1 |
\section{Surface Driven Convection} |
2 |
\label{www:tutorials} |
3 |
\label{sect:eg-bconv} |
4 |
\begin{rawhtml} |
5 |
<!-- CMIREDIR:eg-bconv: --> |
6 |
\end{rawhtml} |
7 |
|
8 |
\bodytext{bgcolor="#FFFFFFFF"} |
9 |
|
10 |
%\begin{center} |
11 |
%{\Large \bf Surface driven convection} |
12 |
% |
13 |
%\vspace*{4mm} |
14 |
% |
15 |
%\vspace*{3mm} |
16 |
%{\large Dec 2001} |
17 |
%\end{center} |
18 |
|
19 |
\begin{figure} |
20 |
\begin{center} |
21 |
\resizebox{7.5cm}{5.5cm}{ |
22 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
23 |
{part3/case_studies/doubly_periodic_convection/simulation_config.eps} } |
24 |
\end{center} |
25 |
\caption{Schematic of simulation domain |
26 |
for the surface driven convection experiment. The domain is doubly periodic |
27 |
with an initially uniform temperature of 20 $^oC$. |
28 |
} |
29 |
\label{FIG:eg-bconv-simulation_config} |
30 |
\end{figure} |
31 |
|
32 |
This experiment, figure \ref{FIG:eg-bconv-simulation_config}, showcasing MITgcm's non-hydrostatic capability, was designed to explore |
33 |
the temporal and spatial characteristics of convection plumes as they might exist during a |
34 |
period of oceanic deep convection. It is |
35 |
|
36 |
\begin{itemize} |
37 |
\item non-hydrostatic |
38 |
\item doubly-periodic with cubic geometry |
39 |
\item has 50 m resolution |
40 |
\item Cartesian |
41 |
\item is on an $f$-plane |
42 |
\item with a linear equation of state |
43 |
\end{itemize} |
44 |
|
45 |
\subsection{Overview} |
46 |
\label{www:tutorials} |
47 |
|
48 |
The model domain consists of an approximately 3 |
49 |
km square by 1 km deep box of initially |
50 |
unstratified, resting fluid. The domain is doubly periodic. |
51 |
|
52 |
The experiment has 20 levels in the vertical, each of equal thickness $\Delta z =$ 50 |
53 |
m (the horizontal resolution is also 50 m). The fluid is initially unstratified with a |
54 |
uniform reference potential temperature $\theta = $ 20 $^o$C. The equation of state |
55 |
used in this experiment is linear |
56 |
|
57 |
\begin{equation} |
58 |
\label{EQ:eg-bconv-linear1_eos} |
59 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
60 |
\end{equation} |
61 |
|
62 |
\noindent which is implemented in the model as a density anomaly equation |
63 |
|
64 |
\begin{equation} |
65 |
\label{EQ:eg-bconv-linear1_eos_pert} |
66 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
67 |
\end{equation} |
68 |
|
69 |
\noindent with $\rho_{0}=1000\,{\rm kg\,m}^{-3}$ and |
70 |
$\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in |
71 |
this configuration the model state variable {\bf theta} is equivalent to |
72 |
either in-situ temperature, $T$, or potential temperature, $\theta$. For |
73 |
consistency with other examples, in which the equation of state is |
74 |
non-linear, we use $\theta$ to represent temperature here. This is |
75 |
the quantity that is carried in the model core equations. |
76 |
|
77 |
As the fluid in the surface layer is cooled (at a mean rate of 800 Wm$^2$), it becomes |
78 |
convectively unstable and |
79 |
overturns, at first close to the grid-scale, but, as the flow matures, on larger scales |
80 |
(figures \ref{FIG:eg-bconv-vertsection} and \ref{FIG:eg-bconv-horizsection}), under the influence of |
81 |
rotation ($f_o = 10^{-4}$ s$^{-1}$) . |
82 |
|
83 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN surf-convection-vertsection\end{rawhtml} |
84 |
\begin{figure} |
85 |
\begin{center} |
86 |
\resizebox{15cm}{10cm}{ |
87 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
88 |
{part3/case_studies/doubly_periodic_convection/verticalsection.ps} } |
89 |
\end{center} |
90 |
\caption{ |
91 |
} |
92 |
\label{FIG:eg-bconv-vertsection} |
93 |
\label{fig:surf-convection-vertsection} |
94 |
\end{figure} |
95 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml} |
96 |
|
97 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN surf-convection-horizsection\end{rawhtml} |
98 |
\begin{figure} |
99 |
\begin{center} |
100 |
\resizebox{10cm}{10cm}{ |
101 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
102 |
{part3/case_studies/doubly_periodic_convection/surfacesection.ps} } |
103 |
\end{center} |
104 |
\caption{ |
105 |
} |
106 |
\label{FIG:eg-bconv-horizsection} |
107 |
\label{fig:surf-convection-horizsection} |
108 |
\end{figure} |
109 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml} |
110 |
|
111 |
Model parameters are specified in file {\it input/data}. The grid dimensions are |
112 |
prescribed in {\it code/SIZE.h}. The forcing (file {\it input/Qsurf.bin}) is specified |
113 |
in a binary data file generated using the Matlab script {\it input/gendata.m}. |
114 |
|
115 |
\subsection{Equations solved} |
116 |
\label{www:tutorials} |
117 |
|
118 |
The model is configured in nonhydrostatic form, that is, all terms in the Navier |
119 |
Stokes equations are retained and the pressure field is found, subject to appropriate |
120 |
bounday condintions, through inversion of a three-dimensional elliptic equation. |
121 |
|
122 |
The implicit free surface form of the |
123 |
pressure equation described in Marshall et. al \cite{marshall:97a} is |
124 |
employed. A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
125 |
dissipation. The thermodynamic forcing appears as a sink in the potential temperature, |
126 |
$\theta$, equation (\ref{EQ:eg-bconv-global_forcing_ft}). This produces a set of equations |
127 |
solved in this configuration as follows: |
128 |
|
129 |
\begin{eqnarray} |
130 |
\label{EQ:eg-bconv-model_equations} |
131 |
\frac{Du}{Dt} - fv + |
132 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
133 |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
134 |
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} |
135 |
& = & |
136 |
\begin{cases} |
137 |
0 & \text{(surface)} \\ |
138 |
0 & \text{(interior)} |
139 |
\end{cases} |
140 |
\\ |
141 |
\frac{Dv}{Dt} + fu + |
142 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
143 |
\nabla_{h}\cdot A_{h}\nabla_{h}v - |
144 |
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} |
145 |
& = & |
146 |
\begin{cases} |
147 |
0 & \text{(surface)} \\ |
148 |
0 & \text{(interior)} |
149 |
\end{cases} |
150 |
\\ |
151 |
\frac{Dw}{Dt} + g \frac{\rho^{'}}{\rho} + |
152 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial z} - |
153 |
\nabla_{h}\cdot A_{h}\nabla_{h}w - |
154 |
\frac{\partial}{\partial z}A_{z}\frac{\partial w}{\partial z} |
155 |
& = & |
156 |
\begin{cases} |
157 |
0 & \text{(surface)} \\ |
158 |
0 & \text{(interior)} |
159 |
\end{cases} |
160 |
\\ |
161 |
\frac{\partial u}{\partial x} + |
162 |
\frac{\partial v}{\partial y} + |
163 |
\frac{\partial w}{\partial z} + |
164 |
&=& |
165 |
0 |
166 |
\\ |
167 |
\frac{D\theta}{Dt} - |
168 |
\nabla_{h}\cdot K_{h}\nabla_{h}\theta |
169 |
- \frac{\partial}{\partial z}K_{z}\frac{\partial\theta}{\partial z} |
170 |
& = & |
171 |
\begin{cases} |
172 |
{\cal F}_\theta & \text{(surface)} \\ |
173 |
0 & \text{(interior)} |
174 |
\end{cases} |
175 |
\end{eqnarray} |
176 |
|
177 |
\noindent where $u=\frac{Dx}{Dt}$, $v=\frac{Dy}{Dt}$ and |
178 |
$w=\frac{Dz}{Dt}$ are the components of the |
179 |
flow vector in directions $x$, $y$ and $z$. |
180 |
The pressure is diagnosed through inversion (subject to appropriate boundary |
181 |
conditions) of a 3-D elliptic equation derived from the divergence of the momentum |
182 |
equations and continuity (see section \ref{sec:finding_the_pressure_field}). |
183 |
\\ |
184 |
|
185 |
\subsection{Discrete numerical configuration} |
186 |
\label{www:tutorials} |
187 |
|
188 |
The domain is discretised with a uniform grid spacing in each direction. There are 64 |
189 |
grid cells in directions $x$ and $y$ and 20 vertical levels thus the domain |
190 |
comprises a total of just over 80 000 gridpoints. |
191 |
|
192 |
\subsection{Numerical stability criteria and other considerations} |
193 |
\label{www:tutorials} |
194 |
|
195 |
For a heat flux of 800 Wm$^2$ and a rotation rate of $10^{-4}$ s$^{-1}$ the |
196 |
plume-scale can be expected to be a few hundred meters guiding our choice of grid |
197 |
resolution. This in turn restricts the timestep we can take. It is also desirable to |
198 |
minimise the level of diffusion and viscosity we apply. |
199 |
|
200 |
For this class of problem it is generally the advective time-scale which restricts |
201 |
the timestep. |
202 |
|
203 |
For an extreme maximum flow speed of $ | \vec{u} | = 1 ms^{-1}$, at a resolution of |
204 |
50 m, the implied maximum timestep for stability, $\delta t_u$ is |
205 |
|
206 |
\begin{eqnarray} |
207 |
\label{EQ:eg-bconv-advectiveCFLcondition} |
208 |
%\delta t_u = \frac{\Delta x}{| \vec{u} \} = 50 s |
209 |
\end{eqnarray} |
210 |
|
211 |
The choice of $\delta t = 10$ s is a safe 20 percent of this maximum. |
212 |
|
213 |
Interpreted in terms of a mixing-length hypothesis, a magnitude of Laplacian |
214 |
diffusion coefficient $\kappa_h (= |
215 |
\kappa_v) = 0.1$ m$^2$s$^{-1}$ is consistent with an eddy velocity of 2 mm s$^{-1}$ |
216 |
correlated over 50 m. |
217 |
|
218 |
\subsection{Experiment configuration} |
219 |
\label{www:tutorials} |
220 |
|
221 |
The model configuration for this experiment resides under the directory |
222 |
{\it verification/convection/}. The experiment files |
223 |
\begin{itemize} |
224 |
\item {\it code/CPP\_EEOPTIONS.h} |
225 |
\item {\it code/CPP\_OPTIONS.h}, |
226 |
\item {\it code/SIZE.h}. |
227 |
\item {\it input/data} |
228 |
\item {\it input/data.pkg} |
229 |
\item {\it input/eedata}, |
230 |
\item {\it input/Qsurf.bin}, |
231 |
\end{itemize} |
232 |
contain the code customisations and parameter settings for this |
233 |
experiment. Below we describe these experiment-specific customisations. |
234 |
|
235 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
236 |
\label{www:tutorials} |
237 |
|
238 |
This file uses standard default values and does not contain |
239 |
customisations for this experiment. |
240 |
|
241 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
242 |
\label{www:tutorials} |
243 |
|
244 |
This file uses standard default values and does not contain |
245 |
customisations for this experiment. |
246 |
|
247 |
\subsubsection{File {\it code/SIZE.h}} |
248 |
\label{www:tutorials} |
249 |
|
250 |
Three lines are customized in this file. These prescribe the domain grid dimensions. |
251 |
\begin{itemize} |
252 |
|
253 |
\item Line 36, |
254 |
\begin{verbatim} sNx=64, \end{verbatim} this line sets |
255 |
the lateral domain extent in grid points for the |
256 |
axis aligned with the $x$-coordinate. |
257 |
|
258 |
\item Line 37, |
259 |
\begin{verbatim} sNy=64, \end{verbatim} this line sets |
260 |
the lateral domain extent in grid points for the |
261 |
axis aligned with the $y$-coordinate. |
262 |
|
263 |
\item Line 46, |
264 |
\begin{verbatim} Nr=20, \end{verbatim} this line sets |
265 |
the vertical domain extent in grid points. |
266 |
|
267 |
\end{itemize} |
268 |
|
269 |
\begin{rawhtml}<PRE>\end{rawhtml} |
270 |
\begin{small} |
271 |
\input{part3/case_studies/doubly_periodic_convection/code/SIZE.h} |
272 |
\end{small} |
273 |
\begin{rawhtml}</PRE>\end{rawhtml} |
274 |
|
275 |
\subsubsection{File {\it input/data}} |
276 |
\label{www:tutorials} |
277 |
|
278 |
This file, reproduced completely below, specifies the main parameters |
279 |
for the experiment. The parameters that are significant for this configuration |
280 |
are |
281 |
|
282 |
\begin{itemize} |
283 |
|
284 |
\item Line 4, |
285 |
\begin{verbatim} |
286 |
4 tRef=20*20.0, |
287 |
\end{verbatim} |
288 |
this line sets |
289 |
the initial and reference values of potential temperature at each model |
290 |
level in units of $^{\circ}\mathrm{C}$. Here the value is arbitrary since, in this case, the |
291 |
flow evolves independently of the absolute magnitude of the reference temperature. |
292 |
For each depth level the initial and reference profiles will be uniform in |
293 |
$x$ and $y$. The values specified are read into the |
294 |
variable |
295 |
{\bf |
296 |
\begin{rawhtml} <A href=../code_reference/vdb/names/OK.htm> \end{rawhtml} |
297 |
tRef |
298 |
\begin{rawhtml} </A>\end{rawhtml} |
299 |
} |
300 |
in the model code, by procedure |
301 |
{\it |
302 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
303 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
304 |
\begin{rawhtml} </A>\end{rawhtml}. |
305 |
} |
306 |
The temperature field is initialised, by procedure |
307 |
{\it |
308 |
\begin{rawhtml} <A href=../code_reference/vdb/code/OK.htm> \end{rawhtml} |
309 |
S/R INI\_THETA ({\it ini\_theta.F}) |
310 |
\begin{rawhtml} </A>\end{rawhtml}. |
311 |
} |
312 |
|
313 |
|
314 |
\item Line 5, |
315 |
\begin{verbatim} |
316 |
5 sRef=20*35.0, |
317 |
\end{verbatim} |
318 |
this line sets the initial and reference values of salinity at each model |
319 |
level in units of ppt. In this case salinity is set to an (arbitrary) uniform value of |
320 |
35.0 ppt. However since, in this example, density is independent of salinity, |
321 |
an appropriatly defined initial salinity could provide a useful passive |
322 |
tracer. For each depth level the initial and reference profiles will be uniform in |
323 |
$x$ and $y$. The values specified are read into the |
324 |
variable |
325 |
{\bf |
326 |
\begin{rawhtml} <A href=../code_reference/vdb/names/OK.htm> \end{rawhtml} |
327 |
sRef |
328 |
\begin{rawhtml} </A>\end{rawhtml} |
329 |
} |
330 |
in the model code, by procedure |
331 |
{\it |
332 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
333 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
334 |
} |
335 |
\begin{rawhtml} </A>\end{rawhtml}. |
336 |
The salinity field is initialised, by procedure |
337 |
{\it |
338 |
\begin{rawhtml} <A href=../code_reference/vdb/code/OK.htm> \end{rawhtml} |
339 |
S/R INI\_SALT ({\it ini\_salt.F}) |
340 |
\begin{rawhtml} </A>\end{rawhtml}. |
341 |
} |
342 |
|
343 |
|
344 |
\item Line 6, |
345 |
\begin{verbatim} |
346 |
6 viscAh=0.1, |
347 |
\end{verbatim} |
348 |
this line sets the horizontal laplacian dissipation coefficient to |
349 |
0.1 ${\rm m^{2}s^{-1}}$. Boundary conditions |
350 |
for this operator are specified later. |
351 |
The variable |
352 |
{\bf |
353 |
\begin{rawhtml} <A href=../code_reference/vdb/names/SI.htm> \end{rawhtml} |
354 |
viscAh |
355 |
\begin{rawhtml} </A>\end{rawhtml} |
356 |
} |
357 |
is read in the routine |
358 |
{\it |
359 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
360 |
S/R INI\_PARMS ({\it ini\_params.F}) |
361 |
\begin{rawhtml} </A>\end{rawhtml} |
362 |
} and applied in routines |
363 |
{\it |
364 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
365 |
S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) |
366 |
\begin{rawhtml} </A>\end{rawhtml} |
367 |
} and |
368 |
{\it |
369 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
370 |
S/R CALC\_GW ({\it calc\_gw.F}) |
371 |
\begin{rawhtml} </A>\end{rawhtml} |
372 |
}. |
373 |
|
374 |
|
375 |
\item Line 7, |
376 |
\begin{verbatim} |
377 |
7 viscAz=0.1, |
378 |
\end{verbatim} |
379 |
this line sets the vertical laplacian frictional dissipation coefficient to |
380 |
0.1 ${\rm m^{2}s^{-1}}$. Boundary conditions |
381 |
for this operator are specified later. |
382 |
The variable |
383 |
{\bf |
384 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZQ.htm> \end{rawhtml} |
385 |
viscAz |
386 |
\begin{rawhtml} </A>\end{rawhtml} |
387 |
} |
388 |
is read in the routine |
389 |
{\it |
390 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
391 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
392 |
\begin{rawhtml} </A>\end{rawhtml} |
393 |
} |
394 |
and is copied into model general vertical coordinate variable |
395 |
{\bf |
396 |
\begin{rawhtml} <A href=../code_reference/vdb/names/PF.htm> \end{rawhtml} |
397 |
viscAr |
398 |
\begin{rawhtml} </A>\end{rawhtml} |
399 |
}. At each time step, the viscous term contribution to the momentum equations |
400 |
is calculated in routine |
401 |
{\it |
402 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
403 |
S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) |
404 |
\begin{rawhtml} </A>\end{rawhtml} |
405 |
}. |
406 |
|
407 |
|
408 |
\item Line 8, |
409 |
\begin{verbatim} |
410 |
no_slip_sides=.FALSE. |
411 |
\end{verbatim} |
412 |
this line selects a free-slip lateral boundary condition for |
413 |
the horizontal laplacian friction operator |
414 |
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
415 |
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
416 |
The variable |
417 |
{\bf |
418 |
\begin{rawhtml} <A href=../code_reference/vdb/names/UT.htm> \end{rawhtml} |
419 |
no\_slip\_sides |
420 |
\begin{rawhtml} </A>\end{rawhtml} |
421 |
} |
422 |
is read in the routine |
423 |
{\it |
424 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
425 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
426 |
\begin{rawhtml} </A>\end{rawhtml} |
427 |
} and the boundary condition is evaluated in routine |
428 |
{\it |
429 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
430 |
S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) |
431 |
\begin{rawhtml} </A>\end{rawhtml} |
432 |
}. |
433 |
|
434 |
|
435 |
\item Lines 9, |
436 |
\begin{verbatim} |
437 |
no_slip_bottom=.TRUE. |
438 |
\end{verbatim} |
439 |
this line selects a no-slip boundary condition for the bottom |
440 |
boundary condition in the vertical laplacian friction operator |
441 |
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
442 |
The variable |
443 |
{\bf |
444 |
\begin{rawhtml} <A href=../code_reference/vdb/names/UK.htm> \end{rawhtml} |
445 |
no\_slip\_bottom |
446 |
\begin{rawhtml} </A>\end{rawhtml} |
447 |
} |
448 |
is read in the routine |
449 |
{\it |
450 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
451 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
452 |
\begin{rawhtml} </A>\end{rawhtml} |
453 |
} and is applied in the routine |
454 |
{\it |
455 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
456 |
S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) |
457 |
\begin{rawhtml} </A>\end{rawhtml} |
458 |
}. |
459 |
|
460 |
\item Line 11, |
461 |
\begin{verbatim} |
462 |
diffKhT=0.1, |
463 |
\end{verbatim} |
464 |
this line sets the horizontal diffusion coefficient for temperature |
465 |
to 0.1 $\rm m^{2}s^{-1}$. The boundary condition on this |
466 |
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at |
467 |
all boundaries. |
468 |
The variable |
469 |
{\bf |
470 |
\begin{rawhtml} <A href=../code_reference/vdb/names/RC.htm> \end{rawhtml} |
471 |
diffKhT |
472 |
\begin{rawhtml} </A>\end{rawhtml} |
473 |
} |
474 |
is read in the routine |
475 |
{\it |
476 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
477 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
478 |
\begin{rawhtml} </A>\end{rawhtml} |
479 |
} and used in routine |
480 |
{\it |
481 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
482 |
S/R CALC\_GT ({\it calc\_gt.F}) |
483 |
\begin{rawhtml} </A>\end{rawhtml} |
484 |
}. |
485 |
|
486 |
\item Line 12, |
487 |
\begin{verbatim} |
488 |
diffKzT=0.1, |
489 |
\end{verbatim} |
490 |
this line sets the vertical diffusion coefficient for temperature |
491 |
to 0.1 ${\rm m^{2}s^{-1}}$. The boundary condition on this |
492 |
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
493 |
The variable |
494 |
{\bf |
495 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZT.htm> \end{rawhtml} |
496 |
diffKzT |
497 |
\begin{rawhtml} </A>\end{rawhtml} |
498 |
} |
499 |
is read in the routine |
500 |
{\it |
501 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
502 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
503 |
\begin{rawhtml} </A>\end{rawhtml} |
504 |
}. |
505 |
It is copied into model general vertical coordinate variable |
506 |
{\bf |
507 |
\begin{rawhtml} <A href=../code_reference/vdb/names/PD.htm> \end{rawhtml} |
508 |
diffKrT |
509 |
\begin{rawhtml} </A>\end{rawhtml} |
510 |
} which is used in routine |
511 |
{\it |
512 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
513 |
S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) |
514 |
\begin{rawhtml} </A>\end{rawhtml} |
515 |
}. |
516 |
|
517 |
|
518 |
\item Line 13, |
519 |
\begin{verbatim} |
520 |
diffKhS=0.1, |
521 |
\end{verbatim} |
522 |
this line sets the horizontal diffusion coefficient for salinity |
523 |
to 0.1 $\rm m^{2}s^{-1}$. The boundary condition on this |
524 |
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on |
525 |
all boundaries. |
526 |
The variable |
527 |
{\bf |
528 |
\begin{rawhtml} <A href=../code_reference/vdb/names/RC.htm> \end{rawhtml} |
529 |
diffKsT |
530 |
\begin{rawhtml} </A>\end{rawhtml} |
531 |
} |
532 |
is read in the routine |
533 |
{\it |
534 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
535 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
536 |
\begin{rawhtml} </A>\end{rawhtml} |
537 |
} and used in routine |
538 |
{\it |
539 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
540 |
S/R CALC\_GS ({\it calc\_gs.F}) |
541 |
\begin{rawhtml} </A>\end{rawhtml} |
542 |
}. |
543 |
|
544 |
|
545 |
\item Line 14, |
546 |
\begin{verbatim} |
547 |
diffKzS=0.1, |
548 |
\end{verbatim} |
549 |
this line sets the vertical diffusion coefficient for temperature |
550 |
to 0.1 ${\rm m^{2}s^{-1}}$. The boundary condition on this |
551 |
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
552 |
The variable |
553 |
{\bf |
554 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZT.htm> \end{rawhtml} |
555 |
diffKzS |
556 |
\begin{rawhtml} </A>\end{rawhtml} |
557 |
} |
558 |
is read in the routine |
559 |
{\it |
560 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
561 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
562 |
\begin{rawhtml} </A>\end{rawhtml} |
563 |
}. |
564 |
It is copied into model general vertical coordinate variable |
565 |
{\bf |
566 |
\begin{rawhtml} <A href=../code_reference/vdb/names/PD.htm> \end{rawhtml} |
567 |
diffKrS |
568 |
\begin{rawhtml} </A>\end{rawhtml} |
569 |
} which is used in routine |
570 |
{\it |
571 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
572 |
S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) |
573 |
\begin{rawhtml} </A>\end{rawhtml} |
574 |
}. |
575 |
|
576 |
|
577 |
\item Line 15, |
578 |
\begin{verbatim} |
579 |
f0=1E-4, |
580 |
\end{verbatim} |
581 |
this line sets the Coriolis parameter to $1 \times 10^{-4}$ s$^{-1}$. |
582 |
Since $\beta = 0.0$ this value is then adopted throughout the domain. |
583 |
|
584 |
|
585 |
\item Line 16, |
586 |
\begin{verbatim} |
587 |
beta=0.E-11, |
588 |
\end{verbatim} |
589 |
this line sets the the variation of Coriolis parameter with latitude to $0$. |
590 |
|
591 |
|
592 |
\item Line 17, |
593 |
\begin{verbatim} |
594 |
tAlpha=2.E-4, |
595 |
\end{verbatim} |
596 |
This line sets the thermal expansion coefficient for the fluid |
597 |
to $2 \times 10^{-4}$ $^o$ C$^{-1}$. |
598 |
The variable |
599 |
{\bf |
600 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZV.htm> \end{rawhtml} |
601 |
tAlpha |
602 |
\begin{rawhtml} </A>\end{rawhtml} |
603 |
} |
604 |
is read in the routine |
605 |
{\it |
606 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
607 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
608 |
\begin{rawhtml} </A>\end{rawhtml} |
609 |
}. |
610 |
The routine |
611 |
{\it |
612 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
613 |
S/R FIND\_RHO ({\it find\_rho.F}) |
614 |
\begin{rawhtml} </A>\end{rawhtml} |
615 |
} makes use of {\bf tAlpha}. |
616 |
|
617 |
\item Line 18, |
618 |
\begin{verbatim} |
619 |
sBeta=0, |
620 |
\end{verbatim} |
621 |
This line sets the saline expansion coefficient for the fluid |
622 |
to $0$ consistent with salt's passive role in this example. |
623 |
|
624 |
|
625 |
\item Line 23-24, |
626 |
\begin{verbatim} |
627 |
rigidLid=.FALSE., |
628 |
implicitFreeSurface=.TRUE., |
629 |
\end{verbatim} |
630 |
Selects the barotropic pressure equation to be the implicit free surface |
631 |
formulation. |
632 |
|
633 |
\item Line 25, |
634 |
\begin{verbatim} |
635 |
eosType='LINEAR', |
636 |
\end{verbatim} |
637 |
Selects the linear form of the equation of state. |
638 |
|
639 |
|
640 |
\item Line 26, |
641 |
\begin{verbatim} |
642 |
nonHydrostatic=.TRUE., |
643 |
\end{verbatim} |
644 |
Selects for non-hydrostatic code. |
645 |
|
646 |
|
647 |
\item Line 27, |
648 |
\begin{verbatim} |
649 |
readBinaryPrec=64, |
650 |
\end{verbatim} |
651 |
Sets format for reading binary input datasets holding model fields to |
652 |
use 64-bit representation for floating-point numbers. |
653 |
|
654 |
\item Line 31, |
655 |
\begin{verbatim} |
656 |
cg2dMaxIters=1000, |
657 |
\end{verbatim} |
658 |
Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D |
659 |
elliptic equation. |
660 |
|
661 |
|
662 |
\item Line 32, |
663 |
\begin{verbatim} |
664 |
cg2dTargetResidual=1.E-9, |
665 |
\end{verbatim} |
666 |
Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D |
667 |
elliptic equation. |
668 |
|
669 |
|
670 |
\item Line 33, |
671 |
\begin{verbatim} |
672 |
cg3dMaxIters=40, |
673 |
\end{verbatim} |
674 |
This line sets the maximum number of iterations the three-dimensional, conjugate |
675 |
gradient solver will use to 40, {\bf irrespective of the convergence |
676 |
criteria being met}. Used in routine |
677 |
{\it |
678 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
679 |
S/R CG3D ({\it cg3d.F}) |
680 |
\begin{rawhtml} </A>\end{rawhtml} |
681 |
}. |
682 |
|
683 |
|
684 |
|
685 |
\item Line 34, |
686 |
\begin{verbatim} |
687 |
cg3dTargetResidual=1.E-9, |
688 |
\end{verbatim} |
689 |
Sets the tolerance which the three-dimensional, conjugate |
690 |
gradient solver will use to test for convergence in equation |
691 |
\ref{EQ:eg-bconv-congrad_3d_resid} to $1 \times 10^{-9}$. |
692 |
The solver will iterate until the |
693 |
tolerance falls below this value or until the maximum number of |
694 |
solver iterations is reached. Used in routine |
695 |
{\it |
696 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
697 |
S/R CG3D ({\it cg3d.F}) |
698 |
\begin{rawhtml} </A>\end{rawhtml} |
699 |
}. |
700 |
|
701 |
|
702 |
\item Line 38, |
703 |
\begin{verbatim} |
704 |
startTime=0, |
705 |
\end{verbatim} |
706 |
Sets the starting time for the model internal time counter. |
707 |
When set to non-zero this option implicitly requests a |
708 |
checkpoint file be read for initial state. |
709 |
By default the checkpoint file is named according to |
710 |
the integer number of time steps in the {\bf startTime} value. |
711 |
The internal time counter works in seconds. |
712 |
|
713 |
\item Line 39, |
714 |
\begin{verbatim} |
715 |
nTimeSteps=8640., |
716 |
\end{verbatim} |
717 |
Sets the number of timesteps at which this simulation will terminate (in this case |
718 |
8640 timesteps or 1 day or $\delta t = 10$ s). |
719 |
At the end of a simulation a checkpoint file is automatically |
720 |
written so that a numerical experiment can consist of multiple |
721 |
stages. |
722 |
|
723 |
\item Line 40, |
724 |
\begin{verbatim} |
725 |
deltaT=10, |
726 |
\end{verbatim} |
727 |
Sets the timestep $\delta t$ to 10 s. |
728 |
|
729 |
|
730 |
\item Line 51, |
731 |
\begin{verbatim} |
732 |
dXspacing=50.0, |
733 |
\end{verbatim} |
734 |
Sets horizontal ($x$-direction) grid interval to 50 m. |
735 |
|
736 |
|
737 |
\item Line 52, |
738 |
\begin{verbatim} |
739 |
dYspacing=50.0, |
740 |
\end{verbatim} |
741 |
Sets horizontal ($y$-direction) grid interval to 50 m. |
742 |
|
743 |
|
744 |
\item Line 53, |
745 |
\begin{verbatim} |
746 |
delZ=20*50.0, |
747 |
\end{verbatim} |
748 |
Sets vertical grid spacing to 50 m. Must be consistent with {\it code/SIZE.h}. Here, |
749 |
20 corresponds to the number of vertical levels. |
750 |
|
751 |
\item Line 57, |
752 |
\begin{verbatim} |
753 |
surfQfile='Qsurf.bin' |
754 |
\end{verbatim} |
755 |
This line specifies the name of the file from which the surface heat flux |
756 |
is read. This file is a two-dimensional |
757 |
($x,y$) map. It is assumed to contain 64-bit binary numbers |
758 |
giving the value of $Q$ (W m$^2$) to be applied in each surface grid cell, ordered with |
759 |
the $x$ coordinate varying fastest. The points are ordered from low coordinate |
760 |
to high coordinate for both axes. The matlab program |
761 |
{\it input/gendata.m} shows how to generate the |
762 |
surface heat flux file used in the example. |
763 |
The variable |
764 |
{\bf |
765 |
\begin{rawhtml} <A href=../code_reference/vdb/names/179.htm> \end{rawhtml} |
766 |
Qsurf |
767 |
\begin{rawhtml} </A>\end{rawhtml} |
768 |
} |
769 |
is read in the routine |
770 |
{\it |
771 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
772 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
773 |
\begin{rawhtml} </A>\end{rawhtml} |
774 |
} |
775 |
and applied in |
776 |
{\it |
777 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
778 |
S/R EXTERNAL\_FORCING\_SURF ({\it external\_forcing\_surf.F}) |
779 |
\begin{rawhtml} </A>\end{rawhtml} |
780 |
} where the flux is converted to a temperature tendency. |
781 |
|
782 |
|
783 |
\end{itemize} |
784 |
|
785 |
|
786 |
\begin{rawhtml}<PRE>\end{rawhtml} |
787 |
\begin{small} |
788 |
\input{part3/case_studies/doubly_periodic_convection/input/data} |
789 |
\end{small} |
790 |
\begin{rawhtml}</PRE>\end{rawhtml} |
791 |
|
792 |
|
793 |
\subsubsection{File {\it input/data.pkg}} |
794 |
\label{www:tutorials} |
795 |
|
796 |
This file uses standard default values and does not contain |
797 |
customisations for this experiment. |
798 |
|
799 |
\subsubsection{File {\it input/eedata}} |
800 |
\label{www:tutorials} |
801 |
|
802 |
This file uses standard default values and does not contain |
803 |
customisations for this experiment. |
804 |
|
805 |
|
806 |
\subsubsection{File {\it input/Qsurf.bin}} |
807 |
\label{www:tutorials} |
808 |
|
809 |
The file {\it input/Qsurf.bin} specifies a two-dimensional ($x,y$) |
810 |
map of heat flux values where |
811 |
$Q = Q_o \times ( 0.5 + \mbox{random number between 0 and 1})$. |
812 |
|
813 |
In the example $Q_o = 800$ W m$^{-2}$ so that values of $Q$ lie in the range 400 to |
814 |
1200 W m$^{-2}$ with a mean of $Q_o$. Although the flux models a loss, because it is |
815 |
directed upwards, according to the model's sign convention, $Q$ is positive. |
816 |
|
817 |
|
818 |
\begin{figure} |
819 |
\begin{center} |
820 |
% \resizebox{15cm}{10cm}{ |
821 |
% \includegraphics*[0.2in,0.7in][10.5in,10.5in] |
822 |
% {part3/case_studies/doubly_periodic_convection/Qsurf.ps} } |
823 |
\end{center} |
824 |
\caption{ |
825 |
} |
826 |
\label{FIG:eg-bconv-Qsurf} |
827 |
\end{figure} |
828 |
|
829 |
\subsection{Running the example} |
830 |
\label{www:tutorials} |
831 |
|
832 |
\subsubsection{Code download} |
833 |
\label{www:tutorials} |
834 |
|
835 |
In order to run the examples you must first download the code distribution. |
836 |
Instructions for downloading the code can be found in \ref{sect:obtainingCode}. |
837 |
|
838 |
\subsubsection{Experiment Location} |
839 |
\label{www:tutorials} |
840 |
|
841 |
This example experiments is located under the release sub-directory |
842 |
|
843 |
\vspace{5mm} |
844 |
{\it verification/convection/ } |
845 |
|
846 |
\subsubsection{Running the Experiment} |
847 |
\label{www:tutorials} |
848 |
|
849 |
To run the experiment |
850 |
|
851 |
\begin{enumerate} |
852 |
\item Set the current directory to {\it input/ } |
853 |
|
854 |
\begin{verbatim} |
855 |
% cd input |
856 |
\end{verbatim} |
857 |
|
858 |
\item Verify that current directory is now correct |
859 |
|
860 |
\begin{verbatim} |
861 |
% pwd |
862 |
\end{verbatim} |
863 |
|
864 |
You should see a response on the screen ending in |
865 |
|
866 |
{\it verification/convection/input } |
867 |
|
868 |
|
869 |
\item Run the genmake script to create the experiment {\it Makefile} |
870 |
|
871 |
\begin{verbatim} |
872 |
% ../../../tools/genmake -mods=../code |
873 |
\end{verbatim} |
874 |
|
875 |
\item Create a list of header file dependencies in {\it Makefile} |
876 |
|
877 |
\begin{verbatim} |
878 |
% make depend |
879 |
\end{verbatim} |
880 |
|
881 |
\item Build the executable file. |
882 |
|
883 |
\begin{verbatim} |
884 |
% make |
885 |
\end{verbatim} |
886 |
|
887 |
\item Run the {\it mitgcmuv} executable |
888 |
|
889 |
\begin{verbatim} |
890 |
% ./mitgcmuv |
891 |
\end{verbatim} |
892 |
|
893 |
\end{enumerate} |
894 |
|
895 |
|