/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Wed Aug 8 16:16:05 2001 UTC (23 years, 11 months ago) by adcroft
Branch: MAIN
Branch point for: dummy
File MIME type: application/x-tex
Initial revision

1 adcroft 1.1 % $Header: $
2     % $Name: $
3    
4     \section{Example: 4$^\circ$ Global Climatological Ocean Simulation}
5    
6     \bodytext{bgcolor="#FFFFFFFF"}
7    
8     %\begin{center}
9     %{\Large \bf Using MITgcm to Simulate Global Climatalogical Ocean Circulation
10     %At Four Degree Resolution with Asynchronous Time Stepping}
11     %
12     %\vspace*{4mm}
13     %
14     %\vspace*{3mm}
15     %{\large May 2001}
16     %\end{center}
17    
18     \subsection{Introduction}
19    
20     This document describes the third example MITgcm experiment. The first
21     two examples illustrated how to configure the code for hydrostatic idealised
22     geophysical fluids simulations. This example iilustrates the use of
23     the MITgcm for large scale ocean circulation simulation.
24    
25     \subsection{Overview}
26    
27     This example experiment demonstrates using the MITgcm to simulate
28     the planetary ocean circulation. The simulation is configured
29     with realistic geography and bathymetry on a
30     $4^{\circ} \times 4^{\circ}$ spherical polar grid.
31     Twenty levels are used in the vertical, ranging in thickness
32     from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
33     giving a maximum model depth of $6\,{\rm km}$.
34     At this resolution, the configuration
35     can be integrated forward for thousands of years on a single
36     processor desktop computer.
37     \\
38    
39     The model is forced with climatalogical wind stress data and surface
40     flux data from DaSilva \cite{DaSilva94}. Climatalogical data
41     from Levitus \cite{Levitus94} is used to initialise the model hydrography.
42     Levitus seasonal clmatology data is also used throughout the calculation
43     to provide additional air-sea fluxes.
44     These fluxes are combined with the DaSilva climatalogical estimates of
45     surface heat flux and fresh water, resulting in a mixed boundary
46     condition of the style decribed in Haney \cite{Haney}.
47     Altogether, this yields the following forcing applied
48     in the model surface layer.
49    
50     \begin{eqnarray}
51     \label{EQ:global_forcing}
52     \label{EQ:global_forcing_fu}
53     {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
54     \\
55     \label{EQ:global_forcing_fv}
56     {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
57     \\
58     \label{EQ:global_forcing_ft}
59     {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
60     - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
61     \\
62     \label{EQ:global_forcing_fs}
63     {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
64     + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
65     \end{eqnarray}
66    
67     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
68     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
69     momentum and in the potential temperature and salinity
70     equations respectively.
71     The term $\Delta z_{s}$ represents the top ocean layer thickness in
72     meters.
73     It is used in conjunction with a reference density, $\rho_{0}$
74     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
75     reference salinity, $S_{0}$ (here set to 35~ppt),
76     and a specific heat capacity, $C_{p}$ (here set to
77     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
78     input dataset values into time tendencies of
79     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
80     salinity (with units ${\rm ppt}~s^{-1}$) and
81     velocity (with units ${\rm m}~{\rm s}^{-2}$).
82     The externally supplied forcing fields used in this
83     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
84     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
85     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
86     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
87     respectively. The salinity forcing fields ($S^{\ast}$ and
88     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
89     respectively.
90     \\
91    
92    
93     Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
94     relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
95     the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
96     and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
97     in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
98     also indicate the lateral extent and coastline used in the experiment.
99     Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
100     domain.
101    
102    
103     \subsection{Discrete Numerical Configuration}
104    
105    
106     The model is configured in hydrostatic form. The domain is discretised with
107     a uniform grid spacing in latitude and longitude on the sphere
108     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
109     that there are ninety grid cells in the zonal and forty in the
110     meridional direction. The internal model coordinate variables
111     $x$ and $y$ are initialised according to
112     \begin{eqnarray}
113     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
114     y=r\lambda,~\Delta x &= &r\Delta \lambda
115     \end{eqnarray}
116    
117     Arctic polar regions are not
118     included in this experiment. Meridionally the model extends from
119     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
120     Vertically the model is configured with twenty layers with the
121     following thicknesses
122     $\Delta z_{1} = 50\,{\rm m},\,
123     \Delta z_{2} = 50\,{\rm m},\,
124     \Delta z_{3} = 55\,{\rm m},\,
125     \Delta z_{4} = 60\,{\rm m},\,
126     \Delta z_{5} = 65\,{\rm m},\,
127     $
128     $
129     \Delta z_{6}~=~70\,{\rm m},\,
130     \Delta z_{7}~=~80\,{\rm m},\,
131     \Delta z_{8}~=95\,{\rm m},\,
132     \Delta z_{9}=120\,{\rm m},\,
133     \Delta z_{10}=155\,{\rm m},\,
134     $
135     $
136     \Delta z_{11}=200\,{\rm m},\,
137     \Delta z_{12}=260\,{\rm m},\,
138     \Delta z_{13}=320\,{\rm m},\,
139     \Delta z_{14}=400\,{\rm m},\,
140     \Delta z_{15}=480\,{\rm m},\,
141     $
142     $
143     \Delta z_{16}=570\,{\rm m},\,
144     \Delta z_{17}=655\,{\rm m},\,
145     \Delta z_{18}=725\,{\rm m},\,
146     \Delta z_{19}=775\,{\rm m},\,
147     \Delta z_{20}=815\,{\rm m}
148     $ (here the numeric subscript indicates the model level index number, ${\tt k}$).
149     The implicit free surface form of the pressure equation described in Marshall et. al
150     \cite{Marshall97a} is employed. A laplacian operator, $\nabla^2$, provides viscous
151     dissipation. Thermal and haline diffusion is also represented by a laplacian operator.
152    
153     Wind-stress forcing is added to the momentum equations for both
154     the zonal flow, $u$ and the merdional flow $v$, according to equations
155     (\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}).
156     Thermodynamic forcing inputs are added to the equations for
157     potential temperature, $\theta$, and salinity, $S$, according to equations
158     (\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}).
159     This produces a set of equations solved in this configuration as follows:
160    
161     \begin{eqnarray}
162     \label{EQ:model_equations}
163     \frac{Du}{Dt} - fv +
164     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
165     \nabla_{h}\cdot A_{h}\nabla_{h}u -
166     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
167     & = &
168     \begin{cases}
169     {\cal F}_u & \text{(surface)} \\
170     0 & \text{(interior)}
171     \end{cases}
172     \\
173     \frac{Dv}{Dt} + fu +
174     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
175     \nabla_{h}\cdot A_{h}\nabla_{h}v -
176     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
177     & = &
178     \begin{cases}
179     {\cal F}_v & \text{(surface)} \\
180     0 & \text{(interior)}
181     \end{cases}
182     \\
183     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
184     &=&
185     0
186     \\
187     \frac{D\theta}{Dt} -
188     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
189     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
190     & = &
191     \begin{cases}
192     {\cal F}_\theta & \text{(surface)} \\
193     0 & \text{(interior)}
194     \end{cases}
195     \\
196     \frac{D s}{Dt} -
197     \nabla_{h}\cdot K_{h}\nabla_{h}s
198     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
199     & = &
200     \begin{cases}
201     {\cal F}_s & \text{(surface)} \\
202     0 & \text{(interior)}
203     \end{cases}
204     \\
205     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
206     \end{eqnarray}
207    
208     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
209     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
210     are the zonal and meridional components of the
211     flow vector, $\vec{u}$, on the sphere. As described in
212     MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time
213     evolution of potential temperature, $\theta$, equation is solved prognostically.
214     The total pressure, $p$, is diagnosed by summing pressure due to surface
215     elevation $\eta$ and the hydrostatic pressure.
216     \\
217    
218     \subsubsection{Numerical Stability Criteria}
219    
220     The laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
221     This value is chosen to yield a Munk layer width \cite{Adcroft_thesis},
222     \begin{eqnarray}
223     \label{EQ:munk_layer}
224     M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
225     \end{eqnarray}
226    
227     \noindent of $\approx 600$km. This is greater than the model
228     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
229     boundary layer is adequately resolved.
230     \\
231    
232     \noindent The model is stepped forward with a
233     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
234     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
235     parameter to the horizontal laplacian friction \cite{Adcroft_thesis}
236     \begin{eqnarray}
237     \label{EQ:laplacian_stability}
238     S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
239     \end{eqnarray}
240    
241     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
242     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
243     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
244     \\
245    
246     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
247     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
248     \begin{eqnarray}
249     \label{EQ:laplacian_stability_z}
250     S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
251     \end{eqnarray}
252    
253     \noindent evaluates to $0.015$ for the smallest model
254     level spcing ($\Delta z_{1}=50{\rm m}$) which is again well below
255     the upper stability limit.
256     \\
257    
258     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
259     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
260     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
261     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
262     Here the stability parameter
263     \begin{eqnarray}
264     \label{EQ:laplacian_stability_xtheta}
265     S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
266     \end{eqnarray}
267     evaluates to $0.07$, well below the stabilit limit of $S_{l} \approx 0.5$. The
268     stability parameter related to $K_{z}$
269     \begin{eqnarray}
270     \label{EQ:laplacian_stability_ztheta}
271     S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
272     \end{eqnarray}
273     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
274     of $S_{l} \approx 0.5$.
275     \\
276    
277     \noindent The numerical stability for inertial oscillations
278     \cite{Adcroft_thesis}
279    
280     \begin{eqnarray}
281     \label{EQ:inertial_stability}
282     S_{i} = f^{2} {\delta t_v}^2
283     \end{eqnarray}
284    
285     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
286     the $S_{i} < 1$ upper limit for stability.
287     \\
288    
289     \noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum
290     horizontal flow
291     speed of $ | \vec{u} | = 2 ms^{-1}$
292    
293     \begin{eqnarray}
294     \label{EQ:cfl_stability}
295     S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
296     \end{eqnarray}
297    
298     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
299     limit of 0.5.
300     \\
301    
302     \noindent The stability parameter for internal gravity waves propogating
303     with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
304     \cite{Adcroft_thesis}
305    
306     \begin{eqnarray}
307     \label{EQ:cfl_stability}
308     S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
309     \end{eqnarray}
310    
311     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
312     stability limit of 0.5.
313    
314     \subsection{Experiment Configuration}
315     \label{SEC:clim_ocn_examp_exp_config}
316    
317     The model configuration for this experiment resides under the
318     directory {\it verification/exp2/}. The experiment files
319     \begin{itemize}
320     \item {\it input/data}
321     \item {\it input/data.pkg}
322     \item {\it input/eedata},
323     \item {\it input/windx.bin},
324     \item {\it input/windy.bin},
325     \item {\it input/salt.bin},
326     \item {\it input/theta.bin},
327     \item {\it input/SSS.bin},
328     \item {\it input/SST.bin},
329     \item {\it input/topog.bin},
330     \item {\it code/CPP\_EEOPTIONS.h}
331     \item {\it code/CPP\_OPTIONS.h},
332     \item {\it code/SIZE.h}.
333     \end{itemize}
334     contain the code customisations and parameter settings for these
335     experiements. Below we describe the customisations
336     to these files associated with this experiment.
337    
338     \subsubsection{File {\it input/data}}
339    
340     This file, reproduced completely below, specifies the main parameters
341     for the experiment. The parameters that are significant for this configuration
342     are
343    
344     \begin{itemize}
345    
346     \item Lines 7-10 and 11-14
347     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
348     $\cdots$ \\
349     set reference values for potential
350     temperature and salinity at each model level in units of $^{\circ}$C and
351     ${\rm ppt}$. The entries are ordered from surface to depth.
352     Density is calculated from anomalies at each level evaluated
353     with respect to the reference values set here.\\
354     \fbox{
355     \begin{minipage}{5.0in}
356     {\it S/R INI\_THETA}({\it ini\_theta.F})
357     \end{minipage}
358     }
359    
360    
361     \item Line 15,
362     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
363     this line sets the vertical laplacian dissipation coefficient to
364     $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
365     for this operator are specified later. This variable is copied into
366     model general vertical coordinate variable {\bf viscAr}.
367    
368     \fbox{
369     \begin{minipage}{5.0in}
370     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
371     \end{minipage}
372     }
373    
374     \item Line 16,
375     \begin{verbatim}
376     viscAh=5.E5,
377     \end{verbatim}
378     this line sets the horizontal laplacian frictional dissipation coefficient to
379     $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
380     for this operator are specified later.
381    
382     \item Lines 17,
383     \begin{verbatim}
384     no_slip_sides=.FALSE.
385     \end{verbatim}
386     this line selects a free-slip lateral boundary condition for
387     the horizontal laplacian friction operator
388     e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
389     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
390    
391     \item Lines 9,
392     \begin{verbatim}
393     no_slip_bottom=.TRUE.
394     \end{verbatim}
395     this line selects a no-slip boundary condition for bottom
396     boundary condition in the vertical laplacian friction operator
397     e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
398    
399     \item Line 19,
400     \begin{verbatim}
401     diffKhT=1.E3,
402     \end{verbatim}
403     this line sets the horizontal diffusion coefficient for temperature
404     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
405     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
406     all boundaries.
407    
408     \item Line 20,
409     \begin{verbatim}
410     diffKzT=3.E-5,
411     \end{verbatim}
412     this line sets the vertical diffusion coefficient for temperature
413     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
414     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
415     the upper and lower boundaries.
416    
417     \item Line 21,
418     \begin{verbatim}
419     diffKhS=1.E3,
420     \end{verbatim}
421     this line sets the horizontal diffusion coefficient for salinity
422     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
423     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
424     all boundaries.
425    
426     \item Line 22,
427     \begin{verbatim}
428     diffKzS=3.E-5,
429     \end{verbatim}
430     this line sets the vertical diffusion coefficient for salinity
431     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
432     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
433     the upper and lower boundaries.
434    
435     \item Lines 23-26
436     \begin{verbatim}
437     beta=1.E-11,
438     \end{verbatim}
439     \vspace{-5mm}$\cdots$\\
440     These settings do not apply for this experiment.
441    
442     \item Line 27,
443     \begin{verbatim}
444     gravity=9.81,
445     \end{verbatim}
446     Sets the gravitational acceleration coeeficient to $9.81{\rm m}{\rm s}^{-1}$.\\
447     \fbox{
448     \begin{minipage}{5.0in}
449     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
450     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
451     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
452     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
453     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
454     \end{minipage}
455     }
456    
457    
458     \item Line 28-29,
459     \begin{verbatim}
460     rigidLid=.FALSE.,
461     implicitFreeSurface=.TRUE.,
462     \end{verbatim}
463     Selects the barotropic pressure equation to be the implicit free surface
464     formulation.
465    
466     \item Line 30,
467     \begin{verbatim}
468     eosType='POLY3',
469     \end{verbatim}
470     Selects the third order polynomial form of the equation of state.\\
471     \fbox{
472     \begin{minipage}{5.0in}
473     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
474     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
475     \end{minipage}
476     }
477    
478     \item Line 31,
479     \begin{verbatim}
480     readBinaryPrec=32,
481     \end{verbatim}
482     Sets format for reading binary input datasets holding model fields to
483     use 32-bit representation for floating-point numbers.\\
484     \fbox{
485     \begin{minipage}{5.0in}
486     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
487     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
488     \end{minipage}
489     }
490    
491     \item Line 36,
492     \begin{verbatim}
493     cg2dMaxIters=1000,
494     \end{verbatim}
495     Sets maximum number of iterations the two-dimensional, conjugate
496     gradient solver will use, {\bf irrespective of convergence
497     criteria being met}.\\
498     \fbox{
499     \begin{minipage}{5.0in}
500     {\it S/R CG2D}~({\it cg2d.F})
501     \end{minipage}
502     }
503    
504     \item Line 37,
505     \begin{verbatim}
506     cg2dTargetResidual=1.E-13,
507     \end{verbatim}
508     Sets the tolerance which the two-dimensional, conjugate
509     gradient solver will use to test for convergence in equation
510     \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
511     Solver will iterate until
512     tolerance falls below this value or until the maximum number of
513     solver iterations is reached.\\
514     \fbox{
515     \begin{minipage}{5.0in}
516     {\it S/R CG2D}~({\it cg2d.F})
517     \end{minipage}
518     }
519    
520     \item Line 42,
521     \begin{verbatim}
522     startTime=0,
523     \end{verbatim}
524     Sets the starting time for the model internal time counter.
525     When set to non-zero this option implicitly requests a
526     checkpoint file be read for initial state.
527     By default the checkpoint file is named according to
528     the integer number of time steps in the {\bf startTime} value.
529     The internal time counter works in seconds.
530    
531     \item Line 43,
532     \begin{verbatim}
533     endTime=2808000.,
534     \end{verbatim}
535     Sets the time (in seconds) at which this simulation will terminate.
536     At the end of a simulation a checkpoint file is automatically
537     written so that a numerical experiment can consist of multiple
538     stages.
539    
540     \item Line 44,
541     \begin{verbatim}
542     #endTime=62208000000,
543     \end{verbatim}
544     A commented out setting for endTime for a 2000 year simulation.
545    
546     \item Line 45,
547     \begin{verbatim}
548     deltaTmom=2400.0,
549     \end{verbatim}
550     Sets the timestep $\delta t_{v}$ used in the momentum equations to
551     $20~{\rm mins}$.
552     See section \ref{SEC:mom_time_stepping}.
553    
554     \fbox{
555     \begin{minipage}{5.0in}
556     {\it S/R TIMESTEP}({\it timestep.F})
557     \end{minipage}
558     }
559    
560     \item Line 46,
561     \begin{verbatim}
562     tauCD=321428.,
563     \end{verbatim}
564     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
565     See section \ref{SEC:cd_scheme}.
566    
567     \fbox{
568     \begin{minipage}{5.0in}
569     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
570     {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
571     \end{minipage}
572     }
573    
574     \item Line 47,
575     \begin{verbatim}
576     deltaTtracer=108000.,
577     \end{verbatim}
578     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
579     $30~{\rm hours}$.
580     See section \ref{SEC:tracer_time_stepping}.
581    
582     \fbox{
583     \begin{minipage}{5.0in}
584     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
585     \end{minipage}
586     }
587    
588     \item Line 47,
589     \begin{verbatim}
590     bathyFile='topog.box'
591     \end{verbatim}
592     This line specifies the name of the file from which the domain
593     bathymetry is read. This file is a two-dimensional ($x,y$) map of
594     depths. This file is assumed to contain 64-bit binary numbers
595     giving the depth of the model at each grid cell, ordered with the x
596     coordinate varying fastest. The points are ordered from low coordinate
597     to high coordinate for both axes. The units and orientation of the
598     depths in this file are the same as used in the MITgcm code. In this
599     experiment, a depth of $0m$ indicates a solid wall and a depth
600     of $-2000m$ indicates open ocean. The matlab program
601     {\it input/gendata.m} shows an example of how to generate a
602     bathymetry file.
603    
604    
605     \item Line 50,
606     \begin{verbatim}
607     zonalWindFile='windx.sin_y'
608     \end{verbatim}
609     This line specifies the name of the file from which the x-direction
610     surface wind stress is read. This file is also a two-dimensional
611     ($x,y$) map and is enumerated and formatted in the same manner as the
612     bathymetry file. The matlab program {\it input/gendata.m} includes example
613     code to generate a valid
614     {\bf zonalWindFile}
615     file.
616    
617     \end{itemize}
618    
619     \noindent other lines in the file {\it input/data} are standard values
620     that are described in the MITgcm Getting Started and MITgcm Parameters
621     notes.
622    
623     \begin{small}
624     \input{part3/case_studies/climatalogical_ogcm/input/data}
625     \end{small}
626    
627     \subsubsection{File {\it input/data.pkg}}
628    
629     This file uses standard default values and does not contain
630     customisations for this experiment.
631    
632     \subsubsection{File {\it input/eedata}}
633    
634     This file uses standard default values and does not contain
635     customisations for this experiment.
636    
637     \subsubsection{File {\it input/windx.sin\_y}}
638    
639     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
640     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
641     Although $\tau_{x}$ is only a function of $y$n in this experiment
642     this file must still define a complete two-dimensional map in order
643     to be compatible with the standard code for loading forcing fields
644     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
645     code for creating the {\it input/windx.sin\_y} file.
646    
647     \subsubsection{File {\it input/topog.box}}
648    
649    
650     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
651     map of depth values. For this experiment values are either
652     $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
653     ocean. The file contains a raw binary stream of data that is enumerated
654     in the same way as standard MITgcm two-dimensional, horizontal arrays.
655     The included matlab program {\it input/gendata.m} gives a complete
656     code for creating the {\it input/topog.box} file.
657    
658     \subsubsection{File {\it code/SIZE.h}}
659    
660     Two lines are customized in this file for the current experiment
661    
662     \begin{itemize}
663    
664     \item Line 39,
665     \begin{verbatim} sNx=60, \end{verbatim} this line sets
666     the lateral domain extent in grid points for the
667     axis aligned with the x-coordinate.
668    
669     \item Line 40,
670     \begin{verbatim} sNy=60, \end{verbatim} this line sets
671     the lateral domain extent in grid points for the
672     axis aligned with the y-coordinate.
673    
674     \item Line 49,
675     \begin{verbatim} Nr=4, \end{verbatim} this line sets
676     the vertical domain extent in grid points.
677    
678     \end{itemize}
679    
680     \begin{small}
681     \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
682     \end{small}
683    
684     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
685    
686     This file uses standard default values and does not contain
687     customisations for this experiment.
688    
689    
690     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
691    
692     This file uses standard default values and does not contain
693     customisations for this experiment.
694    
695     \subsubsection{Other Files }
696    
697     Other files relevant to this experiment are
698     \begin{itemize}
699     \item {\it model/src/ini\_cori.F}. This file initializes the model
700     coriolis variables {\bf fCorU}.
701     \item {\it model/src/ini\_spherical\_polar\_grid.F}
702     \item {\it model/src/ini\_parms.F},
703     \item {\it input/windx.sin\_y},
704     \end{itemize}
705     contain the code customisations and parameter settings for this
706     experiements. Below we describe the customisations
707     to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22