
478 |
|
|
\begin{verbatim} |
479 |
|
|
eosType='POLY3', |
480 |
|
|
\end{verbatim} |
481 |
|
|
Selects the third order polynomial form of the equation of state.\\ |
482 |
|
|
\fbox{ |
483 |
|
|
\begin{minipage}{5.0in} |
484 |
|
|
{\it S/R FIND\_RHO}~({\it find\_rho.F})\\ |
485 |
|
|
{\it S/R FIND\_ALPHA}~({\it find\_alpha.F}) |
486 |
|
|
\end{minipage} |
487 |
|
|
} |
488 |
|
|
|
489 |
|
|
\item Line 31, |
490 |
|
|
\begin{verbatim} |
491 |
|
|
readBinaryPrec=32, |
492 |
|
|
\end{verbatim} |
493 |
|
|
Sets format for reading binary input datasets holding model fields to |
494 |
|
|
use 32-bit representation for floating-point numbers.\\ |
495 |
|
|
\fbox{ |
496 |
|
|
\begin{minipage}{5.0in} |
497 |
|
|
{\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\ |
498 |
|
|
{\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F}) |
499 |
|
|
\end{minipage} |
500 |
|
|
} |
501 |
|
|
|
502 |
|
|
\item Line 36, |
503 |
|
|
\begin{verbatim} |
504 |
|
|
cg2dMaxIters=1000, |
505 |
|
|
\end{verbatim} |
506 |
|
|
Sets maximum number of iterations the two-dimensional, conjugate |
507 |
|
|
gradient solver will use, {\bf irrespective of convergence |
508 |
|
|
criteria being met}.\\ |
509 |
|
|
\fbox{ |
510 |
|
|
\begin{minipage}{5.0in} |
511 |
|
|
{\it S/R CG2D}~({\it cg2d.F}) |
512 |
|
|
\end{minipage} |
513 |
|
|
} |
514 |
|
|
|
515 |
|
|
\item Line 37, |
516 |
|
|
\begin{verbatim} |
517 |
|
|
cg2dTargetResidual=1.E-13, |
518 |
|
|
\end{verbatim} |
519 |
|
|
Sets the tolerance which the two-dimensional, conjugate |
520 |
|
|
gradient solver will use to test for convergence in equation |
521 |
|
|
\ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$. |
522 |
|
|
Solver will iterate until |
523 |
|
|
tolerance falls below this value or until the maximum number of |
524 |
|
|
solver iterations is reached.\\ |
525 |
|
|
\fbox{ |
526 |
|
|
\begin{minipage}{5.0in} |
527 |
|
|
{\it S/R CG2D}~({\it cg2d.F}) |
528 |
|
|
\end{minipage} |
529 |
|
|
} |
530 |
|
|
|
531 |
|
|
\item Line 42, |
532 |
|
|
\begin{verbatim} |
533 |
|
|
startTime=0, |
534 |
|
|
\end{verbatim} |
535 |
|
|
Sets the starting time for the model internal time counter. |
536 |
|
|
When set to non-zero this option implicitly requests a |
537 |
|
|
checkpoint file be read for initial state. |
538 |
|
|
By default the checkpoint file is named according to |
539 |
|
|
the integer number of time steps in the {\bf startTime} value. |
540 |
|
|
The internal time counter works in seconds. |
541 |
|
|
|
542 |
|
|
\item Line 43, |
543 |
|
|
\begin{verbatim} |
544 |
|
|
endTime=2808000., |
545 |
|
|
\end{verbatim} |
546 |
|
|
Sets the time (in seconds) at which this simulation will terminate. |
547 |
|
|
At the end of a simulation a checkpoint file is automatically |
548 |
|
|
written so that a numerical experiment can consist of multiple |
549 |
|
|
stages. |
550 |
|
|
|
551 |
|
|
\item Line 44, |
552 |
|
|
\begin{verbatim} |
553 |
|
|
#endTime=62208000000, |
554 |
|
|
\end{verbatim} |
555 |
|
|
A commented out setting for endTime for a 2000 year simulation. |
556 |
|
|
|
557 |
|
|
\item Line 45, |
558 |
|
|
\begin{verbatim} |
559 |
|
|
deltaTmom=2400.0, |
560 |
|
|
\end{verbatim} |
561 |
|
|
Sets the timestep $\delta t_{v}$ used in the momentum equations to |
562 |
|
|
$20~{\rm mins}$. |
563 |
|
|
See section \ref{SEC:mom_time_stepping}. |
564 |
|
|
|
565 |
|
|
\fbox{ |
566 |
|
|
\begin{minipage}{5.0in} |
567 |
|
|
{\it S/R TIMESTEP}({\it timestep.F}) |
568 |
|
|
\end{minipage} |
569 |
|
|
} |
570 |
|
|
|
571 |
|
|
\item Line 46, |
572 |
|
|
\begin{verbatim} |
573 |
|
|
tauCD=321428., |
574 |
|
|
\end{verbatim} |
575 |
|
|
Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations. |
576 |
|
|
See section \ref{SEC:cd_scheme}. |
577 |
|
|
|
578 |
|
|
\fbox{ |
579 |
|
|
\begin{minipage}{5.0in} |
580 |
|
|
{\it S/R INI\_PARMS}({\it ini\_parms.F})\\ |
581 |
|
|
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
582 |
|
|
\end{minipage} |
583 |
|
|
} |
584 |
|
|
|
585 |
|
|
\item Line 47, |
586 |
|
|
\begin{verbatim} |
587 |
|
|
deltaTtracer=108000., |
588 |
|
|
\end{verbatim} |
589 |
|
|
Sets the default timestep, $\delta t_{\theta}$, for tracer equations to |
590 |
|
|
$30~{\rm hours}$. |
591 |
|
|
See section \ref{SEC:tracer_time_stepping}. |
592 |
|
|
|
593 |
|
|
\fbox{ |
594 |
|
|
\begin{minipage}{5.0in} |
595 |
|
|
{\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F}) |
596 |
|
|
\end{minipage} |
597 |
|
|
} |
598 |
|
|
|
599 |
|
|
\item Line 47, |
600 |
|
|
\begin{verbatim} |
601 |
|
|
bathyFile='topog.box' |
602 |
|
|
\end{verbatim} |
603 |
|
|
This line specifies the name of the file from which the domain |
604 |
|
|
bathymetry is read. This file is a two-dimensional ($x,y$) map of |
605 |
|
|
depths. This file is assumed to contain 64-bit binary numbers |
606 |
|
|
giving the depth of the model at each grid cell, ordered with the x |
607 |
|
|
coordinate varying fastest. The points are ordered from low coordinate |
608 |
|
|
to high coordinate for both axes. The units and orientation of the |
609 |
|
|
depths in this file are the same as used in the MITgcm code. In this |
610 |
|
|
experiment, a depth of $0m$ indicates a solid wall and a depth |
611 |
|
|
of $-2000m$ indicates open ocean. The matlab program |
612 |
|
|
{\it input/gendata.m} shows an example of how to generate a |
613 |
|
|
bathymetry file. |
614 |
|
|
|
615 |
|
|
|
616 |
|
|
\item Line 50, |
617 |
|
|
\begin{verbatim} |
618 |
|
|
zonalWindFile='windx.sin_y' |
619 |
|
|
\end{verbatim} |
620 |
|
|
This line specifies the name of the file from which the x-direction |
621 |
|
|
surface wind stress is read. This file is also a two-dimensional |
622 |
|
|
($x,y$) map and is enumerated and formatted in the same manner as the |
623 |
|
|
bathymetry file. The matlab program {\it input/gendata.m} includes example |
624 |
|
|
code to generate a valid |
625 |
|
|
{\bf zonalWindFile} |
626 |
|
|
file. |
627 |
|
|
|
628 |
|
|
\end{itemize} |
629 |
|
|
|
630 |
|
|
\noindent other lines in the file {\it input/data} are standard values |
631 |
|
|
that are described in the MITgcm Getting Started and MITgcm Parameters |
632 |
|
|
notes. |
633 |
|
|
|
634 |
|
|
\begin{small} |
635 |
|
|
\input{part3/case_studies/climatalogical_ogcm/input/data} |
636 |
|
|
\end{small} |
637 |
|
|
|
638 |
|
|
\subsubsection{File {\it input/data.pkg}} |
639 |
adcroft |
1.9 |
\label{www:tutorials} |
640 |
adcroft |
1.1 |
|
641 |
|
|
This file uses standard default values and does not contain |
642 |
|
|
customisations for this experiment. |
643 |
|
|
|
644 |
|
|
\subsubsection{File {\it input/eedata}} |
645 |
adcroft |
1.9 |
\label{www:tutorials} |
646 |
adcroft |
1.1 |
|
647 |
|
|
This file uses standard default values and does not contain |
648 |
|
|
customisations for this experiment. |
649 |
|
|
|
650 |
|
|
\subsubsection{File {\it input/windx.sin\_y}} |
651 |
adcroft |
1.9 |
\label{www:tutorials} |
652 |
adcroft |
1.1 |
|
653 |
|
|
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
654 |
|
|
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
655 |
|
|
Although $\tau_{x}$ is only a function of $y$n in this experiment |
656 |
|
|
this file must still define a complete two-dimensional map in order |
657 |
|
|
to be compatible with the standard code for loading forcing fields |
658 |
|
|
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
659 |
|
|
code for creating the {\it input/windx.sin\_y} file. |
660 |
|
|
|
661 |
|
|
\subsubsection{File {\it input/topog.box}} |
662 |
adcroft |
1.9 |
\label{www:tutorials} |
663 |
adcroft |
1.1 |
|
664 |
|
|
|
665 |
|
|
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
666 |
|
|
map of depth values. For this experiment values are either |
667 |
|
|
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
668 |
|
|
ocean. The file contains a raw binary stream of data that is enumerated |
669 |
|
|
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
670 |
|
|
The included matlab program {\it input/gendata.m} gives a complete |
671 |
|
|
code for creating the {\it input/topog.box} file. |
672 |
|
|
|
673 |
|
|
\subsubsection{File {\it code/SIZE.h}} |
674 |
adcroft |
1.9 |
\label{www:tutorials} |
675 |
adcroft |
1.1 |
|
676 |
|
|
Two lines are customized in this file for the current experiment |
677 |
|
|
|
678 |
|
|
\begin{itemize} |
679 |
|
|
|
680 |
|
|
\item Line 39, |
681 |
|
|
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
682 |
|
|
the lateral domain extent in grid points for the |
683 |
|
|
axis aligned with the x-coordinate. |
684 |
|
|
|
685 |
|
|
\item Line 40, |
686 |
|
|
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
687 |
|
|
the lateral domain extent in grid points for the |
688 |
|
|
axis aligned with the y-coordinate. |
689 |
|
|
|
690 |
|
|
\item Line 49, |
691 |
|
|
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
692 |
|
|
the vertical domain extent in grid points. |
693 |
|
|
|
694 |
|
|
\end{itemize} |
695 |
|
|
|
696 |
|
|
\begin{small} |
697 |
|
|
\input{part3/case_studies/climatalogical_ogcm/code/SIZE.h} |
698 |
|
|
\end{small} |
699 |
|
|
|
700 |
|
|
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
701 |
adcroft |
1.9 |
\label{www:tutorials} |
702 |
adcroft |
1.1 |
|
703 |
|
|
This file uses standard default values and does not contain |
704 |
|
|
customisations for this experiment. |
705 |
|
|
|
706 |
|
|
|
707 |
|
|
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
708 |
adcroft |
1.9 |
\label{www:tutorials} |
709 |
adcroft |
1.1 |
|
710 |
|
|
This file uses standard default values and does not contain |
711 |
|
|
customisations for this experiment. |
712 |
|
|
|
713 |
|
|
\subsubsection{Other Files } |
714 |
adcroft |
1.9 |
\label{www:tutorials} |
715 |
adcroft |
1.1 |
|
716 |
|
|
Other files relevant to this experiment are |
717 |
|
|
\begin{itemize} |
718 |
|
|
\item {\it model/src/ini\_cori.F}. This file initializes the model |
719 |
|
|
coriolis variables {\bf fCorU}. |
720 |
|
|
\item {\it model/src/ini\_spherical\_polar\_grid.F} |
721 |
|
|
\item {\it model/src/ini\_parms.F}, |
722 |
|
|
\item {\it input/windx.sin\_y}, |
723 |
|
|
\end{itemize} |
724 |
|
|
contain the code customisations and parameter settings for this |
725 |
cnh |
1.3 |
experiments. Below we describe the customisations |
726 |
adcroft |
1.1 |
to these files associated with this experiment. |