/[MITgcm]/manual/s_examples/global_oce_biogeo/biogeochem.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_biogeo/biogeochem.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download) (as text)
Fri Aug 27 13:25:31 2010 UTC (14 years, 10 months ago) by jmc
Branch: MAIN
Changes since 1.6: +1 -1 lines
File MIME type: application/x-tex
changed for new directory path:
 s/\\input part3\/case_studies\/.*$/&}/
 s/\\input part3\/case_studies\//\\input{part3\/case_studies\//
 #-rename  tutorial doc dir to match MITgcm/verification dir:
 s/part3\/case_studies\/advection_in_gyre_circulation\//s_examples\/advection_in_gyre\//
 s/part3\/case_studies\/biogeochem_tutorial\//s_examples\/global_oce_biogeo\//
 s/part3\/case_studies\/climatalogical_ogcm\//s_examples\/global_oce_latlon\//
 s/part3\/case_studies\/doubly_periodic_convection\//s_examples\/deep_convection\//
 s/part3\/case_studies\/fourlayer_gyre\//s_examples\/baroclinic_gyre\//
 s/part3\/case_studies\/global_oce_estimation\//s_examples\/global_oce_optim\//
 s/part3\/case_studies\/offline\//s_examples\/cfc_offline\//
 s/part3\/case_studies\/ogcm_in_pressure\//s_examples\/global_oce_in_p\//
 s/part3\/case_studies\/sens_airsea_tracer\//s_examples\/tracer_adjsens\//
 #----------------------------------------
 s/part3\/case_studies\/barotropic_gyre\//s_examples\/barotropic_gyre\//
 s/\\input{part3\/case_studies\//\\input{s_examples\//g
 /\\include{part3\/case_studies\//s/{part3\/case_studies\//{s_examples\//g
 /\\includegraphics.*{part3\/case_studies\//s/{part3\/case_studies\//{s_examples\//g
 /\\epsfbox.*{part3\/case_studies\//s/{part3\/case_studies\//{s_examples\//g

1 edhill 1.1 \section{Biogeochemistry Tutorial}
2     \label{www:tutorials}
3     \label{sect:eg-biogeochem_tutorial}
4     \begin{rawhtml}
5     <!-- CMIREDIR:eg-biogeochem_tutorial: -->
6     \end{rawhtml}
7 jmc 1.6 \begin{center}
8     (in directory: {\it verification/tutorial\_global\_oce\_biogeo/})
9     \end{center}
10 edhill 1.1
11     \subsection{Overview}
12     This model overlays the dissolved inorganic carbon biogeochemistry
13     model (the ``dic'' package) over a 2.8$^o$ global physical model. The
14     physical model has 15 levels, and is forced with a climatological
15 edhill 1.2 annual cycle of surface wind stresses \cite{Trenberth_etal_89},
16 edhill 1.3 surface heat and freshwater fluxes \cite{jiang99} with additional
17 edhill 1.2 relaxation toward climatological sea surface temperature and salinity
18     \cite{lev:94a,Levitus94}. It uses the Gent and and McWilliams
19     \cite{gen-mcw:90} eddy parameterization scheme, has an implicit
20     free-surface, implicit vertical diffusion and uses the convective
21 molod 1.4 adjustment scheme. The files for this experiment can be found in
22     the verification directory under tutorial\_global\_oce\_biogeo.
23 edhill 1.1
24     The biogeochemical model considers the coupled cycles of carbon,
25     oxygen, phosphorus and alkalinity. A simplified parameterization of
26     biological production is used, limited by the availability of light
27     and phosphate. A fraction of this productivity enters the dissolved
28     organic pool pool, which has an e-folding timescale for
29     remineralization of 6 months [following Yamanaka and Tajika, 1997].
30     The remaining fraction of this productivity is instantaneously
31     exported as particulate to depth [Yamanaka and Tajika, 1997] where it
32     is remineralized according to the empirical power law relationship
33     determined by Martin et al [1987]. The fate of carbon is linked to
34     that of phosphorus by the Redfield ratio. Carbonate chemistry is
35 edhill 1.2 explicitly solved \cite{Follows_etal_05} and the air-sea exchange of
36     CO$_2$ is parameterized with a uniform gas transfer coefficient
37     following \cite{Wanninkhof_92}. Oxygen is also linked to phosphorus by
38     the Redfield ratio, and oxygen air-sea exchange also follows
39     \cite{Wanninkhof_92}. For more details see \cite{Dutkiewicz_etal_05}.
40 edhill 1.1
41     The example setup described here shows the physical model after 5900
42     years of spin-up and the biogeochemistry after 2900 years of spin-up.
43     The biogeochemistry is at a pre-industrial steady-state (atmospheric
44     ppmv is kept at 278). Five tracers are resolved: dissolved inorganic
45     carbon ($DIC$), alkalinity ($ALK$), phosphate ($PO4$), dissolved
46     organic phosphorus ($DOP$) and dissolved oxygen ($O2$).
47    
48     \begin{figure} [tpb]
49     \begin{center}
50 jmc 1.7 \includegraphics[width=\textwidth,height=.3\textheight]{s_examples/global_oce_biogeo/co2flux.eps}
51 edhill 1.1 \caption{Modelled annual mean air-sea CO$_2$ flux (mol C m$^{-2}$ y$^{-1}$)
52     for pre-industrial steady-state. Positive indicates flux of CO$_2$
53     from ocean to the atmosphere (out-gassing),
54     contour interval is 1 mol C m$^{-2}$ y$^{-1}$.}
55     \label{lFcarflux}
56     \end{center}
57     \end{figure}
58    
59    
60     \subsection{Equations Solved}
61    
62     The physical ocean model velocity and diffusivities are used to
63     redistribute the 5 tracers within the ocean. Additional redistribution
64     comes from chemical and biological sources and sinks. For any tracer
65     $A$:
66     \begin{equation}
67     \frac{\partial A}{\partial t}=-\nabla \cdot (\vec{u^{*}} A)+\nabla \cdot
68     (\mathbf{K}\nabla A)+S_A \nonumber \label{lEtrac}
69     \end{equation}
70     where $\vec{u^{*}}$ is the transformed Eulerian mean circulation
71     (which includes Eulerian and eddy-induced advection), $\mathbf{K}$ is
72     the mixing tensor, and $S_A$ are the sources and sinks due to
73     biological and chemical processes.
74    
75     The sources and sinks are:
76     \begin{eqnarray}
77     S_{DIC} & = & F_{CO_2} + V_{CO_2} + r_{C:P} S_{PO_4} + J_{Ca} \label{lEsdic} \\
78     S_{ALK} & = & V_{ALK}-r_{N:P} S_{PO_4} + 2 J_{Ca} \label{lEsalk} \\
79     S_{PO_4}& = & -f_{DOP} J_{prod} - \frac{\partial F_P}{\partial z} + \kappa_{remin} [DOP]\\
80     S_{DOP} & = & f_{DOP} J_{prod} -\kappa_{remin} [DOP] \\
81     S_{O_2} & = & \left\{ \begin{array}{ll}
82     -r_{O:P} S_{PO_4} & \mbox{if $O_2>O_{2crit}$} \\
83     0 & \mbox{if $O_2<O_{2crit}$}
84     \end{array}
85     \right.
86     \end{eqnarray}
87     where:
88     \begin{itemize}
89     \item $F_{CO_2}$ is the flux of CO$_2$ from the ocean to the
90     atmosphere
91     \item $V_{CO_2}$ is ``virtual flux'' due to changes in $DIC$ due to
92     the surface freshwater fluxes
93     \item $r_{C:P}$ is Redfield ratio of carbon to phosphorus
94     \item $J_{Ca}$ includes carbon removed from surface due to calcium
95     carbonate formation and subsequent cumulation of the downward flux
96     of CaCO$_3$
97     \item $V_{ALK}$ is ``virtual flux'' due to changes in alkalinity due
98     to the surface freshwater fluxes
99     \item $r_{N:P}$ Redfield ratio is nitrogen to phosphorus
100     \item $f_{DOP}$ is fraction of productivity that remains suspended in
101     the water column as dissolved organic phosphorus
102     \item $J_{prod}$ is the net community productivity
103     \item $\frac{\partial F_P}{\partial z}$ is the accumulation of
104     remineralized phosphorus with depth
105     \item $\kappa_{remin}$ is rate with which $DOP$ remineralizes back to
106     $PO_4$
107     \item $F_{O_2}$ is air-sea flux of oxygen
108     \item $r_{O:P}$ is Redfield ratio of oxygen to phosphorus
109     \item $O_{2crit}$ is a critical level below which oxygen consumption
110     if halted
111     \end{itemize}
112    
113     These terms (for the first four tracers) are described more in
114 edhill 1.2 \cite{Dutkiewicz_etal_05} and by \cite{McKinley_etal_04} for the terms
115     relating to oxygen.
116 edhill 1.1
117    
118     \subsection{Code configuration}
119    
120     The model configuration for this experiment resides in
121     verification/dic\_example. The modifications to the code (in {\it
122     verification/dic\_example/code}) are:
123     \begin{itemize}
124     \item{{\bf SIZE.h}: which dictates the size of the model domain
125     (128x64x15).}
126     \item{\bf PTRACERS\_SIZE.h}: which dictates how many tracers to assign
127     how many tracers will be used (5).
128     \item{\bf GCHEM\_OPTIONS.h}: provides some compiler time options for
129     the {\it /pkg/gchem}. In particular this example requires that {\it
130     DIC\_BIOTIC} and {\it GCHEM\_SEPARATE\_FORCING} be defined.
131     \item{\bf GMREDI\_OPTIONS.h}: assigns the Gent-McWilliam eddy
132     parameterization options.
133     \item{\bf DIAGNOSTICS\_SIZE.h}: assigns size information for the
134     diagnostics package.
135     \item{\bf packages.conf}: which dictates which packages will be
136     compiled in this version of the model - among the many that are used
137     for the physical part of the model, this also includes {\it
138     ptracers}, {\it gchem}, and {\it dic} which allow the
139     biogeochemical part of this setup to function.
140     \end{itemize}
141    
142     \vspace{1cm}
143     \noindent
144     The input fields needed for this run (in {\it
145     verification/dic\_example/input}) are:
146     \begin{itemize}
147     \item {\bf data}: specifies the main parameters for the experiment,
148     some parameters that may be useful to know: {\it nTimeSteps} number
149     timesteps model will run, change to 720 to run for a year {\it
150     taveFreq} frequency with which time averages are done, change to
151     31104000 for annual averages.
152     \item {\bf data.diagnostics}: species details of diagnostic pkg output
153     \item {\bf data.gchem}: specifics files and other details needed in
154     the biogeochemistry model run
155     \item {\bf data.gmredi}: species details for the GM parameterization
156     \item {\bf data.mnc}: specifies details for types of output, netcdf or
157     binary
158     \item {\bf data.pkg}: set true or false for various packages to be
159     used
160     \item {\bf data.ptracers}: details of the tracers to be used,
161     including makes, diffusivity information and (if needed) initial
162     files. Of particular importance is the {\it PTRACERS\_numInUse}
163     which states how many tracers are used, and {\it PTRACERS\_Iter0}
164     which states at which timestep the biogeochemistry model tracers
165     were initialized.
166     \item {\bf depth\_g77.bin}: bathymetry data file
167     \item {\bf eedata}: This file uses standard default values and does
168     not contain customizations for this experiment.
169     \item {\bf fice.bin}: ice data file, needed for the biogeochemistry
170     \item {\bf lev\_monthly\_salt.bin}: SSS values which model relaxes
171     toward
172     \item {\bf lev\_monthly\_temp.bin}: SST values which model relaxes
173     toward
174     \item {\bf pickup.0004248000.data}: variable and tendency values need
175     to restart the physical part of the model
176     \item {\bf pickup\_cd.0004248000.data}: variable and tendency values
177     need to restart the cd pkg
178     \item {\bf pickup\_ptracers.0004248000.data}: variable and tendency
179     values need to restart the the biogeochemistry part of the model
180     \item {\bf POLY3.COEFFS}: coefficient for the non-linear equation of
181     state
182     \item {\bf shi\_empmr\_year.bin}: freshwater forcing data file
183     \item {\bf shi\_qnet.bin}: heat flux forcing data file
184     \item {\bf sillev1.bin}: silica data file, need for the
185     biogeochemistry
186     \item {\bf tren\_speed.bin}: wind speed data file, needed for the
187     biogeochemistry
188     \item {\bf tren\_taux.bin}: meridional wind stress data file
189     \item {\bf tren\_tauy.bin}: zonal wind stress data file
190     \end{itemize}
191    
192    
193     \subsection{Running the example}
194    
195     You will first need to download the MITgcm code. Instructions for
196     downloading the code can be found in section 3.2.
197    
198     \begin{enumerate}
199     \item{go to the build directory in verification/dic\_example:\\
200 molod 1.5 \hspace{1cm} {\it cd verification/dic\_example/build}}
201 edhill 1.1 \item{create the Makefile:\\
202 molod 1.5 \hspace{1cm} {\it ../../../tools/genmake2 -mods=code}}
203 edhill 1.1 \item{create all the links:\\
204 molod 1.5 \hspace{1cm} {\it make depend}}
205 edhill 1.1 \item{compile (the executable will be called mitgcmuv):\\
206 molod 1.5 \hspace{1cm} {\it make}}
207 edhill 1.1 \item{move the executable to the directory with all the inputs:\\
208 molod 1.5 \hspace{1cm} {\it mv mitgcmuv ../input/}}
209 edhill 1.1 \item{go to the input directory and run the model:\\
210 molod 1.5 \hspace{1cm} {\it cd ../input}\\
211     \hspace{1cm} {\it ./mitgcmuv}}
212 edhill 1.1 \end{enumerate}
213     As the model is set up to run in the verification experiment, it only
214     runs for 4 timestep (2 days) and outputs data at the end of this short
215     run. For a more informative run, you will need to run longer. As set
216     up, this model starts from a pre-spun up state and initializes
217     physical fields and the biogeochemical tracers from the {\it pickup}
218     files.
219    
220     Physical data (e.g. S,T, velocities etc) will be output as for any
221     regular ocean run. The biogeochemical output are:
222     \begin{itemize}
223     \item tracer snap shots: either netcdf, or older-style binary
224     (depending on how {\it data.mnc} is set up). Look in {\it
225     data.ptracers} to see which number matches which type of tracer
226     (e.g. ptracer01 is DIC).
227     \item tracer time averages: either netcdf, or older-style binary
228     (depending on how {\it data.mnc} is set up)
229     \item specific DIC diagnostics: these are averaged over {\it taveFreq}
230     (set in {\it data}) and are specific to the dic package, and
231     currently are only available in binary format:
232     \begin{itemize}
233     \item{\bf DIC\_Biotave}: 3-D biological community productivity (mol
234     P m$^{-3}$ s$^{-1}$)
235     \item{\bf DIC\_Cartave}: 3-D tendencies due to calcium carbonate
236     cycle (mol C m$^{-3}$ s$^{-1}$)
237     \item{\bf DIC\_fluxCO2ave}: 2-D air-sea flux of CO$_2$ (mol C
238     m$^{-2}$ s$^{-1}$)
239     \item{\bf DIC\_pCO2tave}: 2-D partial pressure of CO$_2$ in surface
240     layer
241     \item{\bf DIC\_pHtave}: 2-D pH in surface layer
242     \item{\bf DIC\_SurOtave}: 2-D tendency due to air-sea flux of O$_2$
243     (mol O m$^{-3}$ s$^{-1}$)
244     \item{\bf DIC\_Surtave}: 2-D surface tendency of DIC due to air-sea
245     flux and virtual flux (mol C m$^{-3}$ s$^{-1}$)
246     \end{itemize}
247     \end{itemize}
248    
249    
250     %% \subsection{Reference Material}
251    
252     %% \Hpar
253     %% Dutkiewicz. S., A. Sokolov, J.Scott and P. Stone, 2005:
254     %% A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling
255     %% to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies,
256     %% Report 122, Joint Program of the Science and Policy of Global Change,
257     %% M.I.T., Cambridge, MA.\\
258     %% (http://web.mit.edu/globalchange/www/MITJPSPGC\_Rpt122.pdf)
259     %% \Hpar
260     %% Follows, M., T. Ito and S. Dutkiewicz, 2005:
261     %% A Compact and Accurate Carbonate Chemistry Solver for Ocean
262     %% Biogeochemistry Models. {\it Ocean Modeling}, in press.
263     %% \Hpar
264     %% Gent, P. and J. McWilliams, 1990:
265     %% Isopycnal mixing in ocean circulation models.
266     %% {\it Journal of Physical Oceanography}, 20, 150 -- 155.
267     %% \Hpar
268     %% Jiang, S., P.H. Stone, and P. Malanotte-Rizzoli,
269     %% An assessment of the Geophysical Fluid Dynamics Laboratory
270     %% ocean model with coarse resolution: Annual-mean climatology,
271     %% {\it Journal of Geophysical Research}, 104, 25623 -- 25645, 1999.
272     %% \Hpar
273     %% Levitus, S. and T.P. Boyer, 1994:
274     %% {\it World Ocean Atlas 1994 Volume 4: Temperature},
275     %% NOAA Atlas NESDIS 4, U.S. Department of Commerce,
276     %% Washington, D.C., 117pp.
277     %% \Hpar
278     %% Levitus, S., R. Burgett, and T.P. Boyer, 1994:
279     %% {\it World Ocean Atlas 1994 Volume 3: Salinity},
280     %% NOAA Atlas NESDIS 3, U.S. Department of Commerce,
281     %% Washington, D.C., 99pp.
282     %% \Hpar
283     %% McKinley, G., M.J. Follows and J.C. Marshall, 2004:
284     %% Mechanisms of air-sea CO$_2$ flux variability in the Equatorial Pacific
285     %% and the North Atlantic.
286     %% {\it Global Biogeochemical Cycles}, 18, doi:10.1029/2003GB002179.
287     %% \Hpar
288     %% Trenberth, K., J. Olson, and W. Large, 1989:
289     %% {\it A global wind stress climatology based on ECMWF analyses,
290     %% Tech. Rep. NCAR/TN-338+STR},
291     %% National Center for Atmospheric Research, Boulder, Colorado.
292     %% \Hpar
293     %% Wanninkhof, R., 1992:
294     %% Relationship between wind speed and gas exchange over the ocean,
295     %% {\it Journal of Geophysical Research}, 97, 7373 -- 7382.
296    

  ViewVC Help
Powered by ViewVC 1.1.22