/[MITgcm]/manual/s_examples/global_oce_biogeo/biogeochem.tex
ViewVC logotype

Annotation of /manual/s_examples/global_oce_biogeo/biogeochem.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download) (as text)
Tue Aug 2 16:41:28 2005 UTC (19 years, 11 months ago) by edhill
Branch: MAIN
Changes since 1.2: +1 -1 lines
File MIME type: application/x-tex
 o fix typo

1 edhill 1.1 \section{Biogeochemistry Tutorial}
2     \label{www:tutorials}
3     \label{sect:eg-biogeochem_tutorial}
4     \begin{rawhtml}
5     <!-- CMIREDIR:eg-biogeochem_tutorial: -->
6     \end{rawhtml}
7    
8     \subsection{Overview}
9     This model overlays the dissolved inorganic carbon biogeochemistry
10     model (the ``dic'' package) over a 2.8$^o$ global physical model. The
11     physical model has 15 levels, and is forced with a climatological
12 edhill 1.2 annual cycle of surface wind stresses \cite{Trenberth_etal_89},
13 edhill 1.3 surface heat and freshwater fluxes \cite{jiang99} with additional
14 edhill 1.2 relaxation toward climatological sea surface temperature and salinity
15     \cite{lev:94a,Levitus94}. It uses the Gent and and McWilliams
16     \cite{gen-mcw:90} eddy parameterization scheme, has an implicit
17     free-surface, implicit vertical diffusion and uses the convective
18     adjustment scheme.
19 edhill 1.1
20     The biogeochemical model considers the coupled cycles of carbon,
21     oxygen, phosphorus and alkalinity. A simplified parameterization of
22     biological production is used, limited by the availability of light
23     and phosphate. A fraction of this productivity enters the dissolved
24     organic pool pool, which has an e-folding timescale for
25     remineralization of 6 months [following Yamanaka and Tajika, 1997].
26     The remaining fraction of this productivity is instantaneously
27     exported as particulate to depth [Yamanaka and Tajika, 1997] where it
28     is remineralized according to the empirical power law relationship
29     determined by Martin et al [1987]. The fate of carbon is linked to
30     that of phosphorus by the Redfield ratio. Carbonate chemistry is
31 edhill 1.2 explicitly solved \cite{Follows_etal_05} and the air-sea exchange of
32     CO$_2$ is parameterized with a uniform gas transfer coefficient
33     following \cite{Wanninkhof_92}. Oxygen is also linked to phosphorus by
34     the Redfield ratio, and oxygen air-sea exchange also follows
35     \cite{Wanninkhof_92}. For more details see \cite{Dutkiewicz_etal_05}.
36 edhill 1.1
37     The example setup described here shows the physical model after 5900
38     years of spin-up and the biogeochemistry after 2900 years of spin-up.
39     The biogeochemistry is at a pre-industrial steady-state (atmospheric
40     ppmv is kept at 278). Five tracers are resolved: dissolved inorganic
41     carbon ($DIC$), alkalinity ($ALK$), phosphate ($PO4$), dissolved
42     organic phosphorus ($DOP$) and dissolved oxygen ($O2$).
43    
44     \begin{figure} [tpb]
45     \begin{center}
46     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/biogeochem_tutorial/co2flux.eps}
47     \caption{Modelled annual mean air-sea CO$_2$ flux (mol C m$^{-2}$ y$^{-1}$)
48     for pre-industrial steady-state. Positive indicates flux of CO$_2$
49     from ocean to the atmosphere (out-gassing),
50     contour interval is 1 mol C m$^{-2}$ y$^{-1}$.}
51     \label{lFcarflux}
52     \end{center}
53     \end{figure}
54    
55    
56     \subsection{Equations Solved}
57    
58     The physical ocean model velocity and diffusivities are used to
59     redistribute the 5 tracers within the ocean. Additional redistribution
60     comes from chemical and biological sources and sinks. For any tracer
61     $A$:
62     \begin{equation}
63     \frac{\partial A}{\partial t}=-\nabla \cdot (\vec{u^{*}} A)+\nabla \cdot
64     (\mathbf{K}\nabla A)+S_A \nonumber \label{lEtrac}
65     \end{equation}
66     where $\vec{u^{*}}$ is the transformed Eulerian mean circulation
67     (which includes Eulerian and eddy-induced advection), $\mathbf{K}$ is
68     the mixing tensor, and $S_A$ are the sources and sinks due to
69     biological and chemical processes.
70    
71     The sources and sinks are:
72     \begin{eqnarray}
73     S_{DIC} & = & F_{CO_2} + V_{CO_2} + r_{C:P} S_{PO_4} + J_{Ca} \label{lEsdic} \\
74     S_{ALK} & = & V_{ALK}-r_{N:P} S_{PO_4} + 2 J_{Ca} \label{lEsalk} \\
75     S_{PO_4}& = & -f_{DOP} J_{prod} - \frac{\partial F_P}{\partial z} + \kappa_{remin} [DOP]\\
76     S_{DOP} & = & f_{DOP} J_{prod} -\kappa_{remin} [DOP] \\
77     S_{O_2} & = & \left\{ \begin{array}{ll}
78     -r_{O:P} S_{PO_4} & \mbox{if $O_2>O_{2crit}$} \\
79     0 & \mbox{if $O_2<O_{2crit}$}
80     \end{array}
81     \right.
82     \end{eqnarray}
83     where:
84     \begin{itemize}
85     \item $F_{CO_2}$ is the flux of CO$_2$ from the ocean to the
86     atmosphere
87     \item $V_{CO_2}$ is ``virtual flux'' due to changes in $DIC$ due to
88     the surface freshwater fluxes
89     \item $r_{C:P}$ is Redfield ratio of carbon to phosphorus
90     \item $J_{Ca}$ includes carbon removed from surface due to calcium
91     carbonate formation and subsequent cumulation of the downward flux
92     of CaCO$_3$
93     \item $V_{ALK}$ is ``virtual flux'' due to changes in alkalinity due
94     to the surface freshwater fluxes
95     \item $r_{N:P}$ Redfield ratio is nitrogen to phosphorus
96     \item $f_{DOP}$ is fraction of productivity that remains suspended in
97     the water column as dissolved organic phosphorus
98     \item $J_{prod}$ is the net community productivity
99     \item $\frac{\partial F_P}{\partial z}$ is the accumulation of
100     remineralized phosphorus with depth
101     \item $\kappa_{remin}$ is rate with which $DOP$ remineralizes back to
102     $PO_4$
103     \item $F_{O_2}$ is air-sea flux of oxygen
104     \item $r_{O:P}$ is Redfield ratio of oxygen to phosphorus
105     \item $O_{2crit}$ is a critical level below which oxygen consumption
106     if halted
107     \end{itemize}
108    
109     These terms (for the first four tracers) are described more in
110 edhill 1.2 \cite{Dutkiewicz_etal_05} and by \cite{McKinley_etal_04} for the terms
111     relating to oxygen.
112 edhill 1.1
113    
114     \subsection{Code configuration}
115    
116     The model configuration for this experiment resides in
117     verification/dic\_example. The modifications to the code (in {\it
118     verification/dic\_example/code}) are:
119     \begin{itemize}
120     \item{{\bf SIZE.h}: which dictates the size of the model domain
121     (128x64x15).}
122     \item{\bf PTRACERS\_SIZE.h}: which dictates how many tracers to assign
123     how many tracers will be used (5).
124     \item{\bf GCHEM\_OPTIONS.h}: provides some compiler time options for
125     the {\it /pkg/gchem}. In particular this example requires that {\it
126     DIC\_BIOTIC} and {\it GCHEM\_SEPARATE\_FORCING} be defined.
127     \item{\bf GMREDI\_OPTIONS.h}: assigns the Gent-McWilliam eddy
128     parameterization options.
129     \item{\bf DIAGNOSTICS\_SIZE.h}: assigns size information for the
130     diagnostics package.
131     \item{\bf packages.conf}: which dictates which packages will be
132     compiled in this version of the model - among the many that are used
133     for the physical part of the model, this also includes {\it
134     ptracers}, {\it gchem}, and {\it dic} which allow the
135     biogeochemical part of this setup to function.
136     \end{itemize}
137    
138     \vspace{1cm}
139     \noindent
140     The input fields needed for this run (in {\it
141     verification/dic\_example/input}) are:
142     \begin{itemize}
143     \item {\bf data}: specifies the main parameters for the experiment,
144     some parameters that may be useful to know: {\it nTimeSteps} number
145     timesteps model will run, change to 720 to run for a year {\it
146     taveFreq} frequency with which time averages are done, change to
147     31104000 for annual averages.
148     \item {\bf data.diagnostics}: species details of diagnostic pkg output
149     \item {\bf data.gchem}: specifics files and other details needed in
150     the biogeochemistry model run
151     \item {\bf data.gmredi}: species details for the GM parameterization
152     \item {\bf data.mnc}: specifies details for types of output, netcdf or
153     binary
154     \item {\bf data.pkg}: set true or false for various packages to be
155     used
156     \item {\bf data.ptracers}: details of the tracers to be used,
157     including makes, diffusivity information and (if needed) initial
158     files. Of particular importance is the {\it PTRACERS\_numInUse}
159     which states how many tracers are used, and {\it PTRACERS\_Iter0}
160     which states at which timestep the biogeochemistry model tracers
161     were initialized.
162     \item {\bf depth\_g77.bin}: bathymetry data file
163     \item {\bf eedata}: This file uses standard default values and does
164     not contain customizations for this experiment.
165     \item {\bf fice.bin}: ice data file, needed for the biogeochemistry
166     \item {\bf lev\_monthly\_salt.bin}: SSS values which model relaxes
167     toward
168     \item {\bf lev\_monthly\_temp.bin}: SST values which model relaxes
169     toward
170     \item {\bf pickup.0004248000.data}: variable and tendency values need
171     to restart the physical part of the model
172     \item {\bf pickup\_cd.0004248000.data}: variable and tendency values
173     need to restart the cd pkg
174     \item {\bf pickup\_ptracers.0004248000.data}: variable and tendency
175     values need to restart the the biogeochemistry part of the model
176     \item {\bf POLY3.COEFFS}: coefficient for the non-linear equation of
177     state
178     \item {\bf shi\_empmr\_year.bin}: freshwater forcing data file
179     \item {\bf shi\_qnet.bin}: heat flux forcing data file
180     \item {\bf sillev1.bin}: silica data file, need for the
181     biogeochemistry
182     \item {\bf tren\_speed.bin}: wind speed data file, needed for the
183     biogeochemistry
184     \item {\bf tren\_taux.bin}: meridional wind stress data file
185     \item {\bf tren\_tauy.bin}: zonal wind stress data file
186     \end{itemize}
187    
188    
189     \subsection{Running the example}
190    
191     You will first need to download the MITgcm code. Instructions for
192     downloading the code can be found in section 3.2.
193    
194     \begin{enumerate}
195     \item{go to the build directory in verification/dic\_example:\\
196     \hspace{1cm} $>$ {\it cd verification/dic\_example/build}}
197     \item{create the Makefile:\\
198     \hspace{1cm} $>$ {\it ../../../tools/genmake2 -mods=code}}
199     \item{create all the links:\\
200     \hspace{1cm} $>$ {\it make depend}}
201     \item{compile (the executable will be called mitgcmuv):\\
202     \hspace{1cm} $>$ {\it make}}
203     \item{move the executable to the directory with all the inputs:\\
204     \hspace{1cm} $>$ {\it mv mitgcmuv ../input/}}
205     \item{go to the input directory and run the model:\\
206     \hspace{1cm} $>$ {\it cd ../input}\\
207     \hspace{1cm} $>$ {\it ./mitgcmuv}}
208     \end{enumerate}
209     As the model is set up to run in the verification experiment, it only
210     runs for 4 timestep (2 days) and outputs data at the end of this short
211     run. For a more informative run, you will need to run longer. As set
212     up, this model starts from a pre-spun up state and initializes
213     physical fields and the biogeochemical tracers from the {\it pickup}
214     files.
215    
216     Physical data (e.g. S,T, velocities etc) will be output as for any
217     regular ocean run. The biogeochemical output are:
218     \begin{itemize}
219     \item tracer snap shots: either netcdf, or older-style binary
220     (depending on how {\it data.mnc} is set up). Look in {\it
221     data.ptracers} to see which number matches which type of tracer
222     (e.g. ptracer01 is DIC).
223     \item tracer time averages: either netcdf, or older-style binary
224     (depending on how {\it data.mnc} is set up)
225     \item specific DIC diagnostics: these are averaged over {\it taveFreq}
226     (set in {\it data}) and are specific to the dic package, and
227     currently are only available in binary format:
228     \begin{itemize}
229     \item{\bf DIC\_Biotave}: 3-D biological community productivity (mol
230     P m$^{-3}$ s$^{-1}$)
231     \item{\bf DIC\_Cartave}: 3-D tendencies due to calcium carbonate
232     cycle (mol C m$^{-3}$ s$^{-1}$)
233     \item{\bf DIC\_fluxCO2ave}: 2-D air-sea flux of CO$_2$ (mol C
234     m$^{-2}$ s$^{-1}$)
235     \item{\bf DIC\_pCO2tave}: 2-D partial pressure of CO$_2$ in surface
236     layer
237     \item{\bf DIC\_pHtave}: 2-D pH in surface layer
238     \item{\bf DIC\_SurOtave}: 2-D tendency due to air-sea flux of O$_2$
239     (mol O m$^{-3}$ s$^{-1}$)
240     \item{\bf DIC\_Surtave}: 2-D surface tendency of DIC due to air-sea
241     flux and virtual flux (mol C m$^{-3}$ s$^{-1}$)
242     \end{itemize}
243     \end{itemize}
244    
245    
246     %% \subsection{Reference Material}
247    
248     %% \Hpar
249     %% Dutkiewicz. S., A. Sokolov, J.Scott and P. Stone, 2005:
250     %% A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling
251     %% to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies,
252     %% Report 122, Joint Program of the Science and Policy of Global Change,
253     %% M.I.T., Cambridge, MA.\\
254     %% (http://web.mit.edu/globalchange/www/MITJPSPGC\_Rpt122.pdf)
255     %% \Hpar
256     %% Follows, M., T. Ito and S. Dutkiewicz, 2005:
257     %% A Compact and Accurate Carbonate Chemistry Solver for Ocean
258     %% Biogeochemistry Models. {\it Ocean Modeling}, in press.
259     %% \Hpar
260     %% Gent, P. and J. McWilliams, 1990:
261     %% Isopycnal mixing in ocean circulation models.
262     %% {\it Journal of Physical Oceanography}, 20, 150 -- 155.
263     %% \Hpar
264     %% Jiang, S., P.H. Stone, and P. Malanotte-Rizzoli,
265     %% An assessment of the Geophysical Fluid Dynamics Laboratory
266     %% ocean model with coarse resolution: Annual-mean climatology,
267     %% {\it Journal of Geophysical Research}, 104, 25623 -- 25645, 1999.
268     %% \Hpar
269     %% Levitus, S. and T.P. Boyer, 1994:
270     %% {\it World Ocean Atlas 1994 Volume 4: Temperature},
271     %% NOAA Atlas NESDIS 4, U.S. Department of Commerce,
272     %% Washington, D.C., 117pp.
273     %% \Hpar
274     %% Levitus, S., R. Burgett, and T.P. Boyer, 1994:
275     %% {\it World Ocean Atlas 1994 Volume 3: Salinity},
276     %% NOAA Atlas NESDIS 3, U.S. Department of Commerce,
277     %% Washington, D.C., 99pp.
278     %% \Hpar
279     %% McKinley, G., M.J. Follows and J.C. Marshall, 2004:
280     %% Mechanisms of air-sea CO$_2$ flux variability in the Equatorial Pacific
281     %% and the North Atlantic.
282     %% {\it Global Biogeochemical Cycles}, 18, doi:10.1029/2003GB002179.
283     %% \Hpar
284     %% Trenberth, K., J. Olson, and W. Large, 1989:
285     %% {\it A global wind stress climatology based on ECMWF analyses,
286     %% Tech. Rep. NCAR/TN-338+STR},
287     %% National Center for Atmospheric Research, Boulder, Colorado.
288     %% \Hpar
289     %% Wanninkhof, R., 1992:
290     %% Relationship between wind speed and gas exchange over the ocean,
291     %% {\it Journal of Geophysical Research}, 97, 7373 -- 7382.
292    

  ViewVC Help
Powered by ViewVC 1.1.22