| 1 |
\section{Surface Driven Convection} |
| 2 |
\label{www:tutorials} |
| 3 |
\label{sect:eg-bconv} |
| 4 |
|
| 5 |
\bodytext{bgcolor="#FFFFFFFF"} |
| 6 |
|
| 7 |
%\begin{center} |
| 8 |
%{\Large \bf Surface driven convection} |
| 9 |
% |
| 10 |
%\vspace*{4mm} |
| 11 |
% |
| 12 |
%\vspace*{3mm} |
| 13 |
%{\large Dec 2001} |
| 14 |
%\end{center} |
| 15 |
|
| 16 |
\begin{figure} |
| 17 |
\begin{center} |
| 18 |
\resizebox{7.5cm}{5.5cm}{ |
| 19 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
| 20 |
{part3/case_studies/doubly_periodic_convection/simulation_config.eps} } |
| 21 |
\end{center} |
| 22 |
\caption{Schematic of simulation domain |
| 23 |
for the surface driven convection experiment. The domain is doubly periodic |
| 24 |
with an initially uniform temperature of 20 $^oC$. |
| 25 |
} |
| 26 |
\label{FIG:eg-bconv-simulation_config} |
| 27 |
\end{figure} |
| 28 |
|
| 29 |
This experiment, figure \ref{FIG:eg-bconv-simulation_config}, showcasing MITgcm's non-hydrostatic capability, was designed to explore |
| 30 |
the temporal and spatial characteristics of convection plumes as they might exist during a |
| 31 |
period of oceanic deep convection. It is |
| 32 |
|
| 33 |
\begin{itemize} |
| 34 |
\item non-hydrostatic |
| 35 |
\item doubly-periodic with cubic geometry |
| 36 |
\item has 50 m resolution |
| 37 |
\item Cartesian |
| 38 |
\item is on an $f$-plane |
| 39 |
\item with a linear equation of state |
| 40 |
\end{itemize} |
| 41 |
|
| 42 |
\subsection{Overview} |
| 43 |
\label{www:tutorials} |
| 44 |
|
| 45 |
The model domain consists of an approximately 3 |
| 46 |
km square by 1 km deep box of initially |
| 47 |
unstratified, resting fluid. The domain is doubly periodic. |
| 48 |
|
| 49 |
The experiment has 20 levels in the vertical, each of equal thickness $\Delta z =$ 50 |
| 50 |
m (the horizontal resolution is also 50 m). The fluid is initially unstratified with a |
| 51 |
uniform reference potential temperature $\theta = $ 20 $^o$C. The equation of state |
| 52 |
used in this experiment is linear |
| 53 |
|
| 54 |
\begin{equation} |
| 55 |
\label{EQ:eg-bconv-linear1_eos} |
| 56 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
| 57 |
\end{equation} |
| 58 |
|
| 59 |
\noindent which is implemented in the model as a density anomaly equation |
| 60 |
|
| 61 |
\begin{equation} |
| 62 |
\label{EQ:eg-bconv-linear1_eos_pert} |
| 63 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
| 64 |
\end{equation} |
| 65 |
|
| 66 |
\noindent with $\rho_{0}=1000\,{\rm kg\,m}^{-3}$ and |
| 67 |
$\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in |
| 68 |
this configuration the model state variable {\bf theta} is equivalent to |
| 69 |
either in-situ temperature, $T$, or potential temperature, $\theta$. For |
| 70 |
consistency with other examples, in which the equation of state is |
| 71 |
non-linear, we use $\theta$ to represent temperature here. This is |
| 72 |
the quantity that is carried in the model core equations. |
| 73 |
|
| 74 |
As the fluid in the surface layer is cooled (at a mean rate of 800 Wm$^2$), it becomes |
| 75 |
convectively unstable and |
| 76 |
overturns, at first close to the grid-scale, but, as the flow matures, on larger scales |
| 77 |
(figures \ref{FIG:eg-bconv-vertsection} and \ref{FIG:eg-bconv-horizsection}), under the influence of |
| 78 |
rotation ($f_o = 10^{-4}$ s$^{-1}$) . |
| 79 |
|
| 80 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN surf-convection-vertsection\end{rawhtml} |
| 81 |
\begin{figure} |
| 82 |
\begin{center} |
| 83 |
\resizebox{15cm}{10cm}{ |
| 84 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
| 85 |
{part3/case_studies/doubly_periodic_convection/verticalsection.ps} } |
| 86 |
\end{center} |
| 87 |
\caption{ |
| 88 |
} |
| 89 |
\label{FIG:eg-bconv-vertsection} |
| 90 |
\label{fig:surf-convection-vertsection} |
| 91 |
\end{figure} |
| 92 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml} |
| 93 |
|
| 94 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN surf-convection-horizsection\end{rawhtml} |
| 95 |
\begin{figure} |
| 96 |
\begin{center} |
| 97 |
\resizebox{10cm}{10cm}{ |
| 98 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
| 99 |
{part3/case_studies/doubly_periodic_convection/surfacesection.ps} } |
| 100 |
\end{center} |
| 101 |
\caption{ |
| 102 |
} |
| 103 |
\label{FIG:eg-bconv-horizsection} |
| 104 |
\label{fig:surf-convection-horizsection} |
| 105 |
\end{figure} |
| 106 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml} |
| 107 |
|
| 108 |
Model parameters are specified in file {\it input/data}. The grid dimensions are |
| 109 |
prescribed in {\it code/SIZE.h}. The forcing (file {\it input/Qsurf.bin}) is specified |
| 110 |
in a binary data file generated using the Matlab script {\it input/gendata.m}. |
| 111 |
|
| 112 |
\subsection{Equations solved} |
| 113 |
\label{www:tutorials} |
| 114 |
|
| 115 |
The model is configured in nonhydrostatic form, that is, all terms in the Navier |
| 116 |
Stokes equations are retained and the pressure field is found, subject to appropriate |
| 117 |
bounday condintions, through inversion of a three-dimensional elliptic equation. |
| 118 |
|
| 119 |
The implicit free surface form of the |
| 120 |
pressure equation described in Marshall et. al \cite{marshall:97a} is |
| 121 |
employed. A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
| 122 |
dissipation. The thermodynamic forcing appears as a sink in the potential temperature, |
| 123 |
$\theta$, equation (\ref{EQ:eg-bconv-global_forcing_ft}). This produces a set of equations |
| 124 |
solved in this configuration as follows: |
| 125 |
|
| 126 |
\begin{eqnarray} |
| 127 |
\label{EQ:eg-bconv-model_equations} |
| 128 |
\frac{Du}{Dt} - fv + |
| 129 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
| 130 |
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
| 131 |
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} |
| 132 |
& = & |
| 133 |
\begin{cases} |
| 134 |
0 & \text{(surface)} \\ |
| 135 |
0 & \text{(interior)} |
| 136 |
\end{cases} |
| 137 |
\\ |
| 138 |
\frac{Dv}{Dt} + fu + |
| 139 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
| 140 |
\nabla_{h}\cdot A_{h}\nabla_{h}v - |
| 141 |
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} |
| 142 |
& = & |
| 143 |
\begin{cases} |
| 144 |
0 & \text{(surface)} \\ |
| 145 |
0 & \text{(interior)} |
| 146 |
\end{cases} |
| 147 |
\\ |
| 148 |
\frac{Dw}{Dt} + g \frac{\rho^{'}}{\rho} + |
| 149 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial z} - |
| 150 |
\nabla_{h}\cdot A_{h}\nabla_{h}w - |
| 151 |
\frac{\partial}{\partial z}A_{z}\frac{\partial w}{\partial z} |
| 152 |
& = & |
| 153 |
\begin{cases} |
| 154 |
0 & \text{(surface)} \\ |
| 155 |
0 & \text{(interior)} |
| 156 |
\end{cases} |
| 157 |
\\ |
| 158 |
\frac{\partial u}{\partial x} + |
| 159 |
\frac{\partial v}{\partial y} + |
| 160 |
\frac{\partial w}{\partial z} + |
| 161 |
&=& |
| 162 |
0 |
| 163 |
\\ |
| 164 |
\frac{D\theta}{Dt} - |
| 165 |
\nabla_{h}\cdot K_{h}\nabla_{h}\theta |
| 166 |
- \frac{\partial}{\partial z}K_{z}\frac{\partial\theta}{\partial z} |
| 167 |
& = & |
| 168 |
\begin{cases} |
| 169 |
{\cal F}_\theta & \text{(surface)} \\ |
| 170 |
0 & \text{(interior)} |
| 171 |
\end{cases} |
| 172 |
\end{eqnarray} |
| 173 |
|
| 174 |
\noindent where $u=\frac{Dx}{Dt}$, $v=\frac{Dy}{Dt}$ and |
| 175 |
$w=\frac{Dz}{Dt}$ are the components of the |
| 176 |
flow vector in directions $x$, $y$ and $z$. |
| 177 |
The pressure is diagnosed through inversion (subject to appropriate boundary |
| 178 |
conditions) of a 3-D elliptic equation derived from the divergence of the momentum |
| 179 |
equations and continuity (see section \ref{sec:finding_the_pressure_field}). |
| 180 |
\\ |
| 181 |
|
| 182 |
\subsection{Discrete numerical configuration} |
| 183 |
\label{www:tutorials} |
| 184 |
|
| 185 |
The domain is discretised with a uniform grid spacing in each direction. There are 64 |
| 186 |
grid cells in directions $x$ and $y$ and 20 vertical levels thus the domain |
| 187 |
comprises a total of just over 80 000 gridpoints. |
| 188 |
|
| 189 |
\subsection{Numerical stability criteria and other considerations} |
| 190 |
\label{www:tutorials} |
| 191 |
|
| 192 |
For a heat flux of 800 Wm$^2$ and a rotation rate of $10^{-4}$ s$^{-1}$ the |
| 193 |
plume-scale can be expected to be a few hundred meters guiding our choice of grid |
| 194 |
resolution. This in turn restricts the timestep we can take. It is also desirable to |
| 195 |
minimise the level of diffusion and viscosity we apply. |
| 196 |
|
| 197 |
For this class of problem it is generally the advective time-scale which restricts |
| 198 |
the timestep. |
| 199 |
|
| 200 |
For an extreme maximum flow speed of $ | \vec{u} | = 1 ms^{-1}$, at a resolution of |
| 201 |
50 m, the implied maximum timestep for stability, $\delta t_u$ is |
| 202 |
|
| 203 |
\begin{eqnarray} |
| 204 |
\label{EQ:eg-bconv-advectiveCFLcondition} |
| 205 |
%\delta t_u = \frac{\Delta x}{| \vec{u} \} = 50 s |
| 206 |
\end{eqnarray} |
| 207 |
|
| 208 |
The choice of $\delta t = 10$ s is a safe 20 percent of this maximum. |
| 209 |
|
| 210 |
Interpreted in terms of a mixing-length hypothesis, a magnitude of Laplacian |
| 211 |
diffusion coefficient $\kappa_h (= |
| 212 |
\kappa_v) = 0.1$ m$^2$s$^{-1}$ is consistent with an eddy velocity of 2 mm s$^{-1}$ |
| 213 |
correlated over 50 m. |
| 214 |
|
| 215 |
\subsection{Experiment configuration} |
| 216 |
\label{www:tutorials} |
| 217 |
|
| 218 |
The model configuration for this experiment resides under the directory |
| 219 |
{\it verification/convection/}. The experiment files |
| 220 |
\begin{itemize} |
| 221 |
\item {\it code/CPP\_EEOPTIONS.h} |
| 222 |
\item {\it code/CPP\_OPTIONS.h}, |
| 223 |
\item {\it code/SIZE.h}. |
| 224 |
\item {\it input/data} |
| 225 |
\item {\it input/data.pkg} |
| 226 |
\item {\it input/eedata}, |
| 227 |
\item {\it input/Qsurf.bin}, |
| 228 |
\end{itemize} |
| 229 |
contain the code customisations and parameter settings for this |
| 230 |
experiment. Below we describe these experiment-specific customisations. |
| 231 |
|
| 232 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
| 233 |
\label{www:tutorials} |
| 234 |
|
| 235 |
This file uses standard default values and does not contain |
| 236 |
customisations for this experiment. |
| 237 |
|
| 238 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
| 239 |
\label{www:tutorials} |
| 240 |
|
| 241 |
This file uses standard default values and does not contain |
| 242 |
customisations for this experiment. |
| 243 |
|
| 244 |
\subsubsection{File {\it code/SIZE.h}} |
| 245 |
\label{www:tutorials} |
| 246 |
|
| 247 |
Three lines are customized in this file. These prescribe the domain grid dimensions. |
| 248 |
\begin{itemize} |
| 249 |
|
| 250 |
\item Line 36, |
| 251 |
\begin{verbatim} sNx=64, \end{verbatim} this line sets |
| 252 |
the lateral domain extent in grid points for the |
| 253 |
axis aligned with the $x$-coordinate. |
| 254 |
|
| 255 |
\item Line 37, |
| 256 |
\begin{verbatim} sNy=64, \end{verbatim} this line sets |
| 257 |
the lateral domain extent in grid points for the |
| 258 |
axis aligned with the $y$-coordinate. |
| 259 |
|
| 260 |
\item Line 46, |
| 261 |
\begin{verbatim} Nr=20, \end{verbatim} this line sets |
| 262 |
the vertical domain extent in grid points. |
| 263 |
|
| 264 |
\end{itemize} |
| 265 |
|
| 266 |
\begin{rawhtml}<PRE>\end{rawhtml} |
| 267 |
\begin{small} |
| 268 |
\input{part3/case_studies/doubly_periodic_convection/code/SIZE.h} |
| 269 |
\end{small} |
| 270 |
\begin{rawhtml}</PRE>\end{rawhtml} |
| 271 |
|
| 272 |
\subsubsection{File {\it input/data}} |
| 273 |
\label{www:tutorials} |
| 274 |
|
| 275 |
This file, reproduced completely below, specifies the main parameters |
| 276 |
for the experiment. The parameters that are significant for this configuration |
| 277 |
are |
| 278 |
|
| 279 |
\begin{itemize} |
| 280 |
|
| 281 |
\item Line 4, |
| 282 |
\begin{verbatim} |
| 283 |
4 tRef=20*20.0, |
| 284 |
\end{verbatim} |
| 285 |
this line sets |
| 286 |
the initial and reference values of potential temperature at each model |
| 287 |
level in units of $^{\circ}$C. Here the value is arbitrary since, in this case, the |
| 288 |
flow evolves independently of the absolute magnitude of the reference temperature. |
| 289 |
For each depth level the initial and reference profiles will be uniform in |
| 290 |
$x$ and $y$. The values specified are read into the |
| 291 |
variable |
| 292 |
{\bf |
| 293 |
\begin{rawhtml} <A href=../code_reference/vdb/names/OK.htm> \end{rawhtml} |
| 294 |
tRef |
| 295 |
\begin{rawhtml} </A>\end{rawhtml} |
| 296 |
} |
| 297 |
in the model code, by procedure |
| 298 |
{\it |
| 299 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 300 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
| 301 |
\begin{rawhtml} </A>\end{rawhtml}. |
| 302 |
} |
| 303 |
The temperature field is initialised, by procedure |
| 304 |
{\it |
| 305 |
\begin{rawhtml} <A href=../code_reference/vdb/code/OK.htm> \end{rawhtml} |
| 306 |
S/R INI\_THETA ({\it ini\_theta.F}) |
| 307 |
\begin{rawhtml} </A>\end{rawhtml}. |
| 308 |
} |
| 309 |
|
| 310 |
|
| 311 |
\item Line 5, |
| 312 |
\begin{verbatim} |
| 313 |
5 sRef=20*35.0, |
| 314 |
\end{verbatim} |
| 315 |
this line sets the initial and reference values of salinity at each model |
| 316 |
level in units of ppt. In this case salinity is set to an (arbitrary) uniform value of |
| 317 |
35.0 ppt. However since, in this example, density is independent of salinity, |
| 318 |
an appropriatly defined initial salinity could provide a useful passive |
| 319 |
tracer. For each depth level the initial and reference profiles will be uniform in |
| 320 |
$x$ and $y$. The values specified are read into the |
| 321 |
variable |
| 322 |
{\bf |
| 323 |
\begin{rawhtml} <A href=../code_reference/vdb/names/OK.htm> \end{rawhtml} |
| 324 |
sRef |
| 325 |
\begin{rawhtml} </A>\end{rawhtml} |
| 326 |
} |
| 327 |
in the model code, by procedure |
| 328 |
{\it |
| 329 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 330 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
| 331 |
} |
| 332 |
\begin{rawhtml} </A>\end{rawhtml}. |
| 333 |
The salinity field is initialised, by procedure |
| 334 |
{\it |
| 335 |
\begin{rawhtml} <A href=../code_reference/vdb/code/OK.htm> \end{rawhtml} |
| 336 |
S/R INI\_SALT ({\it ini\_salt.F}) |
| 337 |
\begin{rawhtml} </A>\end{rawhtml}. |
| 338 |
} |
| 339 |
|
| 340 |
|
| 341 |
\item Line 6, |
| 342 |
\begin{verbatim} |
| 343 |
6 viscAh=0.1, |
| 344 |
\end{verbatim} |
| 345 |
this line sets the horizontal laplacian dissipation coefficient to |
| 346 |
0.1 ${\rm m^{2}s^{-1}}$. Boundary conditions |
| 347 |
for this operator are specified later. |
| 348 |
The variable |
| 349 |
{\bf |
| 350 |
\begin{rawhtml} <A href=../code_reference/vdb/names/SI.htm> \end{rawhtml} |
| 351 |
viscAh |
| 352 |
\begin{rawhtml} </A>\end{rawhtml} |
| 353 |
} |
| 354 |
is read in the routine |
| 355 |
{\it |
| 356 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 357 |
S/R INI\_PARMS ({\it ini\_params.F}) |
| 358 |
\begin{rawhtml} </A>\end{rawhtml} |
| 359 |
} and applied in routines |
| 360 |
{\it |
| 361 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 362 |
S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) |
| 363 |
\begin{rawhtml} </A>\end{rawhtml} |
| 364 |
} and |
| 365 |
{\it |
| 366 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 367 |
S/R CALC\_GW ({\it calc\_gw.F}) |
| 368 |
\begin{rawhtml} </A>\end{rawhtml} |
| 369 |
}. |
| 370 |
|
| 371 |
|
| 372 |
\item Line 7, |
| 373 |
\begin{verbatim} |
| 374 |
7 viscAz=0.1, |
| 375 |
\end{verbatim} |
| 376 |
this line sets the vertical laplacian frictional dissipation coefficient to |
| 377 |
0.1 ${\rm m^{2}s^{-1}}$. Boundary conditions |
| 378 |
for this operator are specified later. |
| 379 |
The variable |
| 380 |
{\bf |
| 381 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZQ.htm> \end{rawhtml} |
| 382 |
viscAz |
| 383 |
\begin{rawhtml} </A>\end{rawhtml} |
| 384 |
} |
| 385 |
is read in the routine |
| 386 |
{\it |
| 387 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 388 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
| 389 |
\begin{rawhtml} </A>\end{rawhtml} |
| 390 |
} |
| 391 |
and is copied into model general vertical coordinate variable |
| 392 |
{\bf |
| 393 |
\begin{rawhtml} <A href=../code_reference/vdb/names/PF.htm> \end{rawhtml} |
| 394 |
viscAr |
| 395 |
\begin{rawhtml} </A>\end{rawhtml} |
| 396 |
}. At each time step, the viscous term contribution to the momentum equations |
| 397 |
is calculated in routine |
| 398 |
{\it |
| 399 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 400 |
S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) |
| 401 |
\begin{rawhtml} </A>\end{rawhtml} |
| 402 |
}. |
| 403 |
|
| 404 |
|
| 405 |
\item Line 8, |
| 406 |
\begin{verbatim} |
| 407 |
no_slip_sides=.FALSE. |
| 408 |
\end{verbatim} |
| 409 |
this line selects a free-slip lateral boundary condition for |
| 410 |
the horizontal laplacian friction operator |
| 411 |
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
| 412 |
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
| 413 |
The variable |
| 414 |
{\bf |
| 415 |
\begin{rawhtml} <A href=../code_reference/vdb/names/UT.htm> \end{rawhtml} |
| 416 |
no\_slip\_sides |
| 417 |
\begin{rawhtml} </A>\end{rawhtml} |
| 418 |
} |
| 419 |
is read in the routine |
| 420 |
{\it |
| 421 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 422 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
| 423 |
\begin{rawhtml} </A>\end{rawhtml} |
| 424 |
} and the boundary condition is evaluated in routine |
| 425 |
{\it |
| 426 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 427 |
S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) |
| 428 |
\begin{rawhtml} </A>\end{rawhtml} |
| 429 |
}. |
| 430 |
|
| 431 |
|
| 432 |
\item Lines 9, |
| 433 |
\begin{verbatim} |
| 434 |
no_slip_bottom=.TRUE. |
| 435 |
\end{verbatim} |
| 436 |
this line selects a no-slip boundary condition for the bottom |
| 437 |
boundary condition in the vertical laplacian friction operator |
| 438 |
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
| 439 |
The variable |
| 440 |
{\bf |
| 441 |
\begin{rawhtml} <A href=../code_reference/vdb/names/UK.htm> \end{rawhtml} |
| 442 |
no\_slip\_bottom |
| 443 |
\begin{rawhtml} </A>\end{rawhtml} |
| 444 |
} |
| 445 |
is read in the routine |
| 446 |
{\it |
| 447 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 448 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
| 449 |
\begin{rawhtml} </A>\end{rawhtml} |
| 450 |
} and is applied in the routine |
| 451 |
{\it |
| 452 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 453 |
S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) |
| 454 |
\begin{rawhtml} </A>\end{rawhtml} |
| 455 |
}. |
| 456 |
|
| 457 |
\item Line 11, |
| 458 |
\begin{verbatim} |
| 459 |
diffKhT=0.1, |
| 460 |
\end{verbatim} |
| 461 |
this line sets the horizontal diffusion coefficient for temperature |
| 462 |
to 0.1 $\rm m^{2}s^{-1}$. The boundary condition on this |
| 463 |
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at |
| 464 |
all boundaries. |
| 465 |
The variable |
| 466 |
{\bf |
| 467 |
\begin{rawhtml} <A href=../code_reference/vdb/names/RC.htm> \end{rawhtml} |
| 468 |
diffKhT |
| 469 |
\begin{rawhtml} </A>\end{rawhtml} |
| 470 |
} |
| 471 |
is read in the routine |
| 472 |
{\it |
| 473 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 474 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
| 475 |
\begin{rawhtml} </A>\end{rawhtml} |
| 476 |
} and used in routine |
| 477 |
{\it |
| 478 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 479 |
S/R CALC\_GT ({\it calc\_gt.F}) |
| 480 |
\begin{rawhtml} </A>\end{rawhtml} |
| 481 |
}. |
| 482 |
|
| 483 |
\item Line 12, |
| 484 |
\begin{verbatim} |
| 485 |
diffKzT=0.1, |
| 486 |
\end{verbatim} |
| 487 |
this line sets the vertical diffusion coefficient for temperature |
| 488 |
to 0.1 ${\rm m^{2}s^{-1}}$. The boundary condition on this |
| 489 |
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
| 490 |
The variable |
| 491 |
{\bf |
| 492 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZT.htm> \end{rawhtml} |
| 493 |
diffKzT |
| 494 |
\begin{rawhtml} </A>\end{rawhtml} |
| 495 |
} |
| 496 |
is read in the routine |
| 497 |
{\it |
| 498 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 499 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
| 500 |
\begin{rawhtml} </A>\end{rawhtml} |
| 501 |
}. |
| 502 |
It is copied into model general vertical coordinate variable |
| 503 |
{\bf |
| 504 |
\begin{rawhtml} <A href=../code_reference/vdb/names/PD.htm> \end{rawhtml} |
| 505 |
diffKrT |
| 506 |
\begin{rawhtml} </A>\end{rawhtml} |
| 507 |
} which is used in routine |
| 508 |
{\it |
| 509 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 510 |
S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) |
| 511 |
\begin{rawhtml} </A>\end{rawhtml} |
| 512 |
}. |
| 513 |
|
| 514 |
|
| 515 |
\item Line 13, |
| 516 |
\begin{verbatim} |
| 517 |
diffKhS=0.1, |
| 518 |
\end{verbatim} |
| 519 |
this line sets the horizontal diffusion coefficient for salinity |
| 520 |
to 0.1 $\rm m^{2}s^{-1}$. The boundary condition on this |
| 521 |
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on |
| 522 |
all boundaries. |
| 523 |
The variable |
| 524 |
{\bf |
| 525 |
\begin{rawhtml} <A href=../code_reference/vdb/names/RC.htm> \end{rawhtml} |
| 526 |
diffKsT |
| 527 |
\begin{rawhtml} </A>\end{rawhtml} |
| 528 |
} |
| 529 |
is read in the routine |
| 530 |
{\it |
| 531 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 532 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
| 533 |
\begin{rawhtml} </A>\end{rawhtml} |
| 534 |
} and used in routine |
| 535 |
{\it |
| 536 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 537 |
S/R CALC\_GS ({\it calc\_gs.F}) |
| 538 |
\begin{rawhtml} </A>\end{rawhtml} |
| 539 |
}. |
| 540 |
|
| 541 |
|
| 542 |
\item Line 14, |
| 543 |
\begin{verbatim} |
| 544 |
diffKzS=0.1, |
| 545 |
\end{verbatim} |
| 546 |
this line sets the vertical diffusion coefficient for temperature |
| 547 |
to 0.1 ${\rm m^{2}s^{-1}}$. The boundary condition on this |
| 548 |
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
| 549 |
The variable |
| 550 |
{\bf |
| 551 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZT.htm> \end{rawhtml} |
| 552 |
diffKzS |
| 553 |
\begin{rawhtml} </A>\end{rawhtml} |
| 554 |
} |
| 555 |
is read in the routine |
| 556 |
{\it |
| 557 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 558 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
| 559 |
\begin{rawhtml} </A>\end{rawhtml} |
| 560 |
}. |
| 561 |
It is copied into model general vertical coordinate variable |
| 562 |
{\bf |
| 563 |
\begin{rawhtml} <A href=../code_reference/vdb/names/PD.htm> \end{rawhtml} |
| 564 |
diffKrS |
| 565 |
\begin{rawhtml} </A>\end{rawhtml} |
| 566 |
} which is used in routine |
| 567 |
{\it |
| 568 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 569 |
S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) |
| 570 |
\begin{rawhtml} </A>\end{rawhtml} |
| 571 |
}. |
| 572 |
|
| 573 |
|
| 574 |
\item Line 15, |
| 575 |
\begin{verbatim} |
| 576 |
f0=1E-4, |
| 577 |
\end{verbatim} |
| 578 |
this line sets the Coriolis parameter to $1 \times 10^{-4}$ s$^{-1}$. |
| 579 |
Since $\beta = 0.0$ this value is then adopted throughout the domain. |
| 580 |
|
| 581 |
|
| 582 |
\item Line 16, |
| 583 |
\begin{verbatim} |
| 584 |
beta=0.E-11, |
| 585 |
\end{verbatim} |
| 586 |
this line sets the the variation of Coriolis parameter with latitude to $0$. |
| 587 |
|
| 588 |
|
| 589 |
\item Line 17, |
| 590 |
\begin{verbatim} |
| 591 |
tAlpha=2.E-4, |
| 592 |
\end{verbatim} |
| 593 |
This line sets the thermal expansion coefficient for the fluid |
| 594 |
to $2 \times 10^{-4}$ $^o$ C$^{-1}$. |
| 595 |
The variable |
| 596 |
{\bf |
| 597 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZV.htm> \end{rawhtml} |
| 598 |
tAlpha |
| 599 |
\begin{rawhtml} </A>\end{rawhtml} |
| 600 |
} |
| 601 |
is read in the routine |
| 602 |
{\it |
| 603 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 604 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
| 605 |
\begin{rawhtml} </A>\end{rawhtml} |
| 606 |
}. |
| 607 |
The routine |
| 608 |
{\it |
| 609 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 610 |
S/R FIND\_RHO ({\it find\_rho.F}) |
| 611 |
\begin{rawhtml} </A>\end{rawhtml} |
| 612 |
} makes use of {\bf tAlpha}. |
| 613 |
|
| 614 |
\item Line 18, |
| 615 |
\begin{verbatim} |
| 616 |
sBeta=0, |
| 617 |
\end{verbatim} |
| 618 |
This line sets the saline expansion coefficient for the fluid |
| 619 |
to $0$ consistent with salt's passive role in this example. |
| 620 |
|
| 621 |
|
| 622 |
\item Line 23-24, |
| 623 |
\begin{verbatim} |
| 624 |
rigidLid=.FALSE., |
| 625 |
implicitFreeSurface=.TRUE., |
| 626 |
\end{verbatim} |
| 627 |
Selects the barotropic pressure equation to be the implicit free surface |
| 628 |
formulation. |
| 629 |
|
| 630 |
\item Line 25, |
| 631 |
\begin{verbatim} |
| 632 |
eosType='LINEAR', |
| 633 |
\end{verbatim} |
| 634 |
Selects the linear form of the equation of state. |
| 635 |
|
| 636 |
|
| 637 |
\item Line 26, |
| 638 |
\begin{verbatim} |
| 639 |
nonHydrostatic=.TRUE., |
| 640 |
\end{verbatim} |
| 641 |
Selects for non-hydrostatic code. |
| 642 |
|
| 643 |
|
| 644 |
\item Line 27, |
| 645 |
\begin{verbatim} |
| 646 |
readBinaryPrec=64, |
| 647 |
\end{verbatim} |
| 648 |
Sets format for reading binary input datasets holding model fields to |
| 649 |
use 64-bit representation for floating-point numbers. |
| 650 |
|
| 651 |
\item Line 31, |
| 652 |
\begin{verbatim} |
| 653 |
cg2dMaxIters=1000, |
| 654 |
\end{verbatim} |
| 655 |
Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D |
| 656 |
elliptic equation. |
| 657 |
|
| 658 |
|
| 659 |
\item Line 32, |
| 660 |
\begin{verbatim} |
| 661 |
cg2dTargetResidual=1.E-9, |
| 662 |
\end{verbatim} |
| 663 |
Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D |
| 664 |
elliptic equation. |
| 665 |
|
| 666 |
|
| 667 |
\item Line 33, |
| 668 |
\begin{verbatim} |
| 669 |
cg3dMaxIters=40, |
| 670 |
\end{verbatim} |
| 671 |
This line sets the maximum number of iterations the three-dimensional, conjugate |
| 672 |
gradient solver will use to 40, {\bf irrespective of the convergence |
| 673 |
criteria being met}. Used in routine |
| 674 |
{\it |
| 675 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 676 |
S/R CG3D ({\it cg3d.F}) |
| 677 |
\begin{rawhtml} </A>\end{rawhtml} |
| 678 |
}. |
| 679 |
|
| 680 |
|
| 681 |
|
| 682 |
\item Line 34, |
| 683 |
\begin{verbatim} |
| 684 |
cg3dTargetResidual=1.E-9, |
| 685 |
\end{verbatim} |
| 686 |
Sets the tolerance which the three-dimensional, conjugate |
| 687 |
gradient solver will use to test for convergence in equation |
| 688 |
\ref{EQ:eg-bconv-congrad_3d_resid} to $1 \times 10^{-9}$. |
| 689 |
The solver will iterate until the |
| 690 |
tolerance falls below this value or until the maximum number of |
| 691 |
solver iterations is reached. Used in routine |
| 692 |
{\it |
| 693 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 694 |
S/R CG3D ({\it cg3d.F}) |
| 695 |
\begin{rawhtml} </A>\end{rawhtml} |
| 696 |
}. |
| 697 |
|
| 698 |
|
| 699 |
\item Line 38, |
| 700 |
\begin{verbatim} |
| 701 |
startTime=0, |
| 702 |
\end{verbatim} |
| 703 |
Sets the starting time for the model internal time counter. |
| 704 |
When set to non-zero this option implicitly requests a |
| 705 |
checkpoint file be read for initial state. |
| 706 |
By default the checkpoint file is named according to |
| 707 |
the integer number of time steps in the {\bf startTime} value. |
| 708 |
The internal time counter works in seconds. |
| 709 |
|
| 710 |
\item Line 39, |
| 711 |
\begin{verbatim} |
| 712 |
nTimeSteps=8640., |
| 713 |
\end{verbatim} |
| 714 |
Sets the number of timesteps at which this simulation will terminate (in this case |
| 715 |
8640 timesteps or 1 day or $\delta t = 10$ s). |
| 716 |
At the end of a simulation a checkpoint file is automatically |
| 717 |
written so that a numerical experiment can consist of multiple |
| 718 |
stages. |
| 719 |
|
| 720 |
\item Line 40, |
| 721 |
\begin{verbatim} |
| 722 |
deltaT=10, |
| 723 |
\end{verbatim} |
| 724 |
Sets the timestep $\delta t$ to 10 s. |
| 725 |
|
| 726 |
|
| 727 |
\item Line 51, |
| 728 |
\begin{verbatim} |
| 729 |
dXspacing=50.0, |
| 730 |
\end{verbatim} |
| 731 |
Sets horizontal ($x$-direction) grid interval to 50 m. |
| 732 |
|
| 733 |
|
| 734 |
\item Line 52, |
| 735 |
\begin{verbatim} |
| 736 |
dYspacing=50.0, |
| 737 |
\end{verbatim} |
| 738 |
Sets horizontal ($y$-direction) grid interval to 50 m. |
| 739 |
|
| 740 |
|
| 741 |
\item Line 53, |
| 742 |
\begin{verbatim} |
| 743 |
delZ=20*50.0, |
| 744 |
\end{verbatim} |
| 745 |
Sets vertical grid spacing to 50 m. Must be consistent with {\it code/SIZE.h}. Here, |
| 746 |
20 corresponds to the number of vertical levels. |
| 747 |
|
| 748 |
\item Line 57, |
| 749 |
\begin{verbatim} |
| 750 |
surfQfile='Qsurf.bin' |
| 751 |
\end{verbatim} |
| 752 |
This line specifies the name of the file from which the surface heat flux |
| 753 |
is read. This file is a two-dimensional |
| 754 |
($x,y$) map. It is assumed to contain 64-bit binary numbers |
| 755 |
giving the value of $Q$ (W m$^2$) to be applied in each surface grid cell, ordered with |
| 756 |
the $x$ coordinate varying fastest. The points are ordered from low coordinate |
| 757 |
to high coordinate for both axes. The matlab program |
| 758 |
{\it input/gendata.m} shows how to generate the |
| 759 |
surface heat flux file used in the example. |
| 760 |
The variable |
| 761 |
{\bf |
| 762 |
\begin{rawhtml} <A href=../code_reference/vdb/names/179.htm> \end{rawhtml} |
| 763 |
Qsurf |
| 764 |
\begin{rawhtml} </A>\end{rawhtml} |
| 765 |
} |
| 766 |
is read in the routine |
| 767 |
{\it |
| 768 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 769 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
| 770 |
\begin{rawhtml} </A>\end{rawhtml} |
| 771 |
} |
| 772 |
and applied in |
| 773 |
{\it |
| 774 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 775 |
S/R EXTERNAL\_FORCING\_SURF ({\it external\_forcing\_surf.F}) |
| 776 |
\begin{rawhtml} </A>\end{rawhtml} |
| 777 |
} where the flux is converted to a temperature tendency. |
| 778 |
|
| 779 |
|
| 780 |
\end{itemize} |
| 781 |
|
| 782 |
|
| 783 |
\begin{rawhtml}<PRE>\end{rawhtml} |
| 784 |
\begin{small} |
| 785 |
\input{part3/case_studies/doubly_periodic_convection/input/data} |
| 786 |
\end{small} |
| 787 |
\begin{rawhtml}</PRE>\end{rawhtml} |
| 788 |
|
| 789 |
|
| 790 |
\subsubsection{File {\it input/data.pkg}} |
| 791 |
\label{www:tutorials} |
| 792 |
|
| 793 |
This file uses standard default values and does not contain |
| 794 |
customisations for this experiment. |
| 795 |
|
| 796 |
\subsubsection{File {\it input/eedata}} |
| 797 |
\label{www:tutorials} |
| 798 |
|
| 799 |
This file uses standard default values and does not contain |
| 800 |
customisations for this experiment. |
| 801 |
|
| 802 |
|
| 803 |
\subsubsection{File {\it input/Qsurf.bin}} |
| 804 |
\label{www:tutorials} |
| 805 |
|
| 806 |
The file {\it input/Qsurf.bin} specifies a two-dimensional ($x,y$) |
| 807 |
map of heat flux values where |
| 808 |
$Q = Q_o \times ( 0.5 + \mbox{random number between 0 and 1})$. |
| 809 |
|
| 810 |
In the example $Q_o = 800$ W m$^{-2}$ so that values of $Q$ lie in the range 400 to |
| 811 |
1200 W m$^{-2}$ with a mean of $Q_o$. Although the flux models a loss, because it is |
| 812 |
directed upwards, according to the model's sign convention, $Q$ is positive. |
| 813 |
|
| 814 |
|
| 815 |
\begin{figure} |
| 816 |
\begin{center} |
| 817 |
% \resizebox{15cm}{10cm}{ |
| 818 |
% \includegraphics*[0.2in,0.7in][10.5in,10.5in] |
| 819 |
% {part3/case_studies/doubly_periodic_convection/Qsurf.ps} } |
| 820 |
\end{center} |
| 821 |
\caption{ |
| 822 |
} |
| 823 |
\label{FIG:eg-bconv-Qsurf} |
| 824 |
\end{figure} |
| 825 |
|
| 826 |
\subsection{Running the example} |
| 827 |
\label{www:tutorials} |
| 828 |
|
| 829 |
\subsubsection{Code download} |
| 830 |
\label{www:tutorials} |
| 831 |
|
| 832 |
In order to run the examples you must first download the code distribution. |
| 833 |
Instructions for downloading the code can be found in \ref{sect:obtainingCode}. |
| 834 |
|
| 835 |
\subsubsection{Experiment Location} |
| 836 |
\label{www:tutorials} |
| 837 |
|
| 838 |
This example experiments is located under the release sub-directory |
| 839 |
|
| 840 |
\vspace{5mm} |
| 841 |
{\it verification/convection/ } |
| 842 |
|
| 843 |
\subsubsection{Running the Experiment} |
| 844 |
\label{www:tutorials} |
| 845 |
|
| 846 |
To run the experiment |
| 847 |
|
| 848 |
\begin{enumerate} |
| 849 |
\item Set the current directory to {\it input/ } |
| 850 |
|
| 851 |
\begin{verbatim} |
| 852 |
% cd input |
| 853 |
\end{verbatim} |
| 854 |
|
| 855 |
\item Verify that current directory is now correct |
| 856 |
|
| 857 |
\begin{verbatim} |
| 858 |
% pwd |
| 859 |
\end{verbatim} |
| 860 |
|
| 861 |
You should see a response on the screen ending in |
| 862 |
|
| 863 |
{\it verification/convection/input } |
| 864 |
|
| 865 |
|
| 866 |
\item Run the genmake script to create the experiment {\it Makefile} |
| 867 |
|
| 868 |
\begin{verbatim} |
| 869 |
% ../../../tools/genmake -mods=../code |
| 870 |
\end{verbatim} |
| 871 |
|
| 872 |
\item Create a list of header file dependencies in {\it Makefile} |
| 873 |
|
| 874 |
\begin{verbatim} |
| 875 |
% make depend |
| 876 |
\end{verbatim} |
| 877 |
|
| 878 |
\item Build the executable file. |
| 879 |
|
| 880 |
\begin{verbatim} |
| 881 |
% make |
| 882 |
\end{verbatim} |
| 883 |
|
| 884 |
\item Run the {\it mitgcmuv} executable |
| 885 |
|
| 886 |
\begin{verbatim} |
| 887 |
% ./mitgcmuv |
| 888 |
\end{verbatim} |
| 889 |
|
| 890 |
\end{enumerate} |
| 891 |
|
| 892 |
|