/[MITgcm]/manual/s_examples/global_oce_in_p/ogcm_in_pressure.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_in_p/ogcm_in_pressure.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.11 - (hide annotations) (download) (as text)
Mon May 2 09:41:03 2011 UTC (14 years, 2 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.10: +18 -17 lines
File MIME type: application/x-tex
fix use of natbib cite-derivatives

1 mlosch 1.1 % $Header:
2     % $Name:
3    
4 edhill 1.4 \section[P coordinate Global Ocean MITgcm Example]{Global Ocean Simulation at $4^\circ$ Resolution in Pressure
5 mlosch 1.1 Coordinates}
6 jmc 1.10 %\label{www:tutorials}
7     \label{sec:eg-globalpressure}
8 edhill 1.3 \begin{rawhtml}
9     <!-- CMIREDIR:eg-globalpressure: -->
10     \end{rawhtml}
11 jmc 1.7 \begin{center}
12     (in directory: {\it verification/tutorial\_global\_oce\_in\_p/})
13     \end{center}
14 mlosch 1.1
15     \bodytext{bgcolor="#FFFFFFFF"}
16    
17     This example experiment demonstrates using the MITgcm to simulate the
18     planetary ocean circulation in pressure coordinates, that is, without
19 molod 1.5 making the Boussinesq approximations. The files for this experiment
20     can be found in the verification directory under tutorial\_global\_oce\_in\_p.
21 mlosch 1.11 The simulation is configured as a near copy of
22     tutorial\_global\_oce\_latlon (Section~\ref{sec:eg-global}).
23 mlosch 1.1 with realistic geography and bathymetry on a $4^{\circ} \times
24     4^{\circ}$ spherical polar grid. Fifteen levels are used in the
25     vertical, ranging in thickness from
26     $50.4089\mbox{\,dbar}\approx50\mbox{\,m}$ at the surface to
27     $710.33\mbox{\,dbar}\approx690\mbox{\,m}$ at depth, giving a maximum
28     model depth of $5302.3122\mbox{\,dbar}\approx5200\mbox{\,km}$. At
29     this resolution, the configuration can be integrated forward for
30     thousands of years on a single processor desktop computer.
31    
32    
33     \subsection{Overview}
34 jmc 1.10 %\label{www:tutorials}
35 mlosch 1.1
36     The model is forced with climatological wind stress data from
37 mlosch 1.11 \citet{trenberth90} and surface flux data from
38     \citet{jiang99}. Climatological data \citep{Levitus94} is
39     used to initialize the model hydrography. \citeauthor{Levitus94} seasonal
40 mlosch 1.1 climatology data is also used throughout the calculation to provide
41     additional air-sea fluxes. These fluxes are combined with the Jiang
42     climatological estimates of surface heat flux, resulting in a mixed
43 mlosch 1.11 boundary condition of the style described in \citet{Haney}.
44 mlosch 1.1 Altogether, this yields the following forcing applied in the model
45     surface layer.
46    
47     \begin{eqnarray}
48 jmc 1.10 \label{eq:eg-global_forcing_pcoord}
49     \label{eq:eg-global_forcing_fu_pcoord}
50 mlosch 1.1 {\cal F}_{u} & = & g\frac{\tau_{x}}{\Delta p_{s}}
51     \\
52 jmc 1.10 \label{eq:eg-global_forcing_fv_pcoord}
53 mlosch 1.1 {\cal F}_{v} & = & g\frac{\tau_{y}}{\Delta p_{s}}
54     \\
55 jmc 1.10 \label{eq:eg-global_forcing_ft_pcoord}
56 mlosch 1.1 {\cal F}_{\theta} & = & - g\lambda_{\theta} ( \theta - \theta^{\ast} )
57     - \frac{1}{C_{p} \Delta p_{s}}{\cal Q}
58     \\
59 jmc 1.10 \label{eq:eg-global_forcing_fs_pcoord}
60 mlosch 1.1 {\cal F}_{s} & = &
61     + g\rho_{FW}\frac{S}{\rho\Delta p_{s}}({\cal E} - {\cal P} - {\cal R})
62     \end{eqnarray}
63    
64     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
65     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
66     momentum and in the potential temperature and salinity equations
67     respectively. The term $\Delta p_{s}$ represents the top ocean layer
68     thickness in Pa. It is used in conjunction with a reference density,
69     $\rho_{FW}$ (here set to $999.8\,{\rm kg\,m^{-3}}$), the surface
70     salinity, $S$, and a specific heat capacity, $C_{p}$ (here set to
71     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert input
72     dataset values into time tendencies of potential temperature (with
73     units of $^{\circ}{\rm C}~{\rm s}^{-1}$), salinity (with units ${\rm
74     ppt}~s^{-1}$) and velocity (with units ${\rm m}~{\rm s}^{-2}$). The
75     externally supplied forcing fields used in this experiment are
76     $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $\cal{Q}$ and
77     $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
78     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
79     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm
80     W}~{\rm m}^{-2}$ respectively. The salinity forcing fields
81     ($\cal{E}-\cal{P}-\cal{R}$) has units of ${\rm m}~{\rm s}^{-1}$
82     respectively. The source files and procedures for ingesting these data
83     into the simulation are described in the experiment configuration
84 jmc 1.10 discussion in section \ref{sec:eg-global-clim_ocn_examp_exp_config}.
85 mlosch 1.1
86    
87     \subsection{Discrete Numerical Configuration}
88 jmc 1.10 %\label{www:tutorials}
89 mlosch 1.1
90    
91     Due to the pressure coordinate, the model can only be hydrostatic
92 mlosch 1.11 \citep{szoeke02}. The domain is discretized with a uniform grid
93 mlosch 1.1 spacing in latitude and longitude on the sphere $\Delta \phi=\Delta
94     \lambda=4^{\circ}$, so that there are ninety grid cells in the zonal
95     and forty in the meridional direction. The internal model coordinate
96     variables $x$ and $y$ are initialized according to
97     \begin{eqnarray}
98     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
99     y=r\lambda,~\Delta y &= &r\Delta \lambda
100     \end{eqnarray}
101    
102     Arctic polar regions are not included in this experiment. Meridionally
103     the model extends from $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
104     Vertically the model is configured with fifteen layers with the
105     following thicknesses %
106     \begin{eqnarray*}
107     \Delta p_{1} &=& 7103300.720021\mbox{\,Pa},\\
108     \Delta p_{2} &=& 6570548.440790\mbox{\,Pa},\\
109     \Delta p_{3} &=& 6041670.010249\mbox{\,Pa},\\
110     \Delta p_{4} &=& 5516436.666057\mbox{\,Pa},\\
111     \Delta p_{5} &=& 4994602.034410\mbox{\,Pa},\\
112     \Delta p_{6} &=& 4475903.435290\mbox{\,Pa},\\
113     \Delta p_{7} &=& 3960063.245801\mbox{\,Pa},\\
114     \Delta p_{8} &=& 3446790.312651\mbox{\,Pa},\\
115     \Delta p_{9} &=& 2935781.405664\mbox{\,Pa},\\
116     \Delta p_{10}&=& 2426722.705046\mbox{\,Pa},\\
117     \Delta p_{11}&=& 1919291.315988\mbox{\,Pa},\\
118     \Delta p_{12}&=& 1413156.804970\mbox{\,Pa},\\
119     \Delta p_{13}&=& 1008846.750166\mbox{\,Pa},\\
120     \Delta p_{14}&=& 705919.025481\mbox{\,Pa},\\
121     \Delta p_{15}&=& 504089.693499\mbox{\,Pa},
122     \end{eqnarray*}
123     (here the numeric subscript indicates the model level index number,
124     ${\tt k}$; note, that the surface layer has the highest index number 15) to
125     give a total depth, $H$, of $-5200{\rm m}$. In pressure, this is
126     $p_{b}^{0}=53023122.566084\mbox{\,Pa}$.
127     The implicit free surface form of the pressure equation described in
128 mlosch 1.11 \citet{marshall:97a} with the nonlinear extension by
129     \citet{campin:02} is employed. A Laplacian operator, $\nabla^2$, provides viscous
130 mlosch 1.1 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
131    
132 jmc 1.10 Wind-stress forcing is added to the momentum equations in (\ref{eq:eg-global-model_equations_pcoord})
133 mlosch 1.1 for both the zonal flow, $u$ and the meridional flow $v$, according to equations
134 jmc 1.10 (\ref{eq:eg-global_forcing_fu_pcoord}) and (\ref{eq:eg-global_forcing_fv_pcoord}).
135 mlosch 1.1 Thermodynamic forcing inputs are added to the equations
136 jmc 1.10 in (\ref{eq:eg-global-model_equations_pcoord}) for
137 mlosch 1.1 potential temperature, $\theta$, and salinity, $S$, according to equations
138 jmc 1.10 (\ref{eq:eg-global_forcing_ft_pcoord}) and (\ref{eq:eg-global_forcing_fs_pcoord}).
139 mlosch 1.1 This produces a set of equations solved in this configuration as follows:
140    
141     \begin{eqnarray}
142 jmc 1.10 \label{eq:eg-global-model_equations_pcoord}
143 mlosch 1.1 \frac{Du}{Dt} - fv +
144     \frac{1}{\rho}\frac{\partial \Phi^{'}}{\partial x} -
145     \nabla_{h}\cdot A_{h}\nabla_{h}u -
146     (g\rho_0)^2\frac{\partial}{\partial p}A_{r}\frac{\partial u}{\partial p}
147     & = &
148     \begin{cases}
149     {\cal F}_u & \text{(surface)} \\
150     0 & \text{(interior)}
151     \end{cases}
152     \\
153     \frac{Dv}{Dt} + fu +
154     \frac{1}{\rho}\frac{\partial \Phi^{'}}{\partial y} -
155     \nabla_{h}\cdot A_{h}\nabla_{h}v -
156     (g\rho_0)^2\frac{\partial}{\partial p}A_{r}\frac{\partial v}{\partial p}
157     & = &
158     \begin{cases}
159     {\cal F}_v & \text{(surface)} \\
160     0 & \text{(interior)}
161     \end{cases}
162     \\
163     \frac{\partial p_{b}}{\partial t} + \nabla_{h}\cdot \vec{u}
164     &=&
165     0
166     \\
167     \frac{D\theta}{Dt} -
168     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
169     - (g\rho_0)^2\frac{\partial}{\partial p}\Gamma(K_{r})\frac{\partial\theta}{\partial p}
170     & = &
171     \begin{cases}
172     {\cal F}_\theta & \text{(surface)} \\
173     0 & \text{(interior)}
174     \end{cases}
175     \\
176     \frac{D s}{Dt} -
177     \nabla_{h}\cdot K_{h}\nabla_{h}s
178     - (g\rho_0)^2\frac{\partial}{\partial p}\Gamma(K_{r})\frac{\partial S}{\partial p}
179     & = &
180     \begin{cases}
181     {\cal F}_s & \text{(surface)} \\
182     0 & \text{(interior)}
183     \end{cases}
184     \\
185     \Phi_{-H}'^{(0)} + \alpha_{0}p_{b}+ \int^{p}_{0}\alpha' dp & = & \Phi'
186     \end{eqnarray}
187    
188     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
189     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ are the zonal and meridional
190     components of the flow vector, $\vec{u}$, on the sphere. As described
191     in MITgcm Numerical Solution Procedure \ref{chap:discretization}, the
192     time evolution of potential temperature, $\theta$, equation is solved
193     prognostically. The full geopotential height, $\Phi$, is diagnosed by
194     summing the geopotential height anomalies $\Phi'$ due to bottom
195     pressure $p_{b}$ and density variations. The integration of the
196     hydrostatic equation is started at the bottom of the domain. The
197     condition of $p=0$ at the sea surface requires a time-independent
198     integration constant for the height anomaly due to density variations
199     $\Phi_{-H}'^{(0)}$, which is provided as an input field.
200    
201    
202     \subsection{Experiment Configuration}
203 jmc 1.10 %\label{www:tutorials}
204     \label{sec:eg-globalpressure-config}
205 mlosch 1.1
206     The model configuration for this experiment resides under the
207     directory {\it tutorial\_examples/global\_ocean\_circulation/}.
208     The experiment files
209    
210     \begin{itemize}
211     \item {\it input/data}
212     \item {\it input/data.pkg}
213     \item {\it input/eedata},
214     \item {\it input/topog.bin},
215     \item {\it input/deltageopotjmd95.bin},
216     \item {\it input/lev\_s.bin},
217     \item {\it input/lev\_t.bin},
218     \item {\it input/trenberth\_taux.bin},
219     \item {\it input/trenberth\_tauy.bin},
220     \item {\it input/lev\_sst.bin},
221     \item {\it input/shi\_qnet.bin},
222     \item {\it input/shi\_empmr.bin},
223     \item {\it code/CPP\_EEOPTIONS.h}
224     \item {\it code/CPP\_OPTIONS.h},
225     \item {\it code/SIZE.h}.
226     \end{itemize}
227     contain the code customizations and parameter settings for these
228     experiments. Below we describe the customizations
229     to these files associated with this experiment.
230    
231     \subsubsection{Driving Datasets}
232 jmc 1.10 %\label{www:tutorials}
233 mlosch 1.1
234 jmc 1.10 Figures (\ref{fig:sim_config_tclim_pcoord}-\ref{fig:sim_config_empmr_pcoord}) show
235 mlosch 1.1 the relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$)
236     fields, the wind stress components ($\tau_x$ and $\tau_y$), the heat
237     flux ($Q$) and the net fresh water flux (${\cal E} - {\cal P} - {\cal
238     R}$) used in equations
239 jmc 1.10 \ref{eq:eg-global_forcing_fu_pcoord}-\ref{eq:eg-global_forcing_fs_pcoord}.
240 mlosch 1.1 The figures also indicate the lateral extent and coastline used in the
241 jmc 1.10 experiment. Figure ({\ref{fig:model_bathymetry_pcoord}) shows the depth
242 mlosch 1.1 contours of the model domain.
243     \begin{figure}[t]
244     \begin{center}
245 jmc 1.9 \includegraphics[width=.9\textwidth]{s_examples/global_oce_in_p/sst}
246 edhill 1.4 \caption{Annual mean of relaxation temperature [$^{\circ}\mathrm{C}$]}
247 jmc 1.10 \label{fig:sim_config_tclim_pcoord}
248 mlosch 1.1 \end{center}
249     \end{figure}
250     \begin{figure}[t]
251     \begin{center}
252 jmc 1.9 \includegraphics[width=.9\textwidth]{s_examples/global_oce_in_p/sss}
253 mlosch 1.1 \caption{Annual mean of relaxation salinity [PSU]}
254 jmc 1.10 \label{fig:sim_config_sclim_pcoord}
255 mlosch 1.1 \end{center}
256     \end{figure}
257     \begin{figure}[t]
258     \begin{center}
259 jmc 1.9 \includegraphics[width=.9\textwidth]{s_examples/global_oce_in_p/tx}
260 mlosch 1.1 \caption{Annual mean of zonal wind stress component [Nm\,m$^{-2}$]}
261 jmc 1.10 \label{fig:sim_config_taux_pcoord}
262 mlosch 1.1 \end{center}
263     \end{figure}
264     \begin{figure}[t]
265     \begin{center}
266 jmc 1.9 \includegraphics[width=.9\textwidth]{s_examples/global_oce_in_p/ty}
267 mlosch 1.1 \caption{Annual mean of meridional wind stress component [Nm\,m$^{-2}$]}
268 jmc 1.10 \label{fig:sim_config_tauy_pcoord}
269 mlosch 1.1 \end{center}
270     \end{figure}
271     \begin{figure}[t]
272     \begin{center}
273 jmc 1.9 \includegraphics[width=.9\textwidth]{s_examples/global_oce_in_p/qnet}
274 mlosch 1.1 \caption{Annual mean heat flux [W\,m$^{-2}$]}
275 jmc 1.10 \label{fig:sim_config_qnet_pcoord}
276 mlosch 1.1 \end{center}
277     \end{figure}
278     \begin{figure}[t]
279     \begin{center}
280 jmc 1.9 \includegraphics[width=.9\textwidth]{s_examples/global_oce_in_p/emp}
281 mlosch 1.1 \caption{Annual mean fresh water flux (Evaporation-Precipitation) [m\,s$^{-1}$]}
282 jmc 1.10 \label{fig:sim_config_empmr_pcoord}
283 mlosch 1.1 \end{center}
284     \end{figure}
285     \begin{figure}[t]
286     \begin{center}
287 jmc 1.9 \includegraphics[width=.9\textwidth]{s_examples/global_oce_in_p/pb0}
288 mlosch 1.1 \caption{Model bathymetry in pressure units [Pa]}
289 jmc 1.10 \label{fig:model_bathymetry_pcoord}
290 mlosch 1.1 \end{center}
291     \end{figure}
292    
293     \subsubsection{File {\it input/data}}
294 jmc 1.10 %\label{www:tutorials}
295 mlosch 1.1
296     This file, reproduced completely below, specifies the main parameters
297     for the experiment. The parameters that are significant for this configuration
298     are
299    
300     \begin{itemize}
301    
302     \item Line 15,
303     \begin{verbatim} viscAr=1.721611620915750E+05, \end{verbatim}
304     this line sets the vertical Laplacian dissipation coefficient to
305     $1.72161162091575 \times 10^{5} {\rm Pa^{2}s^{-1}}$. Note that, the factor
306     $(g\rho)^2$ needs to be included in this line. Boundary conditions
307     for this operator are specified later. This variable is copied into
308     model general vertical coordinate variable {\bf viscAr}.
309    
310     \fbox{
311     \begin{minipage}{5.0in}
312     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
313     \end{minipage}
314     }
315    
316     \item Line 9--10,
317     \begin{verbatim}
318     viscAh=3.E5,
319     no_slip_sides=.TRUE.
320     \end{verbatim}
321     these lines set the horizontal Laplacian frictional dissipation
322     coefficient to $3 \times 10^{5} {\rm m^{2}s^{-1}}$ and specify a
323     no-slip boundary condition for this operator, that is, $u=0$ along
324     boundaries in $y$ and $v=0$ along boundaries in $x$.
325    
326     \item Lines 11-13,
327     \begin{verbatim}
328     viscAr =1.721611620915750e5,
329     #viscAz =1.67E-3,
330     no_slip_bottom=.FALSE.,
331     \end{verbatim}
332     These lines set the vertical Laplacian frictional dissipation
333     coefficient to $1.721611620915750 \times
334     10^{5}\mbox{\,Pa$^{2}$s$^{-1}$}$, which corresponds to
335     $1.67\times10^{-3}\mbox{\,m$^{2}$s$^{-1}$}$ in the commented line, and
336     specify a free slip boundary condition for this operator, that is,
337     $\frac{\partial u}{\partial p}=\frac{\partial v}{\partial p}=0$ at
338     $p=p_{b}^{0}$, where $p_{b}^{0}$ is the local bottom pressure of the
339     domain at rest. Note that, the factor $(g\rho)^2$ needs to be
340     included in this line.
341    
342     \item Line 14,
343     \begin{verbatim}
344     diffKhT=1.E3,
345     \end{verbatim}
346     this line sets the horizontal diffusion coefficient for temperature
347     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
348     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial
349     y}=0$ on all boundaries.
350    
351     \item Line 15--16,
352     \begin{verbatim}
353     diffKrT=5.154525811125000e3,
354     #diffKzT=0.5E-4,
355     \end{verbatim}
356     this line sets the vertical diffusion coefficient for temperature to
357     $5.154525811125 \times 10^{3}\,{\rm Pa^{2}s^{-1}}$, which
358     corresponds to $5\times10^{-4}\mbox{\,m$^{2}$s$^{-1}$}$ in the commented
359     line. Note that, the factor $(g\rho)^2$ needs to be included in this
360     line. The boundary condition on this operator is
361     $\frac{\partial}{\partial p}=0$ at both the upper and lower
362     boundaries.
363    
364     \item Line 17--19,
365     \begin{verbatim}
366     diffKhS=1.E3,
367     diffKrS=5.154525811125000e3,
368     #diffKzS=0.5E-4,
369     \end{verbatim}
370     These lines set the same values for the diffusion coefficients for
371     salinity as for temperature.
372    
373     \item Line 20--22,
374     \begin{verbatim}
375     implicitDiffusion=.TRUE.,
376     ivdc_kappa=1.030905162225000E9,
377     #ivdc_kappa=10.0,
378     \end{verbatim}
379     Select implicit diffusion as a convection scheme and set coefficient
380     for implicit vertical diffusion to $1.030905162225\times10^{9}\,{\rm
381     Pa^{2}s^{-1}}$, which corresponds to $10\mbox{\,m$^{2}$\,s$^{-1}$}$.
382    
383     \item Line 23-24,
384     \begin{verbatim}
385     gravity=9.81,
386     gravitySign=-1.D0,
387     \end{verbatim}
388     These lines set the gravitational acceleration coefficient to
389     $9.81{\rm m}{\rm s}^{-1}$ and define the upward direction relative
390     to the direction of increasing vertical coordinate (in pressure
391     coordinates, up is in the direction of decreasing pressure)
392     \item Line 25,
393     \begin{verbatim}
394     rhoNil=1035.,
395     \end{verbatim}
396     sets the reference density of sea water to $1035\mbox{\,kg\,m$^{-3}$}$.\\
397     \fbox{
398     \begin{minipage}{5.0in}
399     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
400     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
401     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
402     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
403     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
404     \end{minipage}
405     }
406    
407     \item Line 28
408     \begin{verbatim}
409     eosType='JMD95P',
410     \end{verbatim}
411 mlosch 1.11 Selects the full equation of state according to
412     \citet{jackett95}. The only other sensible choice is the equation of
413     state by \citet{mcdougall03}, 'MDJFW'. All other
414 mlosch 1.1 equations of state do not make sense in this configuration.\\
415     \fbox{
416     \begin{minipage}{5.0in}
417     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
418     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
419     \end{minipage}
420     }
421    
422     \item Line 28-29,
423     \begin{verbatim}
424     rigidLid=.FALSE.,
425     implicitFreeSurface=.TRUE.,
426     \end{verbatim}
427     Selects the barotropic pressure equation to be the implicit free
428     surface formulation.
429     \item Line 30
430     \begin{verbatim}
431     exactConserv=.TRUE.,
432     \end{verbatim}
433     Select a more accurate conservation of properties at the surface
434     layer by including the horizontal velocity divergence to update the
435     free surface.
436     \item Line 31--33
437     \begin{verbatim}
438     nonlinFreeSurf=3,
439     hFacInf=0.2,
440     hFacSup=2.0,
441     \end{verbatim}
442     Select the nonlinear free surface formulation and set lower and
443     upper limits for the free surface excursions.
444     \item Line 34
445     \begin{verbatim}
446     useRealFreshWaterFlux=.FALSE.,
447     \end{verbatim}
448     Select virtual salt flux boundary condition for salinity. The
449     freshwater flux at the surface only affect the surface salinity, but
450     has no mass flux associated with it
451    
452     \item Line 35--36,
453     \begin{verbatim}
454     readBinaryPrec=64,
455     writeBinaryPrec=64,
456     \end{verbatim}
457     Sets format for reading binary input datasets and
458     writing binary output datasets holding model fields to
459     use 64-bit representation for floating-point numbers.\\
460     \fbox{
461     \begin{minipage}{5.0in}
462     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
463     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
464     \end{minipage}
465     }
466    
467     \item Line 42,
468     \begin{verbatim}
469     cg2dMaxIters=200,
470     \end{verbatim}
471     Sets maximum number of iterations the two-dimensional, conjugate
472     gradient solver will use, {\bf irrespective of convergence
473     criteria being met}.\\
474     \fbox{
475     \begin{minipage}{5.0in}
476     {\it S/R CG2D}~({\it cg2d.F})
477     \end{minipage}
478     }
479    
480     \item Line 43,
481     \begin{verbatim}
482     cg2dTargetResidual=1.E-13,
483     \end{verbatim}
484     Sets the tolerance which the two-dimensional, conjugate
485     gradient solver will use to test for convergence in equation
486 jmc 1.10 %- note: Description of Conjugate gradient method (& related params) is missing
487     % in the mean time, substitute this eq ref:
488     \ref{eq:elliptic-backward-free-surface} %\ref{eq:congrad_2d_resid}
489     to $1 \times 10^{-9}$.
490     Solver will iterate until tolerance falls below this value or until the
491     maximum number of solver iterations is reached.\\
492 mlosch 1.1 \fbox{
493     \begin{minipage}{5.0in}
494     {\it S/R CG2D}~({\it cg2d.F})
495     \end{minipage}
496     }
497    
498     \item Line 48,
499     \begin{verbatim}
500     startTime=0,
501     \end{verbatim}
502     Sets the starting time for the model internal time counter.
503     When set to non-zero this option implicitly requests a
504     checkpoint file be read for initial state.
505     By default the checkpoint file is named according to
506     the integer number of time steps in the {\bf startTime} value.
507     The internal time counter works in seconds.
508    
509     \item Line 49--50,
510     \begin{verbatim}
511     endTime=8640000.,
512     #endTime=62208000000,
513     \end{verbatim}
514     Sets the time (in seconds) at which this simulation will terminate.
515     At the end of a simulation a checkpoint file is automatically
516     written so that a numerical experiment can consist of multiple
517     stages. The commented out setting for endTime is for a 2000 year
518     simulation.
519    
520     \item Line 51--53,
521     \begin{verbatim}
522     deltaTmom = 1200.0,
523     deltaTtracer = 172800.0,
524     deltaTfreesurf = 172800.0,
525     \end{verbatim}
526     Sets the timestep $\delta t_{v}$ used in the momentum equations to
527     $20~{\rm mins}$ and the timesteps $\delta t_{\theta}$ in the tracer
528     equations and $\delta t_{\eta}$ in the implicit free surface
529 jmc 1.10 equation to $48\mbox{\,hours}$.
530     %- note: Distord Physics (using different time-steps) is not described
531     % in the mean time, put this section ref:
532     See section \ref{sec:time_stepping}.%\ref{sec:mom_time_stepping}
533     \\
534    
535 mlosch 1.1 \fbox{
536     \begin{minipage}{5.0in}
537     {\it S/R TIMESTEP}({\it timestep.F}) \\
538     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
539 jmc 1.6 {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) \\
540 mlosch 1.1 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
541     \end{minipage}
542     }
543    
544     \item Line 55,
545     \begin{verbatim}
546     pChkptFreq =3110400000.,
547     \end{verbatim}
548     write a pick-up file every 100 years of integration.
549    
550     \item Line 56--58
551     \begin{verbatim}
552     dumpFreq = 3110400000.,
553     taveFreq = 3110400000.,
554     monitorFreq = 31104000.,
555     \end{verbatim}
556     write model output and time-averaged model output every 100 years,
557     and monitor statisitics every year.
558    
559     \item Line 59--61
560     \begin{verbatim}
561     periodicExternalForcing=.TRUE.,
562     externForcingPeriod=2592000.,
563     externForcingCycle=31104000.,
564     \end{verbatim}
565     Allow periodic external forcing, set forcing period, during which
566     one set of data is valid, to 1 month and the repeat cycle to 1 year.\\
567     \fbox{
568     \begin{minipage}{5.0in}
569     {\it S/R EXTERNAL\_FORCING\_SURF}({\it external\_forcing\_surf.F})
570     \end{minipage}
571     }
572     \item Line 62
573     \begin{verbatim}
574     tauThetaClimRelax=5184000.0,
575     \end{verbatim}
576     Set the restoring timescale to 2 months.\\
577     \fbox{
578     \begin{minipage}{5.0in}
579     {\it S/R EXTERNAL\_FORCING\_SURF}({\it external\_forcing\_surf.F})
580     \end{minipage}
581     }
582    
583     \item Line 63
584     \begin{verbatim}
585     abEps=0.1,
586     \end{verbatim}
587 jmc 1.10 Adams-Bashford factor (see section \ref{sec:adams-bashforth})
588 mlosch 1.1
589     \item Line 68--69
590     \begin{verbatim}
591     usingCartesianGrid=.FALSE.,
592     usingSphericalPolarGrid=.TRUE.,
593     \end{verbatim}
594     Select spherical grid.
595     \item Line 70--71
596     \begin{verbatim}
597     dXspacing=4.,
598     dYspacing=4.,
599     \end{verbatim}
600     Set the horizontal grid spacing in degrees spherical distance.
601     \item Line 72
602     \begin{verbatim}
603     Ro_SeaLevel=53023122.566084,
604     \end{verbatim}
605     specifies the total height (in $r$-units, i.e., pressure units) of the
606     sea surface at rest. This is a reference value.
607     \item Line 73
608     \begin{verbatim}
609     groundAtK1=.TRUE.,
610     \end{verbatim}
611     specifies the reversal of the vertical indexing. The vertical index is
612     1 at the bottom of the doman and maximal (i.e., 15) at the surface.
613     \item Line 74--78
614     \begin{verbatim}
615     delR=7103300.720021, \ldots
616     \end{verbatim}
617     set the layer thickness in pressure units, starting with the bottom
618     layer.
619    
620     \item Line 84--93,
621     \begin{verbatim}
622     bathyFile='topog.box'
623     ploadFile='deltageopotjmd95.bin'
624     hydrogThetaFile='lev_t.bin',
625     hydrogSaltFile ='lev_s.bin',
626     zonalWindFile ='trenberth_taux.bin',
627     meridWindFile ='trenberth_tauy.bin',
628     thetaClimFile ='lev_sst.bin',
629     surfQFile ='shi_qnet.bin',
630     EmPmRFile ='shi_empmr.bin',
631     \end{verbatim}
632     This line specifies the names of the files holding the bathymetry
633     data set, the
634     time-independent geopotential height anomaly at the bottom, initial
635     conditions of temperature and salinity, wind stress forcing fields,
636     sea surface temperature climatology, heat flux, and fresh water flux
637     (evaporation minus precipitation minus run-off) at the surface.
638 jmc 1.10 See file descriptions in section \ref{sec:eg-globalpressure-config}.
639 mlosch 1.1
640     \end{itemize}
641    
642     \noindent other lines in the file {\it input/data} are standard values
643     that are described in the MITgcm Getting Started and MITgcm Parameters
644     notes.
645    
646     \begin{small}
647 jmc 1.9 \input{s_examples/global_oce_in_p/input/data}
648 mlosch 1.1 \end{small}
649    
650     \subsubsection{File {\it input/data.pkg}}
651 jmc 1.10 %\label{www:tutorials}
652 mlosch 1.1
653     This file uses standard default values and does not contain
654     customisations for this experiment.
655    
656     \subsubsection{File {\it input/eedata}}
657 jmc 1.10 %\label{www:tutorials}
658 mlosch 1.1
659     This file uses standard default values and does not contain
660     customisations for this experiment.
661    
662     \subsubsection{File {\it input/topog.bin}}
663 jmc 1.10 %\label{www:tutorials}
664 mlosch 1.1
665     This file is a two-dimensional ($x,y$) map of
666     depths. This file is assumed to contain 64-bit binary numbers giving
667     the depth of the model at each grid cell, ordered with the x
668     coordinate varying fastest. The points are ordered from low
669     coordinate to high coordinate for both axes. The units and
670     orientation of the depths in this file are the same as used in the
671     MITgcm code (Pa for this experiment). In this experiment, a depth of
672     $0\mbox{\,Pa}$ indicates a land point wall and a depth of
673     $>0\mbox{\,Pa}$ indicates open ocean.
674    
675     \subsubsection{File {\it input/deltageopotjmd95.box}}
676 jmc 1.10 %\label{www:tutorials}
677 mlosch 1.1
678     The file contains 12 identical two dimensional maps ($x,y$) of
679     geopotential height anomaly at the bottom at rest. The values have
680     been obtained by vertically integrating the hydrostatic equation with
681     the initial density field (from {\it input/lev\_t/s.bin}). This file
682     has to be consitent with the temperature and salinity field at rest
683     and the choice of equation of state!
684    
685     \subsubsection{File {\it input/lev\_t/s.bin}}
686 jmc 1.10 %\label{www:tutorials}
687 mlosch 1.1
688     The files {\it input/lev\_t/s.bin} specify the initial conditions for
689     temperature and salinity for every grid point in a three dimensional
690 mlosch 1.11 array ($x,y,z$). The data are obtain by interpolating
691     monthly mean values \citep{Levitus94} for January onto the model
692 mlosch 1.1 grid. Keep in mind, that the first index corresponds to the bottom
693     layer and highest index to the surface layer.
694    
695     \subsubsection{File {\it input/trenberth\_taux/y.bin}}
696 jmc 1.10 %\label{www:tutorials}
697 mlosch 1.1
698     Each of the {\it input/trenberth\_taux/y.bin} files specifies 12
699     two-dimensional ($x,y,t$) maps of zonal and meridional wind stress
700     values, $\tau_{x}$ and $\tau_{y}$, that is monthly mean values from
701 mlosch 1.11 \citet{trenberth90}. The units used are $Nm^{-2}$.
702 mlosch 1.1
703     \subsubsection{File {\it input/lev\_sst.bin}}
704 jmc 1.10 %\label{www:tutorials}
705 mlosch 1.1
706     The file {\it input/lev\_sst.bin} contains 12 monthly surface
707 mlosch 1.11 temperature climatologies \citep{Levitus94} in a three
708 mlosch 1.1 dimensional array ($x,y,t$).
709    
710     \subsubsection{File {\it input/shi\_qnet/empmr.bin}}
711 jmc 1.10 %\label{www:tutorials}
712 mlosch 1.1
713     The files {\it input/shi\_qnet/empmr.bin} contain 12 monthly surface
714 mlosch 1.11 fluxes of heat (qnet) and freshwater (empmr) by
715     \citet{jiang99} in three dimensional arrays ($x,y,t$). Both fluxes are
716 mlosch 1.1 normalized so that of one year there is no net flux into the
717     ocean. The freshwater flux is actually constant in time.
718    
719     \subsubsection{File {\it code/SIZE.h}}
720 jmc 1.10 %\label{www:tutorials}
721 mlosch 1.1
722     Three lines are customized in this file for the current experiment
723    
724     \begin{itemize}
725    
726     \item Line 39,
727     \begin{verbatim} sNx=90, \end{verbatim} this line sets
728     the lateral domain extent in grid points for the
729     axis aligned with the x-coordinate.
730    
731     \item Line 40,
732     \begin{verbatim} sNy=40, \end{verbatim} this line sets
733     the lateral domain extent in grid points for the
734     axis aligned with the y-coordinate.
735    
736     \item Line 49,
737     \begin{verbatim} Nr=15, \end{verbatim} this line sets
738     the vertical domain extent in grid points.
739    
740     \end{itemize}
741    
742     \begin{small}
743 jmc 1.9 \input{s_examples/global_oce_in_p/code/SIZE.h}
744 mlosch 1.1 \end{small}
745    
746     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
747 jmc 1.10 %\label{www:tutorials}
748 mlosch 1.1
749     This file uses mostly standard default values except for:
750     \begin{itemize}
751     \item \verb+#define ATMOSPHERIC_LOADING+\\
752     enable pressure loading which is abused to include the initial
753     geopotential height anomaly
754     \item \verb+#define EXACT_CONSERV+\\
755     enable more accurate conservation properties to include the
756     horizontal mass divergence in the free surface
757     \item \verb+#define NONLIN_FRSURF+\\
758     enable the nonlinear free surface
759     \end{itemize}
760    
761    
762     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
763 jmc 1.10 %\label{www:tutorials}
764 mlosch 1.1
765     This file uses standard default values and does not contain
766     customisations for this experiment.
767    
768    

  ViewVC Help
Powered by ViewVC 1.1.22