| 1 | \section{Surface Driven Convection} | 
| 2 | \label{www:tutorials} | 
| 3 | \label{sect:eg-bconv} | 
| 4 |  | 
| 5 | \bodytext{bgcolor="#FFFFFFFF"} | 
| 6 |  | 
| 7 | %\begin{center} | 
| 8 | %{\Large \bf Surface driven convection} | 
| 9 | % | 
| 10 | %\vspace*{4mm} | 
| 11 | % | 
| 12 | %\vspace*{3mm} | 
| 13 | %{\large Dec 2001} | 
| 14 | %\end{center} | 
| 15 |  | 
| 16 | \begin{figure} | 
| 17 | \begin{center} | 
| 18 | \resizebox{7.5cm}{5.5cm}{ | 
| 19 | \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 20 | {part3/case_studies/doubly_periodic_convection/simulation_config.eps} } | 
| 21 | \end{center} | 
| 22 | \caption{Schematic of simulation domain | 
| 23 | for the surface driven convection experiment. The domain is doubly periodic | 
| 24 | with an initially uniform temperature of 20 $^oC$. | 
| 25 | } | 
| 26 | \label{FIG:eg-bconv-simulation_config} | 
| 27 | \end{figure} | 
| 28 |  | 
| 29 | This experiment, figure \ref{FIG:eg-bconv-simulation_config}, showcasing MITgcm's non-hydrostatic capability, was designed to explore | 
| 30 | the temporal and spatial characteristics of convection plumes as they might exist during a | 
| 31 | period of oceanic deep convection. It is | 
| 32 |  | 
| 33 | \begin{itemize} | 
| 34 | \item non-hydrostatic | 
| 35 | \item doubly-periodic with cubic geometry | 
| 36 | \item has 50 m resolution | 
| 37 | \item Cartesian | 
| 38 | \item is on an $f$-plane | 
| 39 | \item with a linear equation of state | 
| 40 | \end{itemize} | 
| 41 |  | 
| 42 | \subsection{Overview} | 
| 43 | \label{www:tutorials} | 
| 44 |  | 
| 45 | The model domain consists of an approximately 3 | 
| 46 | km square by 1 km deep box of initially | 
| 47 | unstratified, resting fluid. The domain is doubly periodic. | 
| 48 |  | 
| 49 | The experiment has 20 levels in the vertical, each of equal thickness $\Delta z =$ 50 | 
| 50 | m (the horizontal resolution is also 50 m). The fluid is initially unstratified with a | 
| 51 | uniform reference potential temperature $\theta = $ 20 $^o$C. The equation of state | 
| 52 | used in this experiment is linear | 
| 53 |  | 
| 54 | \begin{equation} | 
| 55 | \label{EQ:eg-bconv-linear1_eos} | 
| 56 | \rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) | 
| 57 | \end{equation} | 
| 58 |  | 
| 59 | \noindent which is implemented in the model as a density anomaly equation | 
| 60 |  | 
| 61 | \begin{equation} | 
| 62 | \label{EQ:eg-bconv-linear1_eos_pert} | 
| 63 | \rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} | 
| 64 | \end{equation} | 
| 65 |  | 
| 66 | \noindent with $\rho_{0}=1000\,{\rm kg\,m}^{-3}$ and | 
| 67 | $\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in | 
| 68 | this configuration the model state variable {\bf theta} is equivalent to | 
| 69 | either in-situ temperature, $T$, or potential temperature, $\theta$. For | 
| 70 | consistency with other examples, in which the equation of state is | 
| 71 | non-linear, we use $\theta$ to represent temperature here. This is | 
| 72 | the quantity that is carried in the model core equations. | 
| 73 |  | 
| 74 | As the fluid in the surface layer is cooled (at a mean rate of 800 Wm$^2$), it becomes | 
| 75 | convectively unstable and | 
| 76 | overturns, at first close to the grid-scale, but, as the flow matures, on larger scales | 
| 77 | (figures \ref{FIG:eg-bconv-vertsection} and \ref{FIG:eg-bconv-horizsection}), under the influence of | 
| 78 | rotation ($f_o = 10^{-4}$ s$^{-1}$) . | 
| 79 |  | 
| 80 | \begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN surf-convection-vertsection\end{rawhtml} | 
| 81 | \begin{figure} | 
| 82 | \begin{center} | 
| 83 | \resizebox{15cm}{10cm}{ | 
| 84 | \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 85 | {part3/case_studies/doubly_periodic_convection/verticalsection.ps} } | 
| 86 | \end{center} | 
| 87 | \caption{ | 
| 88 | } | 
| 89 | \label{FIG:eg-bconv-vertsection} | 
| 90 | \label{fig:surf-convection-vertsection} | 
| 91 | \end{figure} | 
| 92 | \begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml} | 
| 93 |  | 
| 94 | \begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN surf-convection-horizsection\end{rawhtml} | 
| 95 | \begin{figure} | 
| 96 | \begin{center} | 
| 97 | \resizebox{10cm}{10cm}{ | 
| 98 | \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 99 | {part3/case_studies/doubly_periodic_convection/surfacesection.ps} } | 
| 100 | \end{center} | 
| 101 | \caption{ | 
| 102 | } | 
| 103 | \label{FIG:eg-bconv-horizsection} | 
| 104 | \label{fig:surf-convection-horizsection} | 
| 105 | \end{figure} | 
| 106 | \begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml} | 
| 107 |  | 
| 108 | Model parameters are specified in file {\it input/data}. The grid dimensions are | 
| 109 | prescribed in {\it code/SIZE.h}. The forcing (file {\it input/Qsurf.bin}) is specified | 
| 110 | in a binary data file generated using the Matlab script {\it input/gendata.m}. | 
| 111 |  | 
| 112 | \subsection{Equations solved} | 
| 113 | \label{www:tutorials} | 
| 114 |  | 
| 115 | The model is configured in nonhydrostatic form, that is, all terms in the Navier | 
| 116 | Stokes equations are retained and the pressure field is found, subject to appropriate | 
| 117 | bounday condintions, through inversion of a three-dimensional elliptic equation. | 
| 118 |  | 
| 119 | The implicit free surface form of the | 
| 120 | pressure equation described in Marshall et. al \cite{marshall:97a} is | 
| 121 | employed. A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous | 
| 122 | dissipation. The thermodynamic forcing appears as a sink in the potential temperature, | 
| 123 | $\theta$, equation (\ref{EQ:eg-bconv-global_forcing_ft}). This produces a set of equations | 
| 124 | solved in this configuration as follows: | 
| 125 |  | 
| 126 | \begin{eqnarray} | 
| 127 | \label{EQ:eg-bconv-model_equations} | 
| 128 | \frac{Du}{Dt} - fv + | 
| 129 | \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - | 
| 130 | \nabla_{h}\cdot A_{h}\nabla_{h}u - | 
| 131 | \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} | 
| 132 | & = & | 
| 133 | \begin{cases} | 
| 134 | 0 & \text{(surface)} \\ | 
| 135 | 0 & \text{(interior)} | 
| 136 | \end{cases} | 
| 137 | \\ | 
| 138 | \frac{Dv}{Dt} + fu + | 
| 139 | \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - | 
| 140 | \nabla_{h}\cdot A_{h}\nabla_{h}v - | 
| 141 | \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} | 
| 142 | & = & | 
| 143 | \begin{cases} | 
| 144 | 0 & \text{(surface)} \\ | 
| 145 | 0 & \text{(interior)} | 
| 146 | \end{cases} | 
| 147 | \\ | 
| 148 | \frac{Dw}{Dt} + g \frac{\rho^{'}}{\rho} + | 
| 149 | \frac{1}{\rho}\frac{\partial p^{'}}{\partial z} - | 
| 150 | \nabla_{h}\cdot A_{h}\nabla_{h}w - | 
| 151 | \frac{\partial}{\partial z}A_{z}\frac{\partial w}{\partial z} | 
| 152 | & = & | 
| 153 | \begin{cases} | 
| 154 | 0 & \text{(surface)} \\ | 
| 155 | 0 & \text{(interior)} | 
| 156 | \end{cases} | 
| 157 | \\ | 
| 158 | \frac{\partial u}{\partial x} + | 
| 159 | \frac{\partial v}{\partial y} + | 
| 160 | \frac{\partial w}{\partial z} + | 
| 161 | &=& | 
| 162 | 0 | 
| 163 | \\ | 
| 164 | \frac{D\theta}{Dt} - | 
| 165 | \nabla_{h}\cdot K_{h}\nabla_{h}\theta | 
| 166 | - \frac{\partial}{\partial z}K_{z}\frac{\partial\theta}{\partial z} | 
| 167 | & = & | 
| 168 | \begin{cases} | 
| 169 | {\cal F}_\theta & \text{(surface)} \\ | 
| 170 | 0 & \text{(interior)} | 
| 171 | \end{cases} | 
| 172 | \end{eqnarray} | 
| 173 |  | 
| 174 | \noindent where $u=\frac{Dx}{Dt}$, $v=\frac{Dy}{Dt}$  and | 
| 175 | $w=\frac{Dz}{Dt}$ are the components of the | 
| 176 | flow vector in directions $x$, $y$ and $z$. | 
| 177 | The pressure is diagnosed through inversion (subject to appropriate boundary | 
| 178 | conditions) of a 3-D elliptic equation derived from the divergence of the momentum | 
| 179 | equations and continuity (see section \ref{sec:finding_the_pressure_field}). | 
| 180 | \\ | 
| 181 |  | 
| 182 | \subsection{Discrete numerical configuration} | 
| 183 | \label{www:tutorials} | 
| 184 |  | 
| 185 | The domain is discretised with a uniform grid spacing in each direction. There are 64 | 
| 186 | grid cells in directions $x$ and $y$ and 20 vertical levels thus the domain | 
| 187 | comprises a total of just over 80 000 gridpoints. | 
| 188 |  | 
| 189 | \subsection{Numerical stability criteria and other considerations} | 
| 190 | \label{www:tutorials} | 
| 191 |  | 
| 192 | For a heat flux of 800 Wm$^2$ and a rotation rate of $10^{-4}$ s$^{-1}$ the | 
| 193 | plume-scale can be expected to be a few hundred meters guiding our choice of grid | 
| 194 | resolution. This in turn restricts the timestep we can take. It is also desirable to | 
| 195 | minimise the level of diffusion and viscosity we apply. | 
| 196 |  | 
| 197 | For this class of problem it is generally the advective time-scale which restricts | 
| 198 | the timestep. | 
| 199 |  | 
| 200 | For an extreme maximum flow speed of $ | \vec{u} | = 1 ms^{-1}$, at a resolution of | 
| 201 | 50 m, the implied maximum timestep for stability, $\delta t_u$ is | 
| 202 |  | 
| 203 | \begin{eqnarray} | 
| 204 | \label{EQ:eg-bconv-advectiveCFLcondition} | 
| 205 | %\delta t_u = \frac{\Delta x}{| \vec{u} \} = 50 s | 
| 206 | \end{eqnarray} | 
| 207 |  | 
| 208 | The choice of $\delta t = 10$ s is a safe 20 percent of this maximum. | 
| 209 |  | 
| 210 | Interpreted in terms of a mixing-length hypothesis, a magnitude of Laplacian | 
| 211 | diffusion coefficient $\kappa_h (= | 
| 212 | \kappa_v) = 0.1$ m$^2$s$^{-1}$ is consistent with an eddy velocity of 2 mm s$^{-1}$ | 
| 213 | correlated over 50 m. | 
| 214 |  | 
| 215 | \subsection{Experiment configuration} | 
| 216 | \label{www:tutorials} | 
| 217 |  | 
| 218 | The model configuration for this experiment resides under the directory | 
| 219 | {\it verification/convection/}. The experiment files | 
| 220 | \begin{itemize} | 
| 221 | \item {\it code/CPP\_EEOPTIONS.h} | 
| 222 | \item {\it code/CPP\_OPTIONS.h}, | 
| 223 | \item {\it code/SIZE.h}. | 
| 224 | \item {\it input/data} | 
| 225 | \item {\it input/data.pkg} | 
| 226 | \item {\it input/eedata}, | 
| 227 | \item {\it input/Qsurf.bin}, | 
| 228 | \end{itemize} | 
| 229 | contain the code customisations and parameter settings for this | 
| 230 | experiment. Below we describe these experiment-specific customisations. | 
| 231 |  | 
| 232 | \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
| 233 | \label{www:tutorials} | 
| 234 |  | 
| 235 | This file uses standard default values and does not contain | 
| 236 | customisations for this experiment. | 
| 237 |  | 
| 238 | \subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
| 239 | \label{www:tutorials} | 
| 240 |  | 
| 241 | This file uses standard default values and does not contain | 
| 242 | customisations for this experiment. | 
| 243 |  | 
| 244 | \subsubsection{File {\it code/SIZE.h}} | 
| 245 | \label{www:tutorials} | 
| 246 |  | 
| 247 | Three lines are customized in this file. These prescribe the domain grid dimensions. | 
| 248 | \begin{itemize} | 
| 249 |  | 
| 250 | \item Line 36, | 
| 251 | \begin{verbatim} sNx=64, \end{verbatim} this line sets | 
| 252 | the lateral domain extent in grid points for the | 
| 253 | axis aligned with the $x$-coordinate. | 
| 254 |  | 
| 255 | \item Line 37, | 
| 256 | \begin{verbatim} sNy=64, \end{verbatim} this line sets | 
| 257 | the lateral domain extent in grid points for the | 
| 258 | axis aligned with the $y$-coordinate. | 
| 259 |  | 
| 260 | \item Line 46, | 
| 261 | \begin{verbatim} Nr=20,   \end{verbatim} this line sets | 
| 262 | the vertical domain extent in grid points. | 
| 263 |  | 
| 264 | \end{itemize} | 
| 265 |  | 
| 266 | \begin{rawhtml}<PRE>\end{rawhtml} | 
| 267 | \begin{small} | 
| 268 | \input{part3/case_studies/doubly_periodic_convection/code/SIZE.h} | 
| 269 | \end{small} | 
| 270 | \begin{rawhtml}</PRE>\end{rawhtml} | 
| 271 |  | 
| 272 | \subsubsection{File {\it input/data}} | 
| 273 | \label{www:tutorials} | 
| 274 |  | 
| 275 | This file, reproduced completely below, specifies the main parameters | 
| 276 | for the experiment. The parameters that are significant for this configuration | 
| 277 | are | 
| 278 |  | 
| 279 | \begin{itemize} | 
| 280 |  | 
| 281 | \item Line 4, | 
| 282 | \begin{verbatim} | 
| 283 | 4   tRef=20*20.0, | 
| 284 | \end{verbatim} | 
| 285 | this line sets | 
| 286 | the initial and reference values of potential temperature at each model | 
| 287 | level in units of $^{\circ}$C. Here the value is arbitrary since, in this case, the | 
| 288 | flow evolves independently of the absolute magnitude of the reference temperature. | 
| 289 | For each depth level the initial and reference profiles will be uniform in | 
| 290 | $x$ and $y$. The values specified are read into the | 
| 291 | variable | 
| 292 | {\bf | 
| 293 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} | 
| 294 | tRef | 
| 295 | \begin{rawhtml} </A>\end{rawhtml} | 
| 296 | } | 
| 297 | in the model code, by procedure | 
| 298 | {\it | 
| 299 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 300 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 301 | \begin{rawhtml} </A>\end{rawhtml}. | 
| 302 | } | 
| 303 | The temperature field is initialised, by procedure | 
| 304 | {\it | 
| 305 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/OK.htm> \end{rawhtml} | 
| 306 | S/R INI\_THETA ({\it ini\_theta.F}) | 
| 307 | \begin{rawhtml} </A>\end{rawhtml}. | 
| 308 | } | 
| 309 |  | 
| 310 |  | 
| 311 | \item Line 5, | 
| 312 | \begin{verbatim} | 
| 313 | 5   sRef=20*35.0, | 
| 314 | \end{verbatim} | 
| 315 | this line sets the initial and reference values of salinity at each model | 
| 316 | level in units of ppt. In this case salinity is set to an (arbitrary) uniform value of | 
| 317 | 35.0 ppt. However since, in this example, density is independent of salinity, | 
| 318 | an appropriatly defined initial salinity could provide a useful passive | 
| 319 | tracer. For each depth level the initial and reference profiles will be uniform in | 
| 320 | $x$ and $y$. The values specified are read into the | 
| 321 | variable | 
| 322 | {\bf | 
| 323 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} | 
| 324 | sRef | 
| 325 | \begin{rawhtml} </A>\end{rawhtml} | 
| 326 | } | 
| 327 | in the model code, by procedure | 
| 328 | {\it | 
| 329 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 330 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 331 | } | 
| 332 | \begin{rawhtml} </A>\end{rawhtml}. | 
| 333 | The salinity field is initialised, by procedure | 
| 334 | {\it | 
| 335 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/OK.htm> \end{rawhtml} | 
| 336 | S/R INI\_SALT ({\it ini\_salt.F}) | 
| 337 | \begin{rawhtml} </A>\end{rawhtml}. | 
| 338 | } | 
| 339 |  | 
| 340 |  | 
| 341 | \item Line 6, | 
| 342 | \begin{verbatim} | 
| 343 | 6   viscAh=0.1, | 
| 344 | \end{verbatim} | 
| 345 | this line sets the horizontal laplacian dissipation coefficient to | 
| 346 | 0.1 ${\rm m^{2}s^{-1}}$. Boundary conditions | 
| 347 | for this operator are specified later. | 
| 348 | The variable | 
| 349 | {\bf | 
| 350 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/SI.htm> \end{rawhtml} | 
| 351 | viscAh | 
| 352 | \begin{rawhtml} </A>\end{rawhtml} | 
| 353 | } | 
| 354 | is read in the routine | 
| 355 | {\it | 
| 356 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 357 | S/R INI\_PARMS ({\it ini\_params.F}) | 
| 358 | \begin{rawhtml} </A>\end{rawhtml} | 
| 359 | } and applied in routines | 
| 360 | {\it | 
| 361 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 362 | S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) | 
| 363 | \begin{rawhtml} </A>\end{rawhtml} | 
| 364 | } and | 
| 365 | {\it | 
| 366 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 367 | S/R CALC\_GW ({\it calc\_gw.F}) | 
| 368 | \begin{rawhtml} </A>\end{rawhtml} | 
| 369 | }. | 
| 370 |  | 
| 371 |  | 
| 372 | \item Line 7, | 
| 373 | \begin{verbatim} | 
| 374 | 7   viscAz=0.1, | 
| 375 | \end{verbatim} | 
| 376 | this line sets the vertical laplacian frictional dissipation coefficient to | 
| 377 | 0.1 ${\rm m^{2}s^{-1}}$. Boundary conditions | 
| 378 | for this operator are specified later. | 
| 379 | The variable | 
| 380 | {\bf | 
| 381 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/ZQ.htm> \end{rawhtml} | 
| 382 | viscAz | 
| 383 | \begin{rawhtml} </A>\end{rawhtml} | 
| 384 | } | 
| 385 | is read in the routine | 
| 386 | {\it | 
| 387 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 388 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 389 | \begin{rawhtml} </A>\end{rawhtml} | 
| 390 | } | 
| 391 | and is copied into model general vertical coordinate variable | 
| 392 | {\bf | 
| 393 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/PF.htm> \end{rawhtml} | 
| 394 | viscAr | 
| 395 | \begin{rawhtml} </A>\end{rawhtml} | 
| 396 | }. At each time step, the viscous term contribution to the momentum equations | 
| 397 | is calculated in routine | 
| 398 | {\it | 
| 399 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 400 | S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) | 
| 401 | \begin{rawhtml} </A>\end{rawhtml} | 
| 402 | }. | 
| 403 |  | 
| 404 |  | 
| 405 | \item Line 8, | 
| 406 | \begin{verbatim} | 
| 407 | no_slip_sides=.FALSE. | 
| 408 | \end{verbatim} | 
| 409 | this line selects a free-slip lateral boundary condition for | 
| 410 | the horizontal laplacian friction operator | 
| 411 | e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and | 
| 412 | $\frac{\partial v}{\partial x}$=0 along boundaries in $x$. | 
| 413 | The variable | 
| 414 | {\bf | 
| 415 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/UT.htm> \end{rawhtml} | 
| 416 | no\_slip\_sides | 
| 417 | \begin{rawhtml} </A>\end{rawhtml} | 
| 418 | } | 
| 419 | is read in the routine | 
| 420 | {\it | 
| 421 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 422 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 423 | \begin{rawhtml} </A>\end{rawhtml} | 
| 424 | } and the boundary condition is evaluated in routine | 
| 425 | {\it | 
| 426 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 427 | S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) | 
| 428 | \begin{rawhtml} </A>\end{rawhtml} | 
| 429 | }. | 
| 430 |  | 
| 431 |  | 
| 432 | \item Lines 9, | 
| 433 | \begin{verbatim} | 
| 434 | no_slip_bottom=.TRUE. | 
| 435 | \end{verbatim} | 
| 436 | this line selects a no-slip boundary condition for the bottom | 
| 437 | boundary condition in the vertical laplacian friction operator | 
| 438 | e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. | 
| 439 | The variable | 
| 440 | {\bf | 
| 441 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/UK.htm> \end{rawhtml} | 
| 442 | no\_slip\_bottom | 
| 443 | \begin{rawhtml} </A>\end{rawhtml} | 
| 444 | } | 
| 445 | is read in the routine | 
| 446 | {\it | 
| 447 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 448 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 449 | \begin{rawhtml} </A>\end{rawhtml} | 
| 450 | } and is applied in the routine | 
| 451 | {\it | 
| 452 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 453 | S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) | 
| 454 | \begin{rawhtml} </A>\end{rawhtml} | 
| 455 | }. | 
| 456 |  | 
| 457 | \item Line 11, | 
| 458 | \begin{verbatim} | 
| 459 | diffKhT=0.1, | 
| 460 | \end{verbatim} | 
| 461 | this line sets the horizontal diffusion coefficient for temperature | 
| 462 | to 0.1 $\rm m^{2}s^{-1}$. The boundary condition on this | 
| 463 | operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at | 
| 464 | all boundaries. | 
| 465 | The variable | 
| 466 | {\bf | 
| 467 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/RC.htm> \end{rawhtml} | 
| 468 | diffKhT | 
| 469 | \begin{rawhtml} </A>\end{rawhtml} | 
| 470 | } | 
| 471 | is read in the routine | 
| 472 | {\it | 
| 473 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 474 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 475 | \begin{rawhtml} </A>\end{rawhtml} | 
| 476 | } and used in routine | 
| 477 | {\it | 
| 478 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 479 | S/R CALC\_GT ({\it calc\_gt.F}) | 
| 480 | \begin{rawhtml} </A>\end{rawhtml} | 
| 481 | }. | 
| 482 |  | 
| 483 | \item Line 12, | 
| 484 | \begin{verbatim} | 
| 485 | diffKzT=0.1, | 
| 486 | \end{verbatim} | 
| 487 | this line sets the vertical diffusion coefficient for temperature | 
| 488 | to 0.1 ${\rm m^{2}s^{-1}}$. The boundary condition on this | 
| 489 | operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. | 
| 490 | The variable | 
| 491 | {\bf | 
| 492 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/ZT.htm> \end{rawhtml} | 
| 493 | diffKzT | 
| 494 | \begin{rawhtml} </A>\end{rawhtml} | 
| 495 | } | 
| 496 | is read in the routine | 
| 497 | {\it | 
| 498 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 499 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 500 | \begin{rawhtml} </A>\end{rawhtml} | 
| 501 | }. | 
| 502 | It is copied into model general vertical coordinate variable | 
| 503 | {\bf | 
| 504 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/PD.htm> \end{rawhtml} | 
| 505 | diffKrT | 
| 506 | \begin{rawhtml} </A>\end{rawhtml} | 
| 507 | } which is used in routine | 
| 508 | {\it | 
| 509 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 510 | S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) | 
| 511 | \begin{rawhtml} </A>\end{rawhtml} | 
| 512 | }. | 
| 513 |  | 
| 514 |  | 
| 515 | \item Line 13, | 
| 516 | \begin{verbatim} | 
| 517 | diffKhS=0.1, | 
| 518 | \end{verbatim} | 
| 519 | this line sets the horizontal diffusion coefficient for salinity | 
| 520 | to 0.1 $\rm m^{2}s^{-1}$. The boundary condition on this | 
| 521 | operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on | 
| 522 | all boundaries. | 
| 523 | The variable | 
| 524 | {\bf | 
| 525 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/RC.htm> \end{rawhtml} | 
| 526 | diffKsT | 
| 527 | \begin{rawhtml} </A>\end{rawhtml} | 
| 528 | } | 
| 529 | is read in the routine | 
| 530 | {\it | 
| 531 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 532 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 533 | \begin{rawhtml} </A>\end{rawhtml} | 
| 534 | } and used in routine | 
| 535 | {\it | 
| 536 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 537 | S/R CALC\_GS ({\it calc\_gs.F}) | 
| 538 | \begin{rawhtml} </A>\end{rawhtml} | 
| 539 | }. | 
| 540 |  | 
| 541 |  | 
| 542 | \item Line 14, | 
| 543 | \begin{verbatim} | 
| 544 | diffKzS=0.1, | 
| 545 | \end{verbatim} | 
| 546 | this line sets the vertical diffusion coefficient for temperature | 
| 547 | to 0.1 ${\rm m^{2}s^{-1}}$. The boundary condition on this | 
| 548 | operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. | 
| 549 | The variable | 
| 550 | {\bf | 
| 551 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/ZT.htm> \end{rawhtml} | 
| 552 | diffKzS | 
| 553 | \begin{rawhtml} </A>\end{rawhtml} | 
| 554 | } | 
| 555 | is read in the routine | 
| 556 | {\it | 
| 557 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 558 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 559 | \begin{rawhtml} </A>\end{rawhtml} | 
| 560 | }. | 
| 561 | It is copied into model general vertical coordinate variable | 
| 562 | {\bf | 
| 563 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/PD.htm> \end{rawhtml} | 
| 564 | diffKrS | 
| 565 | \begin{rawhtml} </A>\end{rawhtml} | 
| 566 | } which is used in routine | 
| 567 | {\it | 
| 568 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 569 | S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) | 
| 570 | \begin{rawhtml} </A>\end{rawhtml} | 
| 571 | }. | 
| 572 |  | 
| 573 |  | 
| 574 | \item Line 15, | 
| 575 | \begin{verbatim} | 
| 576 | f0=1E-4, | 
| 577 | \end{verbatim} | 
| 578 | this line sets the Coriolis parameter to $1 \times 10^{-4}$ s$^{-1}$. | 
| 579 | Since $\beta = 0.0$ this value is then adopted throughout the domain. | 
| 580 |  | 
| 581 |  | 
| 582 | \item Line 16, | 
| 583 | \begin{verbatim} | 
| 584 | beta=0.E-11, | 
| 585 | \end{verbatim} | 
| 586 | this line sets the the variation of Coriolis parameter with latitude to $0$. | 
| 587 |  | 
| 588 |  | 
| 589 | \item Line 17, | 
| 590 | \begin{verbatim} | 
| 591 | tAlpha=2.E-4, | 
| 592 | \end{verbatim} | 
| 593 | This line sets the thermal expansion coefficient for the fluid | 
| 594 | to $2 \times 10^{-4}$ $^o$ C$^{-1}$. | 
| 595 | The variable | 
| 596 | {\bf | 
| 597 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/ZV.htm> \end{rawhtml} | 
| 598 | tAlpha | 
| 599 | \begin{rawhtml} </A>\end{rawhtml} | 
| 600 | } | 
| 601 | is read in the routine | 
| 602 | {\it | 
| 603 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 604 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 605 | \begin{rawhtml} </A>\end{rawhtml} | 
| 606 | }. | 
| 607 | The routine | 
| 608 | {\it | 
| 609 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 610 | S/R FIND\_RHO ({\it find\_rho.F}) | 
| 611 | \begin{rawhtml} </A>\end{rawhtml} | 
| 612 | } makes use of {\bf tAlpha}. | 
| 613 |  | 
| 614 | \item Line 18, | 
| 615 | \begin{verbatim} | 
| 616 | sBeta=0, | 
| 617 | \end{verbatim} | 
| 618 | This line sets the saline expansion coefficient for the fluid | 
| 619 | to $0$ consistent with salt's passive role in this example. | 
| 620 |  | 
| 621 |  | 
| 622 | \item Line 23-24, | 
| 623 | \begin{verbatim} | 
| 624 | rigidLid=.FALSE., | 
| 625 | implicitFreeSurface=.TRUE., | 
| 626 | \end{verbatim} | 
| 627 | Selects the barotropic pressure equation to be the implicit free surface | 
| 628 | formulation. | 
| 629 |  | 
| 630 | \item Line 25, | 
| 631 | \begin{verbatim} | 
| 632 | eosType='LINEAR', | 
| 633 | \end{verbatim} | 
| 634 | Selects the linear form of the equation of state. | 
| 635 |  | 
| 636 |  | 
| 637 | \item Line 26, | 
| 638 | \begin{verbatim} | 
| 639 | nonHydrostatic=.TRUE., | 
| 640 | \end{verbatim} | 
| 641 | Selects for non-hydrostatic code. | 
| 642 |  | 
| 643 |  | 
| 644 | \item Line 27, | 
| 645 | \begin{verbatim} | 
| 646 | readBinaryPrec=64, | 
| 647 | \end{verbatim} | 
| 648 | Sets format for reading binary input datasets holding model fields to | 
| 649 | use 64-bit representation for floating-point numbers. | 
| 650 |  | 
| 651 | \item Line 31, | 
| 652 | \begin{verbatim} | 
| 653 | cg2dMaxIters=1000, | 
| 654 | \end{verbatim} | 
| 655 | Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D | 
| 656 | elliptic equation. | 
| 657 |  | 
| 658 |  | 
| 659 | \item Line 32, | 
| 660 | \begin{verbatim} | 
| 661 | cg2dTargetResidual=1.E-9, | 
| 662 | \end{verbatim} | 
| 663 | Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D | 
| 664 | elliptic equation. | 
| 665 |  | 
| 666 |  | 
| 667 | \item Line 33, | 
| 668 | \begin{verbatim} | 
| 669 | cg3dMaxIters=40, | 
| 670 | \end{verbatim} | 
| 671 | This line sets the  maximum number of iterations the three-dimensional, conjugate | 
| 672 | gradient solver will use to 40, {\bf irrespective of the convergence | 
| 673 | criteria being met}. Used in routine | 
| 674 | {\it | 
| 675 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 676 | S/R CG3D ({\it cg3d.F}) | 
| 677 | \begin{rawhtml} </A>\end{rawhtml} | 
| 678 | }. | 
| 679 |  | 
| 680 |  | 
| 681 |  | 
| 682 | \item Line 34, | 
| 683 | \begin{verbatim} | 
| 684 | cg3dTargetResidual=1.E-9, | 
| 685 | \end{verbatim} | 
| 686 | Sets the tolerance which the three-dimensional, conjugate | 
| 687 | gradient solver will use to test for convergence in equation | 
| 688 | \ref{EQ:eg-bconv-congrad_3d_resid} to $1 \times 10^{-9}$. | 
| 689 | The solver will iterate until the | 
| 690 | tolerance falls below this value or until the maximum number of | 
| 691 | solver iterations is reached. Used in routine | 
| 692 | {\it | 
| 693 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 694 | S/R CG3D ({\it cg3d.F}) | 
| 695 | \begin{rawhtml} </A>\end{rawhtml} | 
| 696 | }. | 
| 697 |  | 
| 698 |  | 
| 699 | \item Line 38, | 
| 700 | \begin{verbatim} | 
| 701 | startTime=0, | 
| 702 | \end{verbatim} | 
| 703 | Sets the starting time for the model internal time counter. | 
| 704 | When set to non-zero this option implicitly requests a | 
| 705 | checkpoint file be read for initial state. | 
| 706 | By default the checkpoint file is named according to | 
| 707 | the integer number of time steps in the {\bf startTime} value. | 
| 708 | The internal time counter works in seconds. | 
| 709 |  | 
| 710 | \item Line 39, | 
| 711 | \begin{verbatim} | 
| 712 | nTimeSteps=8640., | 
| 713 | \end{verbatim} | 
| 714 | Sets the number of timesteps at which this simulation will terminate (in this case | 
| 715 | 8640 timesteps or 1 day or $\delta t = 10$ s). | 
| 716 | At the end of a simulation a checkpoint file is automatically | 
| 717 | written so that a numerical experiment can consist of multiple | 
| 718 | stages. | 
| 719 |  | 
| 720 | \item Line 40, | 
| 721 | \begin{verbatim} | 
| 722 | deltaT=10, | 
| 723 | \end{verbatim} | 
| 724 | Sets the timestep $\delta t$  to 10 s. | 
| 725 |  | 
| 726 |  | 
| 727 | \item Line 51, | 
| 728 | \begin{verbatim} | 
| 729 | dXspacing=50.0, | 
| 730 | \end{verbatim} | 
| 731 | Sets horizontal ($x$-direction) grid interval to 50 m. | 
| 732 |  | 
| 733 |  | 
| 734 | \item Line 52, | 
| 735 | \begin{verbatim} | 
| 736 | dYspacing=50.0, | 
| 737 | \end{verbatim} | 
| 738 | Sets horizontal ($y$-direction) grid interval to 50 m. | 
| 739 |  | 
| 740 |  | 
| 741 | \item Line 53, | 
| 742 | \begin{verbatim} | 
| 743 | delZ=20*50.0, | 
| 744 | \end{verbatim} | 
| 745 | Sets vertical grid spacing to 50 m. Must be consistent with {\it code/SIZE.h}. Here, | 
| 746 | 20 corresponds to the number of vertical levels. | 
| 747 |  | 
| 748 | \item Line 57, | 
| 749 | \begin{verbatim} | 
| 750 | surfQfile='Qsurf.bin' | 
| 751 | \end{verbatim} | 
| 752 | This line specifies the name of the file from which the surface heat flux | 
| 753 | is read. This file is a two-dimensional | 
| 754 | ($x,y$) map. It is assumed to contain 64-bit binary numbers | 
| 755 | giving the value of $Q$ (W m$^2$) to be applied in each surface grid cell, ordered with | 
| 756 | the $x$ coordinate varying fastest. The points are ordered from low coordinate | 
| 757 | to high coordinate for both axes. The matlab program | 
| 758 | {\it input/gendata.m} shows how to generate the | 
| 759 | surface heat flux file used in the example. | 
| 760 | The variable | 
| 761 | {\bf | 
| 762 | \begin{rawhtml} <A href=../../../code_reference/vdb/names/179.htm> \end{rawhtml} | 
| 763 | Qsurf | 
| 764 | \begin{rawhtml} </A>\end{rawhtml} | 
| 765 | } | 
| 766 | is read in the routine | 
| 767 | {\it | 
| 768 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 769 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 770 | \begin{rawhtml} </A>\end{rawhtml} | 
| 771 | } | 
| 772 | and applied in | 
| 773 | {\it | 
| 774 | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 775 | S/R EXTERNAL\_FORCING\_SURF ({\it external\_forcing\_surf.F}) | 
| 776 | \begin{rawhtml} </A>\end{rawhtml} | 
| 777 | } where the flux is converted to a temperature tendency. | 
| 778 |  | 
| 779 |  | 
| 780 | \end{itemize} | 
| 781 |  | 
| 782 |  | 
| 783 | \begin{rawhtml}<PRE>\end{rawhtml} | 
| 784 | \begin{small} | 
| 785 | \input{part3/case_studies/doubly_periodic_convection/input/data} | 
| 786 | \end{small} | 
| 787 | \begin{rawhtml}</PRE>\end{rawhtml} | 
| 788 |  | 
| 789 |  | 
| 790 | \subsubsection{File {\it input/data.pkg}} | 
| 791 | \label{www:tutorials} | 
| 792 |  | 
| 793 | This file uses standard default values and does not contain | 
| 794 | customisations for this experiment. | 
| 795 |  | 
| 796 | \subsubsection{File {\it input/eedata}} | 
| 797 | \label{www:tutorials} | 
| 798 |  | 
| 799 | This file uses standard default values and does not contain | 
| 800 | customisations for this experiment. | 
| 801 |  | 
| 802 |  | 
| 803 | \subsubsection{File {\it input/Qsurf.bin}} | 
| 804 | \label{www:tutorials} | 
| 805 |  | 
| 806 | The file {\it input/Qsurf.bin} specifies a two-dimensional ($x,y$) | 
| 807 | map of heat flux values where | 
| 808 | $Q = Q_o \times ( 0.5 + \mbox{random number between 0 and 1})$. | 
| 809 |  | 
| 810 | In the example $Q_o = 800$ W m$^{-2}$ so that values of $Q$ lie in the range 400 to | 
| 811 | 1200 W m$^{-2}$ with a mean of $Q_o$. Although the flux models a loss, because it is | 
| 812 | directed upwards, according to the model's sign convention, $Q$ is positive. | 
| 813 |  | 
| 814 |  | 
| 815 | \begin{figure} | 
| 816 | \begin{center} | 
| 817 | % \resizebox{15cm}{10cm}{ | 
| 818 | %   \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 819 | %   {part3/case_studies/doubly_periodic_convection/Qsurf.ps} } | 
| 820 | \end{center} | 
| 821 | \caption{ | 
| 822 | } | 
| 823 | \label{FIG:eg-bconv-Qsurf} | 
| 824 | \end{figure} | 
| 825 |  | 
| 826 | \subsection{Running the example} | 
| 827 | \label{www:tutorials} | 
| 828 |  | 
| 829 | \subsubsection{Code download} | 
| 830 | \label{www:tutorials} | 
| 831 |  | 
| 832 | In order to run the examples you must first download the code distribution. | 
| 833 | Instructions for downloading the code can be found in \ref{sect:obtainingCode}. | 
| 834 |  | 
| 835 | \subsubsection{Experiment Location} | 
| 836 | \label{www:tutorials} | 
| 837 |  | 
| 838 | This example experiments is located under the release sub-directory | 
| 839 |  | 
| 840 | \vspace{5mm} | 
| 841 | {\it verification/convection/ } | 
| 842 |  | 
| 843 | \subsubsection{Running the Experiment} | 
| 844 | \label{www:tutorials} | 
| 845 |  | 
| 846 | To run the experiment | 
| 847 |  | 
| 848 | \begin{enumerate} | 
| 849 | \item Set the current directory to {\it input/ } | 
| 850 |  | 
| 851 | \begin{verbatim} | 
| 852 | % cd input | 
| 853 | \end{verbatim} | 
| 854 |  | 
| 855 | \item Verify that current directory is now correct | 
| 856 |  | 
| 857 | \begin{verbatim} | 
| 858 | % pwd | 
| 859 | \end{verbatim} | 
| 860 |  | 
| 861 | You should see a response on the screen ending in | 
| 862 |  | 
| 863 | {\it verification/convection/input } | 
| 864 |  | 
| 865 |  | 
| 866 | \item Run the genmake script to create the experiment {\it Makefile} | 
| 867 |  | 
| 868 | \begin{verbatim} | 
| 869 | % ../../../tools/genmake -mods=../code | 
| 870 | \end{verbatim} | 
| 871 |  | 
| 872 | \item Create a list of header file dependencies in {\it Makefile} | 
| 873 |  | 
| 874 | \begin{verbatim} | 
| 875 | % make depend | 
| 876 | \end{verbatim} | 
| 877 |  | 
| 878 | \item Build the executable file. | 
| 879 |  | 
| 880 | \begin{verbatim} | 
| 881 | % make | 
| 882 | \end{verbatim} | 
| 883 |  | 
| 884 | \item Run the {\it mitgcmuv} executable | 
| 885 |  | 
| 886 | \begin{verbatim} | 
| 887 | % ./mitgcmuv | 
| 888 | \end{verbatim} | 
| 889 |  | 
| 890 | \end{enumerate} | 
| 891 |  | 
| 892 |  |