/[MITgcm]/manual/s_examples/global_oce_biogeo/biogeochem.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_biogeo/biogeochem.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download) (as text)
Wed Jun 28 19:00:53 2006 UTC (19 years ago) by molod
Branch: MAIN
Changes since 1.4: +7 -7 lines
File MIME type: application/x-tex
update stuff

1 edhill 1.1 \section{Biogeochemistry Tutorial}
2     \label{www:tutorials}
3     \label{sect:eg-biogeochem_tutorial}
4     \begin{rawhtml}
5     <!-- CMIREDIR:eg-biogeochem_tutorial: -->
6     \end{rawhtml}
7    
8     \subsection{Overview}
9     This model overlays the dissolved inorganic carbon biogeochemistry
10     model (the ``dic'' package) over a 2.8$^o$ global physical model. The
11     physical model has 15 levels, and is forced with a climatological
12 edhill 1.2 annual cycle of surface wind stresses \cite{Trenberth_etal_89},
13 edhill 1.3 surface heat and freshwater fluxes \cite{jiang99} with additional
14 edhill 1.2 relaxation toward climatological sea surface temperature and salinity
15     \cite{lev:94a,Levitus94}. It uses the Gent and and McWilliams
16     \cite{gen-mcw:90} eddy parameterization scheme, has an implicit
17     free-surface, implicit vertical diffusion and uses the convective
18 molod 1.4 adjustment scheme. The files for this experiment can be found in
19     the verification directory under tutorial\_global\_oce\_biogeo.
20 edhill 1.1
21     The biogeochemical model considers the coupled cycles of carbon,
22     oxygen, phosphorus and alkalinity. A simplified parameterization of
23     biological production is used, limited by the availability of light
24     and phosphate. A fraction of this productivity enters the dissolved
25     organic pool pool, which has an e-folding timescale for
26     remineralization of 6 months [following Yamanaka and Tajika, 1997].
27     The remaining fraction of this productivity is instantaneously
28     exported as particulate to depth [Yamanaka and Tajika, 1997] where it
29     is remineralized according to the empirical power law relationship
30     determined by Martin et al [1987]. The fate of carbon is linked to
31     that of phosphorus by the Redfield ratio. Carbonate chemistry is
32 edhill 1.2 explicitly solved \cite{Follows_etal_05} and the air-sea exchange of
33     CO$_2$ is parameterized with a uniform gas transfer coefficient
34     following \cite{Wanninkhof_92}. Oxygen is also linked to phosphorus by
35     the Redfield ratio, and oxygen air-sea exchange also follows
36     \cite{Wanninkhof_92}. For more details see \cite{Dutkiewicz_etal_05}.
37 edhill 1.1
38     The example setup described here shows the physical model after 5900
39     years of spin-up and the biogeochemistry after 2900 years of spin-up.
40     The biogeochemistry is at a pre-industrial steady-state (atmospheric
41     ppmv is kept at 278). Five tracers are resolved: dissolved inorganic
42     carbon ($DIC$), alkalinity ($ALK$), phosphate ($PO4$), dissolved
43     organic phosphorus ($DOP$) and dissolved oxygen ($O2$).
44    
45     \begin{figure} [tpb]
46     \begin{center}
47     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/biogeochem_tutorial/co2flux.eps}
48     \caption{Modelled annual mean air-sea CO$_2$ flux (mol C m$^{-2}$ y$^{-1}$)
49     for pre-industrial steady-state. Positive indicates flux of CO$_2$
50     from ocean to the atmosphere (out-gassing),
51     contour interval is 1 mol C m$^{-2}$ y$^{-1}$.}
52     \label{lFcarflux}
53     \end{center}
54     \end{figure}
55    
56    
57     \subsection{Equations Solved}
58    
59     The physical ocean model velocity and diffusivities are used to
60     redistribute the 5 tracers within the ocean. Additional redistribution
61     comes from chemical and biological sources and sinks. For any tracer
62     $A$:
63     \begin{equation}
64     \frac{\partial A}{\partial t}=-\nabla \cdot (\vec{u^{*}} A)+\nabla \cdot
65     (\mathbf{K}\nabla A)+S_A \nonumber \label{lEtrac}
66     \end{equation}
67     where $\vec{u^{*}}$ is the transformed Eulerian mean circulation
68     (which includes Eulerian and eddy-induced advection), $\mathbf{K}$ is
69     the mixing tensor, and $S_A$ are the sources and sinks due to
70     biological and chemical processes.
71    
72     The sources and sinks are:
73     \begin{eqnarray}
74     S_{DIC} & = & F_{CO_2} + V_{CO_2} + r_{C:P} S_{PO_4} + J_{Ca} \label{lEsdic} \\
75     S_{ALK} & = & V_{ALK}-r_{N:P} S_{PO_4} + 2 J_{Ca} \label{lEsalk} \\
76     S_{PO_4}& = & -f_{DOP} J_{prod} - \frac{\partial F_P}{\partial z} + \kappa_{remin} [DOP]\\
77     S_{DOP} & = & f_{DOP} J_{prod} -\kappa_{remin} [DOP] \\
78     S_{O_2} & = & \left\{ \begin{array}{ll}
79     -r_{O:P} S_{PO_4} & \mbox{if $O_2>O_{2crit}$} \\
80     0 & \mbox{if $O_2<O_{2crit}$}
81     \end{array}
82     \right.
83     \end{eqnarray}
84     where:
85     \begin{itemize}
86     \item $F_{CO_2}$ is the flux of CO$_2$ from the ocean to the
87     atmosphere
88     \item $V_{CO_2}$ is ``virtual flux'' due to changes in $DIC$ due to
89     the surface freshwater fluxes
90     \item $r_{C:P}$ is Redfield ratio of carbon to phosphorus
91     \item $J_{Ca}$ includes carbon removed from surface due to calcium
92     carbonate formation and subsequent cumulation of the downward flux
93     of CaCO$_3$
94     \item $V_{ALK}$ is ``virtual flux'' due to changes in alkalinity due
95     to the surface freshwater fluxes
96     \item $r_{N:P}$ Redfield ratio is nitrogen to phosphorus
97     \item $f_{DOP}$ is fraction of productivity that remains suspended in
98     the water column as dissolved organic phosphorus
99     \item $J_{prod}$ is the net community productivity
100     \item $\frac{\partial F_P}{\partial z}$ is the accumulation of
101     remineralized phosphorus with depth
102     \item $\kappa_{remin}$ is rate with which $DOP$ remineralizes back to
103     $PO_4$
104     \item $F_{O_2}$ is air-sea flux of oxygen
105     \item $r_{O:P}$ is Redfield ratio of oxygen to phosphorus
106     \item $O_{2crit}$ is a critical level below which oxygen consumption
107     if halted
108     \end{itemize}
109    
110     These terms (for the first four tracers) are described more in
111 edhill 1.2 \cite{Dutkiewicz_etal_05} and by \cite{McKinley_etal_04} for the terms
112     relating to oxygen.
113 edhill 1.1
114    
115     \subsection{Code configuration}
116    
117     The model configuration for this experiment resides in
118     verification/dic\_example. The modifications to the code (in {\it
119     verification/dic\_example/code}) are:
120     \begin{itemize}
121     \item{{\bf SIZE.h}: which dictates the size of the model domain
122     (128x64x15).}
123     \item{\bf PTRACERS\_SIZE.h}: which dictates how many tracers to assign
124     how many tracers will be used (5).
125     \item{\bf GCHEM\_OPTIONS.h}: provides some compiler time options for
126     the {\it /pkg/gchem}. In particular this example requires that {\it
127     DIC\_BIOTIC} and {\it GCHEM\_SEPARATE\_FORCING} be defined.
128     \item{\bf GMREDI\_OPTIONS.h}: assigns the Gent-McWilliam eddy
129     parameterization options.
130     \item{\bf DIAGNOSTICS\_SIZE.h}: assigns size information for the
131     diagnostics package.
132     \item{\bf packages.conf}: which dictates which packages will be
133     compiled in this version of the model - among the many that are used
134     for the physical part of the model, this also includes {\it
135     ptracers}, {\it gchem}, and {\it dic} which allow the
136     biogeochemical part of this setup to function.
137     \end{itemize}
138    
139     \vspace{1cm}
140     \noindent
141     The input fields needed for this run (in {\it
142     verification/dic\_example/input}) are:
143     \begin{itemize}
144     \item {\bf data}: specifies the main parameters for the experiment,
145     some parameters that may be useful to know: {\it nTimeSteps} number
146     timesteps model will run, change to 720 to run for a year {\it
147     taveFreq} frequency with which time averages are done, change to
148     31104000 for annual averages.
149     \item {\bf data.diagnostics}: species details of diagnostic pkg output
150     \item {\bf data.gchem}: specifics files and other details needed in
151     the biogeochemistry model run
152     \item {\bf data.gmredi}: species details for the GM parameterization
153     \item {\bf data.mnc}: specifies details for types of output, netcdf or
154     binary
155     \item {\bf data.pkg}: set true or false for various packages to be
156     used
157     \item {\bf data.ptracers}: details of the tracers to be used,
158     including makes, diffusivity information and (if needed) initial
159     files. Of particular importance is the {\it PTRACERS\_numInUse}
160     which states how many tracers are used, and {\it PTRACERS\_Iter0}
161     which states at which timestep the biogeochemistry model tracers
162     were initialized.
163     \item {\bf depth\_g77.bin}: bathymetry data file
164     \item {\bf eedata}: This file uses standard default values and does
165     not contain customizations for this experiment.
166     \item {\bf fice.bin}: ice data file, needed for the biogeochemistry
167     \item {\bf lev\_monthly\_salt.bin}: SSS values which model relaxes
168     toward
169     \item {\bf lev\_monthly\_temp.bin}: SST values which model relaxes
170     toward
171     \item {\bf pickup.0004248000.data}: variable and tendency values need
172     to restart the physical part of the model
173     \item {\bf pickup\_cd.0004248000.data}: variable and tendency values
174     need to restart the cd pkg
175     \item {\bf pickup\_ptracers.0004248000.data}: variable and tendency
176     values need to restart the the biogeochemistry part of the model
177     \item {\bf POLY3.COEFFS}: coefficient for the non-linear equation of
178     state
179     \item {\bf shi\_empmr\_year.bin}: freshwater forcing data file
180     \item {\bf shi\_qnet.bin}: heat flux forcing data file
181     \item {\bf sillev1.bin}: silica data file, need for the
182     biogeochemistry
183     \item {\bf tren\_speed.bin}: wind speed data file, needed for the
184     biogeochemistry
185     \item {\bf tren\_taux.bin}: meridional wind stress data file
186     \item {\bf tren\_tauy.bin}: zonal wind stress data file
187     \end{itemize}
188    
189    
190     \subsection{Running the example}
191    
192     You will first need to download the MITgcm code. Instructions for
193     downloading the code can be found in section 3.2.
194    
195     \begin{enumerate}
196     \item{go to the build directory in verification/dic\_example:\\
197 molod 1.5 \hspace{1cm} {\it cd verification/dic\_example/build}}
198 edhill 1.1 \item{create the Makefile:\\
199 molod 1.5 \hspace{1cm} {\it ../../../tools/genmake2 -mods=code}}
200 edhill 1.1 \item{create all the links:\\
201 molod 1.5 \hspace{1cm} {\it make depend}}
202 edhill 1.1 \item{compile (the executable will be called mitgcmuv):\\
203 molod 1.5 \hspace{1cm} {\it make}}
204 edhill 1.1 \item{move the executable to the directory with all the inputs:\\
205 molod 1.5 \hspace{1cm} {\it mv mitgcmuv ../input/}}
206 edhill 1.1 \item{go to the input directory and run the model:\\
207 molod 1.5 \hspace{1cm} {\it cd ../input}\\
208     \hspace{1cm} {\it ./mitgcmuv}}
209 edhill 1.1 \end{enumerate}
210     As the model is set up to run in the verification experiment, it only
211     runs for 4 timestep (2 days) and outputs data at the end of this short
212     run. For a more informative run, you will need to run longer. As set
213     up, this model starts from a pre-spun up state and initializes
214     physical fields and the biogeochemical tracers from the {\it pickup}
215     files.
216    
217     Physical data (e.g. S,T, velocities etc) will be output as for any
218     regular ocean run. The biogeochemical output are:
219     \begin{itemize}
220     \item tracer snap shots: either netcdf, or older-style binary
221     (depending on how {\it data.mnc} is set up). Look in {\it
222     data.ptracers} to see which number matches which type of tracer
223     (e.g. ptracer01 is DIC).
224     \item tracer time averages: either netcdf, or older-style binary
225     (depending on how {\it data.mnc} is set up)
226     \item specific DIC diagnostics: these are averaged over {\it taveFreq}
227     (set in {\it data}) and are specific to the dic package, and
228     currently are only available in binary format:
229     \begin{itemize}
230     \item{\bf DIC\_Biotave}: 3-D biological community productivity (mol
231     P m$^{-3}$ s$^{-1}$)
232     \item{\bf DIC\_Cartave}: 3-D tendencies due to calcium carbonate
233     cycle (mol C m$^{-3}$ s$^{-1}$)
234     \item{\bf DIC\_fluxCO2ave}: 2-D air-sea flux of CO$_2$ (mol C
235     m$^{-2}$ s$^{-1}$)
236     \item{\bf DIC\_pCO2tave}: 2-D partial pressure of CO$_2$ in surface
237     layer
238     \item{\bf DIC\_pHtave}: 2-D pH in surface layer
239     \item{\bf DIC\_SurOtave}: 2-D tendency due to air-sea flux of O$_2$
240     (mol O m$^{-3}$ s$^{-1}$)
241     \item{\bf DIC\_Surtave}: 2-D surface tendency of DIC due to air-sea
242     flux and virtual flux (mol C m$^{-3}$ s$^{-1}$)
243     \end{itemize}
244     \end{itemize}
245    
246    
247     %% \subsection{Reference Material}
248    
249     %% \Hpar
250     %% Dutkiewicz. S., A. Sokolov, J.Scott and P. Stone, 2005:
251     %% A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling
252     %% to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies,
253     %% Report 122, Joint Program of the Science and Policy of Global Change,
254     %% M.I.T., Cambridge, MA.\\
255     %% (http://web.mit.edu/globalchange/www/MITJPSPGC\_Rpt122.pdf)
256     %% \Hpar
257     %% Follows, M., T. Ito and S. Dutkiewicz, 2005:
258     %% A Compact and Accurate Carbonate Chemistry Solver for Ocean
259     %% Biogeochemistry Models. {\it Ocean Modeling}, in press.
260     %% \Hpar
261     %% Gent, P. and J. McWilliams, 1990:
262     %% Isopycnal mixing in ocean circulation models.
263     %% {\it Journal of Physical Oceanography}, 20, 150 -- 155.
264     %% \Hpar
265     %% Jiang, S., P.H. Stone, and P. Malanotte-Rizzoli,
266     %% An assessment of the Geophysical Fluid Dynamics Laboratory
267     %% ocean model with coarse resolution: Annual-mean climatology,
268     %% {\it Journal of Geophysical Research}, 104, 25623 -- 25645, 1999.
269     %% \Hpar
270     %% Levitus, S. and T.P. Boyer, 1994:
271     %% {\it World Ocean Atlas 1994 Volume 4: Temperature},
272     %% NOAA Atlas NESDIS 4, U.S. Department of Commerce,
273     %% Washington, D.C., 117pp.
274     %% \Hpar
275     %% Levitus, S., R. Burgett, and T.P. Boyer, 1994:
276     %% {\it World Ocean Atlas 1994 Volume 3: Salinity},
277     %% NOAA Atlas NESDIS 3, U.S. Department of Commerce,
278     %% Washington, D.C., 99pp.
279     %% \Hpar
280     %% McKinley, G., M.J. Follows and J.C. Marshall, 2004:
281     %% Mechanisms of air-sea CO$_2$ flux variability in the Equatorial Pacific
282     %% and the North Atlantic.
283     %% {\it Global Biogeochemical Cycles}, 18, doi:10.1029/2003GB002179.
284     %% \Hpar
285     %% Trenberth, K., J. Olson, and W. Large, 1989:
286     %% {\it A global wind stress climatology based on ECMWF analyses,
287     %% Tech. Rep. NCAR/TN-338+STR},
288     %% National Center for Atmospheric Research, Boulder, Colorado.
289     %% \Hpar
290     %% Wanninkhof, R., 1992:
291     %% Relationship between wind speed and gas exchange over the ocean,
292     %% {\it Journal of Geophysical Research}, 97, 7373 -- 7382.
293    

  ViewVC Help
Powered by ViewVC 1.1.22