| 1 | cnh | 1.2 | \section{Surface Driven Convection} | 
| 2 | adcroft | 1.3 | \label{www:tutorials} | 
| 3 | helen | 1.1 | \label{sect:eg-bconv} | 
| 4 | edhill | 1.5 | \begin{rawhtml} | 
| 5 |  |  | <!-- CMIREDIR:eg-bconv: --> | 
| 6 |  |  | \end{rawhtml} | 
| 7 | jmc | 1.8 | \begin{center} | 
| 8 |  |  | (in directory: {\it verification/tutorial\_deep\_convection/}) | 
| 9 |  |  | \end{center} | 
| 10 | helen | 1.1 |  | 
| 11 |  |  | \bodytext{bgcolor="#FFFFFFFF"} | 
| 12 |  |  |  | 
| 13 |  |  | %\begin{center} | 
| 14 |  |  | %{\Large \bf Surface driven convection} | 
| 15 |  |  | % | 
| 16 |  |  | %\vspace*{4mm} | 
| 17 |  |  | % | 
| 18 |  |  | %\vspace*{3mm} | 
| 19 |  |  | %{\large Dec 2001} | 
| 20 |  |  | %\end{center} | 
| 21 |  |  |  | 
| 22 |  |  | \begin{figure} | 
| 23 |  |  | \begin{center} | 
| 24 |  |  | \resizebox{7.5cm}{5.5cm}{ | 
| 25 |  |  | \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 26 | jmc | 1.9 | {s_examples/deep_convection/simulation_config.eps} } | 
| 27 | helen | 1.1 | \end{center} | 
| 28 |  |  | \caption{Schematic of simulation domain | 
| 29 |  |  | for the surface driven convection experiment. The domain is doubly periodic | 
| 30 |  |  | with an initially uniform temperature of 20 $^oC$. | 
| 31 |  |  | } | 
| 32 | cnh | 1.2 | \label{FIG:eg-bconv-simulation_config} | 
| 33 | helen | 1.1 | \end{figure} | 
| 34 |  |  |  | 
| 35 | molod | 1.7 | This experiment, figure \ref{FIG:eg-bconv-simulation_config}, showcasing MITgcm's non-hydrostatic | 
| 36 |  |  | capability, was designed to explore | 
| 37 | helen | 1.1 | the temporal and spatial characteristics of convection plumes as they might exist during a | 
| 38 | molod | 1.7 | period of oceanic deep convection. The files for this experiment can be found in the verification | 
| 39 |  |  | directory under tutorial\_deep\_convection. It is | 
| 40 | helen | 1.1 |  | 
| 41 |  |  | \begin{itemize} | 
| 42 |  |  | \item non-hydrostatic | 
| 43 |  |  | \item doubly-periodic with cubic geometry | 
| 44 |  |  | \item has 50 m resolution | 
| 45 |  |  | \item Cartesian | 
| 46 |  |  | \item is on an $f$-plane | 
| 47 |  |  | \item with a linear equation of state | 
| 48 |  |  | \end{itemize} | 
| 49 |  |  |  | 
| 50 |  |  | \subsection{Overview} | 
| 51 | adcroft | 1.3 | \label{www:tutorials} | 
| 52 | helen | 1.1 |  | 
| 53 |  |  | The model domain consists of an approximately 3 | 
| 54 |  |  | km square by 1 km deep box of initially | 
| 55 |  |  | unstratified, resting fluid. The domain is doubly periodic. | 
| 56 |  |  |  | 
| 57 |  |  | The experiment has 20 levels in the vertical, each of equal thickness $\Delta z =$ 50 | 
| 58 |  |  | m (the horizontal resolution is also 50 m). The fluid is initially unstratified with a | 
| 59 |  |  | uniform reference potential temperature $\theta = $ 20 $^o$C. The equation of state | 
| 60 |  |  | used in this experiment is linear | 
| 61 |  |  |  | 
| 62 |  |  | \begin{equation} | 
| 63 | cnh | 1.2 | \label{EQ:eg-bconv-linear1_eos} | 
| 64 | helen | 1.1 | \rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) | 
| 65 |  |  | \end{equation} | 
| 66 |  |  |  | 
| 67 |  |  | \noindent which is implemented in the model as a density anomaly equation | 
| 68 |  |  |  | 
| 69 |  |  | \begin{equation} | 
| 70 | cnh | 1.2 | \label{EQ:eg-bconv-linear1_eos_pert} | 
| 71 | helen | 1.1 | \rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} | 
| 72 |  |  | \end{equation} | 
| 73 |  |  |  | 
| 74 |  |  | \noindent with $\rho_{0}=1000\,{\rm kg\,m}^{-3}$ and | 
| 75 |  |  | $\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in | 
| 76 |  |  | this configuration the model state variable {\bf theta} is equivalent to | 
| 77 |  |  | either in-situ temperature, $T$, or potential temperature, $\theta$. For | 
| 78 |  |  | consistency with other examples, in which the equation of state is | 
| 79 |  |  | non-linear, we use $\theta$ to represent temperature here. This is | 
| 80 |  |  | the quantity that is carried in the model core equations. | 
| 81 |  |  |  | 
| 82 |  |  | As the fluid in the surface layer is cooled (at a mean rate of 800 Wm$^2$), it becomes | 
| 83 |  |  | convectively unstable and | 
| 84 |  |  | overturns, at first close to the grid-scale, but, as the flow matures, on larger scales | 
| 85 | cnh | 1.2 | (figures \ref{FIG:eg-bconv-vertsection} and \ref{FIG:eg-bconv-horizsection}), under the influence of | 
| 86 | helen | 1.1 | rotation ($f_o = 10^{-4}$ s$^{-1}$) . | 
| 87 |  |  |  | 
| 88 | cnh | 1.2 | \begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN surf-convection-vertsection\end{rawhtml} | 
| 89 | helen | 1.1 | \begin{figure} | 
| 90 |  |  | \begin{center} | 
| 91 |  |  | \resizebox{15cm}{10cm}{ | 
| 92 |  |  | \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 93 | jmc | 1.9 | {s_examples/deep_convection/verticalsection.ps} } | 
| 94 | helen | 1.1 | \end{center} | 
| 95 |  |  | \caption{ | 
| 96 |  |  | } | 
| 97 | cnh | 1.2 | \label{FIG:eg-bconv-vertsection} | 
| 98 |  |  | \label{fig:surf-convection-vertsection} | 
| 99 | helen | 1.1 | \end{figure} | 
| 100 | cnh | 1.2 | \begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml} | 
| 101 | helen | 1.1 |  | 
| 102 | cnh | 1.2 | \begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN surf-convection-horizsection\end{rawhtml} | 
| 103 | helen | 1.1 | \begin{figure} | 
| 104 |  |  | \begin{center} | 
| 105 |  |  | \resizebox{10cm}{10cm}{ | 
| 106 |  |  | \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 107 | jmc | 1.9 | {s_examples/deep_convection/surfacesection.ps} } | 
| 108 | helen | 1.1 | \end{center} | 
| 109 |  |  | \caption{ | 
| 110 |  |  | } | 
| 111 | cnh | 1.2 | \label{FIG:eg-bconv-horizsection} | 
| 112 |  |  | \label{fig:surf-convection-horizsection} | 
| 113 | helen | 1.1 | \end{figure} | 
| 114 | cnh | 1.2 | \begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml} | 
| 115 | helen | 1.1 |  | 
| 116 |  |  | Model parameters are specified in file {\it input/data}. The grid dimensions are | 
| 117 |  |  | prescribed in {\it code/SIZE.h}. The forcing (file {\it input/Qsurf.bin}) is specified | 
| 118 |  |  | in a binary data file generated using the Matlab script {\it input/gendata.m}. | 
| 119 |  |  |  | 
| 120 |  |  | \subsection{Equations solved} | 
| 121 | adcroft | 1.3 | \label{www:tutorials} | 
| 122 | helen | 1.1 |  | 
| 123 |  |  | The model is configured in nonhydrostatic form, that is, all terms in the Navier | 
| 124 |  |  | Stokes equations are retained and the pressure field is found, subject to appropriate | 
| 125 |  |  | bounday condintions, through inversion of a three-dimensional elliptic equation. | 
| 126 |  |  |  | 
| 127 |  |  | The implicit free surface form of the | 
| 128 |  |  | pressure equation described in Marshall et. al \cite{marshall:97a} is | 
| 129 |  |  | employed. A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous | 
| 130 |  |  | dissipation. The thermodynamic forcing appears as a sink in the potential temperature, | 
| 131 | cnh | 1.2 | $\theta$, equation (\ref{EQ:eg-bconv-global_forcing_ft}). This produces a set of equations | 
| 132 | helen | 1.1 | solved in this configuration as follows: | 
| 133 |  |  |  | 
| 134 |  |  | \begin{eqnarray} | 
| 135 | cnh | 1.2 | \label{EQ:eg-bconv-model_equations} | 
| 136 | helen | 1.1 | \frac{Du}{Dt} - fv + | 
| 137 |  |  | \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - | 
| 138 |  |  | \nabla_{h}\cdot A_{h}\nabla_{h}u - | 
| 139 |  |  | \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} | 
| 140 |  |  | & = & | 
| 141 |  |  | \begin{cases} | 
| 142 |  |  | 0 & \text{(surface)} \\ | 
| 143 |  |  | 0 & \text{(interior)} | 
| 144 |  |  | \end{cases} | 
| 145 |  |  | \\ | 
| 146 |  |  | \frac{Dv}{Dt} + fu + | 
| 147 |  |  | \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - | 
| 148 |  |  | \nabla_{h}\cdot A_{h}\nabla_{h}v - | 
| 149 |  |  | \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} | 
| 150 |  |  | & = & | 
| 151 |  |  | \begin{cases} | 
| 152 |  |  | 0 & \text{(surface)} \\ | 
| 153 |  |  | 0 & \text{(interior)} | 
| 154 |  |  | \end{cases} | 
| 155 |  |  | \\ | 
| 156 |  |  | \frac{Dw}{Dt} + g \frac{\rho^{'}}{\rho} + | 
| 157 |  |  | \frac{1}{\rho}\frac{\partial p^{'}}{\partial z} - | 
| 158 |  |  | \nabla_{h}\cdot A_{h}\nabla_{h}w - | 
| 159 |  |  | \frac{\partial}{\partial z}A_{z}\frac{\partial w}{\partial z} | 
| 160 |  |  | & = & | 
| 161 |  |  | \begin{cases} | 
| 162 |  |  | 0 & \text{(surface)} \\ | 
| 163 |  |  | 0 & \text{(interior)} | 
| 164 |  |  | \end{cases} | 
| 165 |  |  | \\ | 
| 166 |  |  | \frac{\partial u}{\partial x} + | 
| 167 |  |  | \frac{\partial v}{\partial y} + | 
| 168 |  |  | \frac{\partial w}{\partial z} + | 
| 169 |  |  | &=& | 
| 170 |  |  | 0 | 
| 171 |  |  | \\ | 
| 172 |  |  | \frac{D\theta}{Dt} - | 
| 173 |  |  | \nabla_{h}\cdot K_{h}\nabla_{h}\theta | 
| 174 |  |  | - \frac{\partial}{\partial z}K_{z}\frac{\partial\theta}{\partial z} | 
| 175 |  |  | & = & | 
| 176 |  |  | \begin{cases} | 
| 177 |  |  | {\cal F}_\theta & \text{(surface)} \\ | 
| 178 |  |  | 0 & \text{(interior)} | 
| 179 |  |  | \end{cases} | 
| 180 |  |  | \end{eqnarray} | 
| 181 |  |  |  | 
| 182 |  |  | \noindent where $u=\frac{Dx}{Dt}$, $v=\frac{Dy}{Dt}$  and | 
| 183 |  |  | $w=\frac{Dz}{Dt}$ are the components of the | 
| 184 |  |  | flow vector in directions $x$, $y$ and $z$. | 
| 185 |  |  | The pressure is diagnosed through inversion (subject to appropriate boundary | 
| 186 |  |  | conditions) of a 3-D elliptic equation derived from the divergence of the momentum | 
| 187 |  |  | equations and continuity (see section \ref{sec:finding_the_pressure_field}). | 
| 188 |  |  | \\ | 
| 189 |  |  |  | 
| 190 |  |  | \subsection{Discrete numerical configuration} | 
| 191 | adcroft | 1.3 | \label{www:tutorials} | 
| 192 | helen | 1.1 |  | 
| 193 |  |  | The domain is discretised with a uniform grid spacing in each direction. There are 64 | 
| 194 |  |  | grid cells in directions $x$ and $y$ and 20 vertical levels thus the domain | 
| 195 |  |  | comprises a total of just over 80 000 gridpoints. | 
| 196 |  |  |  | 
| 197 |  |  | \subsection{Numerical stability criteria and other considerations} | 
| 198 | adcroft | 1.3 | \label{www:tutorials} | 
| 199 | helen | 1.1 |  | 
| 200 |  |  | For a heat flux of 800 Wm$^2$ and a rotation rate of $10^{-4}$ s$^{-1}$ the | 
| 201 |  |  | plume-scale can be expected to be a few hundred meters guiding our choice of grid | 
| 202 |  |  | resolution. This in turn restricts the timestep we can take. It is also desirable to | 
| 203 |  |  | minimise the level of diffusion and viscosity we apply. | 
| 204 |  |  |  | 
| 205 |  |  | For this class of problem it is generally the advective time-scale which restricts | 
| 206 |  |  | the timestep. | 
| 207 |  |  |  | 
| 208 |  |  | For an extreme maximum flow speed of $ | \vec{u} | = 1 ms^{-1}$, at a resolution of | 
| 209 |  |  | 50 m, the implied maximum timestep for stability, $\delta t_u$ is | 
| 210 |  |  |  | 
| 211 |  |  | \begin{eqnarray} | 
| 212 | cnh | 1.2 | \label{EQ:eg-bconv-advectiveCFLcondition} | 
| 213 | helen | 1.1 | %\delta t_u = \frac{\Delta x}{| \vec{u} \} = 50 s | 
| 214 |  |  | \end{eqnarray} | 
| 215 |  |  |  | 
| 216 |  |  | The choice of $\delta t = 10$ s is a safe 20 percent of this maximum. | 
| 217 |  |  |  | 
| 218 |  |  | Interpreted in terms of a mixing-length hypothesis, a magnitude of Laplacian | 
| 219 |  |  | diffusion coefficient $\kappa_h (= | 
| 220 |  |  | \kappa_v) = 0.1$ m$^2$s$^{-1}$ is consistent with an eddy velocity of 2 mm s$^{-1}$ | 
| 221 |  |  | correlated over 50 m. | 
| 222 |  |  |  | 
| 223 |  |  | \subsection{Experiment configuration} | 
| 224 | adcroft | 1.3 | \label{www:tutorials} | 
| 225 | helen | 1.1 |  | 
| 226 |  |  | The model configuration for this experiment resides under the directory | 
| 227 |  |  | {\it verification/convection/}. The experiment files | 
| 228 |  |  | \begin{itemize} | 
| 229 |  |  | \item {\it code/CPP\_EEOPTIONS.h} | 
| 230 |  |  | \item {\it code/CPP\_OPTIONS.h}, | 
| 231 |  |  | \item {\it code/SIZE.h}. | 
| 232 |  |  | \item {\it input/data} | 
| 233 |  |  | \item {\it input/data.pkg} | 
| 234 |  |  | \item {\it input/eedata}, | 
| 235 |  |  | \item {\it input/Qsurf.bin}, | 
| 236 |  |  | \end{itemize} | 
| 237 |  |  | contain the code customisations and parameter settings for this | 
| 238 |  |  | experiment. Below we describe these experiment-specific customisations. | 
| 239 |  |  |  | 
| 240 |  |  | \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
| 241 | adcroft | 1.3 | \label{www:tutorials} | 
| 242 | helen | 1.1 |  | 
| 243 |  |  | This file uses standard default values and does not contain | 
| 244 |  |  | customisations for this experiment. | 
| 245 |  |  |  | 
| 246 |  |  | \subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
| 247 | adcroft | 1.3 | \label{www:tutorials} | 
| 248 | helen | 1.1 |  | 
| 249 |  |  | This file uses standard default values and does not contain | 
| 250 |  |  | customisations for this experiment. | 
| 251 |  |  |  | 
| 252 |  |  | \subsubsection{File {\it code/SIZE.h}} | 
| 253 | adcroft | 1.3 | \label{www:tutorials} | 
| 254 | helen | 1.1 |  | 
| 255 |  |  | Three lines are customized in this file. These prescribe the domain grid dimensions. | 
| 256 |  |  | \begin{itemize} | 
| 257 |  |  |  | 
| 258 |  |  | \item Line 36, | 
| 259 |  |  | \begin{verbatim} sNx=64, \end{verbatim} this line sets | 
| 260 |  |  | the lateral domain extent in grid points for the | 
| 261 |  |  | axis aligned with the $x$-coordinate. | 
| 262 |  |  |  | 
| 263 |  |  | \item Line 37, | 
| 264 |  |  | \begin{verbatim} sNy=64, \end{verbatim} this line sets | 
| 265 |  |  | the lateral domain extent in grid points for the | 
| 266 |  |  | axis aligned with the $y$-coordinate. | 
| 267 |  |  |  | 
| 268 |  |  | \item Line 46, | 
| 269 |  |  | \begin{verbatim} Nr=20,   \end{verbatim} this line sets | 
| 270 |  |  | the vertical domain extent in grid points. | 
| 271 |  |  |  | 
| 272 |  |  | \end{itemize} | 
| 273 |  |  |  | 
| 274 |  |  | \begin{rawhtml}<PRE>\end{rawhtml} | 
| 275 |  |  | \begin{small} | 
| 276 | jmc | 1.9 | \input{s_examples/deep_convection/code/SIZE.h} | 
| 277 | helen | 1.1 | \end{small} | 
| 278 |  |  | \begin{rawhtml}</PRE>\end{rawhtml} | 
| 279 |  |  |  | 
| 280 |  |  | \subsubsection{File {\it input/data}} | 
| 281 | adcroft | 1.3 | \label{www:tutorials} | 
| 282 | helen | 1.1 |  | 
| 283 |  |  | This file, reproduced completely below, specifies the main parameters | 
| 284 |  |  | for the experiment. The parameters that are significant for this configuration | 
| 285 |  |  | are | 
| 286 |  |  |  | 
| 287 |  |  | \begin{itemize} | 
| 288 |  |  |  | 
| 289 |  |  | \item Line 4, | 
| 290 |  |  | \begin{verbatim} | 
| 291 | edhill | 1.5 | 4   tRef=20*20.0, | 
| 292 | helen | 1.1 | \end{verbatim} | 
| 293 |  |  | this line sets | 
| 294 |  |  | the initial and reference values of potential temperature at each model | 
| 295 | edhill | 1.6 | level in units of $^{\circ}\mathrm{C}$. Here the value is arbitrary since, in this case, the | 
| 296 | helen | 1.1 | flow evolves independently of the absolute magnitude of the reference temperature. | 
| 297 |  |  | For each depth level the initial and reference profiles will be uniform in | 
| 298 |  |  | $x$ and $y$. The values specified are read into the | 
| 299 |  |  | variable | 
| 300 |  |  | {\bf | 
| 301 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/OK.htm> \end{rawhtml} | 
| 302 | helen | 1.1 | tRef | 
| 303 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 304 |  |  | } | 
| 305 |  |  | in the model code, by procedure | 
| 306 |  |  | {\it | 
| 307 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 308 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 309 |  |  | \begin{rawhtml} </A>\end{rawhtml}. | 
| 310 |  |  | } | 
| 311 |  |  | The temperature field is initialised, by procedure | 
| 312 |  |  | {\it | 
| 313 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/OK.htm> \end{rawhtml} | 
| 314 | helen | 1.1 | S/R INI\_THETA ({\it ini\_theta.F}) | 
| 315 |  |  | \begin{rawhtml} </A>\end{rawhtml}. | 
| 316 |  |  | } | 
| 317 |  |  |  | 
| 318 |  |  |  | 
| 319 |  |  | \item Line 5, | 
| 320 |  |  | \begin{verbatim} | 
| 321 | edhill | 1.5 | 5   sRef=20*35.0, | 
| 322 | helen | 1.1 | \end{verbatim} | 
| 323 |  |  | this line sets the initial and reference values of salinity at each model | 
| 324 |  |  | level in units of ppt. In this case salinity is set to an (arbitrary) uniform value of | 
| 325 |  |  | 35.0 ppt. However since, in this example, density is independent of salinity, | 
| 326 |  |  | an appropriatly defined initial salinity could provide a useful passive | 
| 327 |  |  | tracer. For each depth level the initial and reference profiles will be uniform in | 
| 328 |  |  | $x$ and $y$. The values specified are read into the | 
| 329 |  |  | variable | 
| 330 |  |  | {\bf | 
| 331 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/OK.htm> \end{rawhtml} | 
| 332 | helen | 1.1 | sRef | 
| 333 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 334 |  |  | } | 
| 335 |  |  | in the model code, by procedure | 
| 336 |  |  | {\it | 
| 337 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 338 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 339 |  |  | } | 
| 340 |  |  | \begin{rawhtml} </A>\end{rawhtml}. | 
| 341 |  |  | The salinity field is initialised, by procedure | 
| 342 |  |  | {\it | 
| 343 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/OK.htm> \end{rawhtml} | 
| 344 | helen | 1.1 | S/R INI\_SALT ({\it ini\_salt.F}) | 
| 345 |  |  | \begin{rawhtml} </A>\end{rawhtml}. | 
| 346 |  |  | } | 
| 347 |  |  |  | 
| 348 |  |  |  | 
| 349 |  |  | \item Line 6, | 
| 350 |  |  | \begin{verbatim} | 
| 351 | edhill | 1.5 | 6   viscAh=0.1, | 
| 352 | helen | 1.1 | \end{verbatim} | 
| 353 |  |  | this line sets the horizontal laplacian dissipation coefficient to | 
| 354 |  |  | 0.1 ${\rm m^{2}s^{-1}}$. Boundary conditions | 
| 355 |  |  | for this operator are specified later. | 
| 356 |  |  | The variable | 
| 357 |  |  | {\bf | 
| 358 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/SI.htm> \end{rawhtml} | 
| 359 | helen | 1.1 | viscAh | 
| 360 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 361 |  |  | } | 
| 362 |  |  | is read in the routine | 
| 363 |  |  | {\it | 
| 364 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 365 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_params.F}) | 
| 366 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 367 |  |  | } and applied in routines | 
| 368 |  |  | {\it | 
| 369 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 370 | helen | 1.1 | S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) | 
| 371 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 372 |  |  | } and | 
| 373 |  |  | {\it | 
| 374 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 375 | helen | 1.1 | S/R CALC\_GW ({\it calc\_gw.F}) | 
| 376 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 377 |  |  | }. | 
| 378 |  |  |  | 
| 379 |  |  |  | 
| 380 |  |  | \item Line 7, | 
| 381 |  |  | \begin{verbatim} | 
| 382 | edhill | 1.5 | 7   viscAz=0.1, | 
| 383 | helen | 1.1 | \end{verbatim} | 
| 384 |  |  | this line sets the vertical laplacian frictional dissipation coefficient to | 
| 385 |  |  | 0.1 ${\rm m^{2}s^{-1}}$. Boundary conditions | 
| 386 |  |  | for this operator are specified later. | 
| 387 |  |  | The variable | 
| 388 |  |  | {\bf | 
| 389 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/ZQ.htm> \end{rawhtml} | 
| 390 | helen | 1.1 | viscAz | 
| 391 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 392 |  |  | } | 
| 393 |  |  | is read in the routine | 
| 394 |  |  | {\it | 
| 395 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 396 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 397 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 398 |  |  | } | 
| 399 |  |  | and is copied into model general vertical coordinate variable | 
| 400 |  |  | {\bf | 
| 401 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/PF.htm> \end{rawhtml} | 
| 402 | helen | 1.1 | viscAr | 
| 403 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 404 |  |  | }. At each time step, the viscous term contribution to the momentum equations | 
| 405 |  |  | is calculated in routine | 
| 406 |  |  | {\it | 
| 407 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 408 | helen | 1.1 | S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) | 
| 409 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 410 |  |  | }. | 
| 411 |  |  |  | 
| 412 |  |  |  | 
| 413 |  |  | \item Line 8, | 
| 414 |  |  | \begin{verbatim} | 
| 415 |  |  | no_slip_sides=.FALSE. | 
| 416 |  |  | \end{verbatim} | 
| 417 |  |  | this line selects a free-slip lateral boundary condition for | 
| 418 |  |  | the horizontal laplacian friction operator | 
| 419 |  |  | e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and | 
| 420 |  |  | $\frac{\partial v}{\partial x}$=0 along boundaries in $x$. | 
| 421 |  |  | The variable | 
| 422 |  |  | {\bf | 
| 423 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/UT.htm> \end{rawhtml} | 
| 424 | helen | 1.1 | no\_slip\_sides | 
| 425 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 426 |  |  | } | 
| 427 |  |  | is read in the routine | 
| 428 |  |  | {\it | 
| 429 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 430 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 431 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 432 |  |  | } and the boundary condition is evaluated in routine | 
| 433 |  |  | {\it | 
| 434 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 435 | helen | 1.1 | S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) | 
| 436 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 437 |  |  | }. | 
| 438 |  |  |  | 
| 439 |  |  |  | 
| 440 |  |  | \item Lines 9, | 
| 441 |  |  | \begin{verbatim} | 
| 442 |  |  | no_slip_bottom=.TRUE. | 
| 443 |  |  | \end{verbatim} | 
| 444 |  |  | this line selects a no-slip boundary condition for the bottom | 
| 445 |  |  | boundary condition in the vertical laplacian friction operator | 
| 446 |  |  | e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. | 
| 447 |  |  | The variable | 
| 448 |  |  | {\bf | 
| 449 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/UK.htm> \end{rawhtml} | 
| 450 | helen | 1.1 | no\_slip\_bottom | 
| 451 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 452 |  |  | } | 
| 453 |  |  | is read in the routine | 
| 454 |  |  | {\it | 
| 455 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 456 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 457 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 458 |  |  | } and is applied in the routine | 
| 459 |  |  | {\it | 
| 460 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 461 | helen | 1.1 | S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) | 
| 462 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 463 |  |  | }. | 
| 464 |  |  |  | 
| 465 |  |  | \item Line 11, | 
| 466 |  |  | \begin{verbatim} | 
| 467 |  |  | diffKhT=0.1, | 
| 468 |  |  | \end{verbatim} | 
| 469 |  |  | this line sets the horizontal diffusion coefficient for temperature | 
| 470 |  |  | to 0.1 $\rm m^{2}s^{-1}$. The boundary condition on this | 
| 471 |  |  | operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at | 
| 472 |  |  | all boundaries. | 
| 473 |  |  | The variable | 
| 474 |  |  | {\bf | 
| 475 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/RC.htm> \end{rawhtml} | 
| 476 | helen | 1.1 | diffKhT | 
| 477 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 478 |  |  | } | 
| 479 |  |  | is read in the routine | 
| 480 |  |  | {\it | 
| 481 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 482 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 483 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 484 |  |  | } and used in routine | 
| 485 |  |  | {\it | 
| 486 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 487 | helen | 1.1 | S/R CALC\_GT ({\it calc\_gt.F}) | 
| 488 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 489 |  |  | }. | 
| 490 |  |  |  | 
| 491 |  |  | \item Line 12, | 
| 492 |  |  | \begin{verbatim} | 
| 493 |  |  | diffKzT=0.1, | 
| 494 |  |  | \end{verbatim} | 
| 495 |  |  | this line sets the vertical diffusion coefficient for temperature | 
| 496 |  |  | to 0.1 ${\rm m^{2}s^{-1}}$. The boundary condition on this | 
| 497 |  |  | operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. | 
| 498 |  |  | The variable | 
| 499 |  |  | {\bf | 
| 500 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/ZT.htm> \end{rawhtml} | 
| 501 | helen | 1.1 | diffKzT | 
| 502 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 503 |  |  | } | 
| 504 |  |  | is read in the routine | 
| 505 |  |  | {\it | 
| 506 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 507 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 508 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 509 |  |  | }. | 
| 510 |  |  | It is copied into model general vertical coordinate variable | 
| 511 |  |  | {\bf | 
| 512 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/PD.htm> \end{rawhtml} | 
| 513 | helen | 1.1 | diffKrT | 
| 514 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 515 |  |  | } which is used in routine | 
| 516 |  |  | {\it | 
| 517 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 518 | helen | 1.1 | S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) | 
| 519 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 520 |  |  | }. | 
| 521 |  |  |  | 
| 522 |  |  |  | 
| 523 |  |  | \item Line 13, | 
| 524 |  |  | \begin{verbatim} | 
| 525 |  |  | diffKhS=0.1, | 
| 526 |  |  | \end{verbatim} | 
| 527 |  |  | this line sets the horizontal diffusion coefficient for salinity | 
| 528 |  |  | to 0.1 $\rm m^{2}s^{-1}$. The boundary condition on this | 
| 529 |  |  | operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on | 
| 530 |  |  | all boundaries. | 
| 531 |  |  | The variable | 
| 532 |  |  | {\bf | 
| 533 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/RC.htm> \end{rawhtml} | 
| 534 | helen | 1.1 | diffKsT | 
| 535 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 536 |  |  | } | 
| 537 |  |  | is read in the routine | 
| 538 |  |  | {\it | 
| 539 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 540 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 541 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 542 |  |  | } and used in routine | 
| 543 |  |  | {\it | 
| 544 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 545 | helen | 1.1 | S/R CALC\_GS ({\it calc\_gs.F}) | 
| 546 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 547 |  |  | }. | 
| 548 |  |  |  | 
| 549 |  |  |  | 
| 550 |  |  | \item Line 14, | 
| 551 |  |  | \begin{verbatim} | 
| 552 |  |  | diffKzS=0.1, | 
| 553 |  |  | \end{verbatim} | 
| 554 |  |  | this line sets the vertical diffusion coefficient for temperature | 
| 555 |  |  | to 0.1 ${\rm m^{2}s^{-1}}$. The boundary condition on this | 
| 556 |  |  | operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. | 
| 557 |  |  | The variable | 
| 558 |  |  | {\bf | 
| 559 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/ZT.htm> \end{rawhtml} | 
| 560 | helen | 1.1 | diffKzS | 
| 561 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 562 |  |  | } | 
| 563 |  |  | is read in the routine | 
| 564 |  |  | {\it | 
| 565 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 566 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 567 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 568 |  |  | }. | 
| 569 |  |  | It is copied into model general vertical coordinate variable | 
| 570 |  |  | {\bf | 
| 571 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/PD.htm> \end{rawhtml} | 
| 572 | helen | 1.1 | diffKrS | 
| 573 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 574 |  |  | } which is used in routine | 
| 575 |  |  | {\it | 
| 576 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 577 | helen | 1.1 | S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) | 
| 578 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 579 |  |  | }. | 
| 580 |  |  |  | 
| 581 |  |  |  | 
| 582 |  |  | \item Line 15, | 
| 583 |  |  | \begin{verbatim} | 
| 584 |  |  | f0=1E-4, | 
| 585 |  |  | \end{verbatim} | 
| 586 |  |  | this line sets the Coriolis parameter to $1 \times 10^{-4}$ s$^{-1}$. | 
| 587 |  |  | Since $\beta = 0.0$ this value is then adopted throughout the domain. | 
| 588 |  |  |  | 
| 589 |  |  |  | 
| 590 |  |  | \item Line 16, | 
| 591 |  |  | \begin{verbatim} | 
| 592 |  |  | beta=0.E-11, | 
| 593 |  |  | \end{verbatim} | 
| 594 |  |  | this line sets the the variation of Coriolis parameter with latitude to $0$. | 
| 595 |  |  |  | 
| 596 |  |  |  | 
| 597 |  |  | \item Line 17, | 
| 598 |  |  | \begin{verbatim} | 
| 599 |  |  | tAlpha=2.E-4, | 
| 600 |  |  | \end{verbatim} | 
| 601 |  |  | This line sets the thermal expansion coefficient for the fluid | 
| 602 |  |  | to $2 \times 10^{-4}$ $^o$ C$^{-1}$. | 
| 603 |  |  | The variable | 
| 604 |  |  | {\bf | 
| 605 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/ZV.htm> \end{rawhtml} | 
| 606 | helen | 1.1 | tAlpha | 
| 607 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 608 |  |  | } | 
| 609 |  |  | is read in the routine | 
| 610 |  |  | {\it | 
| 611 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 612 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 613 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 614 |  |  | }. | 
| 615 |  |  | The routine | 
| 616 |  |  | {\it | 
| 617 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 618 | helen | 1.1 | S/R FIND\_RHO ({\it find\_rho.F}) | 
| 619 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 620 |  |  | } makes use of {\bf tAlpha}. | 
| 621 |  |  |  | 
| 622 |  |  | \item Line 18, | 
| 623 |  |  | \begin{verbatim} | 
| 624 |  |  | sBeta=0, | 
| 625 |  |  | \end{verbatim} | 
| 626 |  |  | This line sets the saline expansion coefficient for the fluid | 
| 627 |  |  | to $0$ consistent with salt's passive role in this example. | 
| 628 |  |  |  | 
| 629 |  |  |  | 
| 630 |  |  | \item Line 23-24, | 
| 631 |  |  | \begin{verbatim} | 
| 632 |  |  | rigidLid=.FALSE., | 
| 633 |  |  | implicitFreeSurface=.TRUE., | 
| 634 |  |  | \end{verbatim} | 
| 635 |  |  | Selects the barotropic pressure equation to be the implicit free surface | 
| 636 |  |  | formulation. | 
| 637 |  |  |  | 
| 638 |  |  | \item Line 25, | 
| 639 |  |  | \begin{verbatim} | 
| 640 |  |  | eosType='LINEAR', | 
| 641 |  |  | \end{verbatim} | 
| 642 |  |  | Selects the linear form of the equation of state. | 
| 643 |  |  |  | 
| 644 |  |  |  | 
| 645 |  |  | \item Line 26, | 
| 646 |  |  | \begin{verbatim} | 
| 647 |  |  | nonHydrostatic=.TRUE., | 
| 648 |  |  | \end{verbatim} | 
| 649 |  |  | Selects for non-hydrostatic code. | 
| 650 |  |  |  | 
| 651 |  |  |  | 
| 652 |  |  | \item Line 27, | 
| 653 |  |  | \begin{verbatim} | 
| 654 |  |  | readBinaryPrec=64, | 
| 655 |  |  | \end{verbatim} | 
| 656 |  |  | Sets format for reading binary input datasets holding model fields to | 
| 657 |  |  | use 64-bit representation for floating-point numbers. | 
| 658 |  |  |  | 
| 659 |  |  | \item Line 31, | 
| 660 |  |  | \begin{verbatim} | 
| 661 |  |  | cg2dMaxIters=1000, | 
| 662 |  |  | \end{verbatim} | 
| 663 |  |  | Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D | 
| 664 |  |  | elliptic equation. | 
| 665 |  |  |  | 
| 666 |  |  |  | 
| 667 |  |  | \item Line 32, | 
| 668 |  |  | \begin{verbatim} | 
| 669 |  |  | cg2dTargetResidual=1.E-9, | 
| 670 |  |  | \end{verbatim} | 
| 671 |  |  | Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D | 
| 672 |  |  | elliptic equation. | 
| 673 |  |  |  | 
| 674 |  |  |  | 
| 675 |  |  | \item Line 33, | 
| 676 |  |  | \begin{verbatim} | 
| 677 |  |  | cg3dMaxIters=40, | 
| 678 |  |  | \end{verbatim} | 
| 679 |  |  | This line sets the  maximum number of iterations the three-dimensional, conjugate | 
| 680 |  |  | gradient solver will use to 40, {\bf irrespective of the convergence | 
| 681 |  |  | criteria being met}. Used in routine | 
| 682 |  |  | {\it | 
| 683 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 684 | helen | 1.1 | S/R CG3D ({\it cg3d.F}) | 
| 685 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 686 |  |  | }. | 
| 687 |  |  |  | 
| 688 |  |  |  | 
| 689 |  |  |  | 
| 690 |  |  | \item Line 34, | 
| 691 |  |  | \begin{verbatim} | 
| 692 |  |  | cg3dTargetResidual=1.E-9, | 
| 693 |  |  | \end{verbatim} | 
| 694 |  |  | Sets the tolerance which the three-dimensional, conjugate | 
| 695 |  |  | gradient solver will use to test for convergence in equation | 
| 696 | cnh | 1.2 | \ref{EQ:eg-bconv-congrad_3d_resid} to $1 \times 10^{-9}$. | 
| 697 | helen | 1.1 | The solver will iterate until the | 
| 698 |  |  | tolerance falls below this value or until the maximum number of | 
| 699 |  |  | solver iterations is reached. Used in routine | 
| 700 |  |  | {\it | 
| 701 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 702 | helen | 1.1 | S/R CG3D ({\it cg3d.F}) | 
| 703 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 704 |  |  | }. | 
| 705 |  |  |  | 
| 706 |  |  |  | 
| 707 |  |  | \item Line 38, | 
| 708 |  |  | \begin{verbatim} | 
| 709 |  |  | startTime=0, | 
| 710 |  |  | \end{verbatim} | 
| 711 |  |  | Sets the starting time for the model internal time counter. | 
| 712 |  |  | When set to non-zero this option implicitly requests a | 
| 713 |  |  | checkpoint file be read for initial state. | 
| 714 |  |  | By default the checkpoint file is named according to | 
| 715 |  |  | the integer number of time steps in the {\bf startTime} value. | 
| 716 |  |  | The internal time counter works in seconds. | 
| 717 |  |  |  | 
| 718 |  |  | \item Line 39, | 
| 719 |  |  | \begin{verbatim} | 
| 720 |  |  | nTimeSteps=8640., | 
| 721 |  |  | \end{verbatim} | 
| 722 |  |  | Sets the number of timesteps at which this simulation will terminate (in this case | 
| 723 |  |  | 8640 timesteps or 1 day or $\delta t = 10$ s). | 
| 724 |  |  | At the end of a simulation a checkpoint file is automatically | 
| 725 |  |  | written so that a numerical experiment can consist of multiple | 
| 726 |  |  | stages. | 
| 727 |  |  |  | 
| 728 |  |  | \item Line 40, | 
| 729 |  |  | \begin{verbatim} | 
| 730 |  |  | deltaT=10, | 
| 731 |  |  | \end{verbatim} | 
| 732 |  |  | Sets the timestep $\delta t$  to 10 s. | 
| 733 |  |  |  | 
| 734 |  |  |  | 
| 735 |  |  | \item Line 51, | 
| 736 |  |  | \begin{verbatim} | 
| 737 |  |  | dXspacing=50.0, | 
| 738 |  |  | \end{verbatim} | 
| 739 |  |  | Sets horizontal ($x$-direction) grid interval to 50 m. | 
| 740 |  |  |  | 
| 741 |  |  |  | 
| 742 |  |  | \item Line 52, | 
| 743 |  |  | \begin{verbatim} | 
| 744 |  |  | dYspacing=50.0, | 
| 745 |  |  | \end{verbatim} | 
| 746 |  |  | Sets horizontal ($y$-direction) grid interval to 50 m. | 
| 747 |  |  |  | 
| 748 |  |  |  | 
| 749 |  |  | \item Line 53, | 
| 750 |  |  | \begin{verbatim} | 
| 751 |  |  | delZ=20*50.0, | 
| 752 |  |  | \end{verbatim} | 
| 753 |  |  | Sets vertical grid spacing to 50 m. Must be consistent with {\it code/SIZE.h}. Here, | 
| 754 |  |  | 20 corresponds to the number of vertical levels. | 
| 755 |  |  |  | 
| 756 |  |  | \item Line 57, | 
| 757 |  |  | \begin{verbatim} | 
| 758 |  |  | surfQfile='Qsurf.bin' | 
| 759 |  |  | \end{verbatim} | 
| 760 |  |  | This line specifies the name of the file from which the surface heat flux | 
| 761 |  |  | is read. This file is a two-dimensional | 
| 762 |  |  | ($x,y$) map. It is assumed to contain 64-bit binary numbers | 
| 763 |  |  | giving the value of $Q$ (W m$^2$) to be applied in each surface grid cell, ordered with | 
| 764 |  |  | the $x$ coordinate varying fastest. The points are ordered from low coordinate | 
| 765 |  |  | to high coordinate for both axes. The matlab program | 
| 766 |  |  | {\it input/gendata.m} shows how to generate the | 
| 767 |  |  | surface heat flux file used in the example. | 
| 768 |  |  | The variable | 
| 769 |  |  | {\bf | 
| 770 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/names/179.htm> \end{rawhtml} | 
| 771 | helen | 1.1 | Qsurf | 
| 772 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 773 |  |  | } | 
| 774 |  |  | is read in the routine | 
| 775 |  |  | {\it | 
| 776 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 777 | helen | 1.1 | S/R INI\_PARMS ({\it ini\_parms.F}) | 
| 778 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 779 |  |  | } | 
| 780 |  |  | and applied in | 
| 781 |  |  | {\it | 
| 782 | edhill | 1.4 | \begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 783 | helen | 1.1 | S/R EXTERNAL\_FORCING\_SURF ({\it external\_forcing\_surf.F}) | 
| 784 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 785 |  |  | } where the flux is converted to a temperature tendency. | 
| 786 |  |  |  | 
| 787 |  |  |  | 
| 788 |  |  | \end{itemize} | 
| 789 |  |  |  | 
| 790 |  |  |  | 
| 791 |  |  | \begin{rawhtml}<PRE>\end{rawhtml} | 
| 792 |  |  | \begin{small} | 
| 793 | jmc | 1.9 | \input{s_examples/deep_convection/input/data} | 
| 794 | helen | 1.1 | \end{small} | 
| 795 |  |  | \begin{rawhtml}</PRE>\end{rawhtml} | 
| 796 |  |  |  | 
| 797 |  |  |  | 
| 798 |  |  | \subsubsection{File {\it input/data.pkg}} | 
| 799 | adcroft | 1.3 | \label{www:tutorials} | 
| 800 | helen | 1.1 |  | 
| 801 |  |  | This file uses standard default values and does not contain | 
| 802 |  |  | customisations for this experiment. | 
| 803 |  |  |  | 
| 804 |  |  | \subsubsection{File {\it input/eedata}} | 
| 805 | adcroft | 1.3 | \label{www:tutorials} | 
| 806 | helen | 1.1 |  | 
| 807 |  |  | This file uses standard default values and does not contain | 
| 808 |  |  | customisations for this experiment. | 
| 809 |  |  |  | 
| 810 |  |  |  | 
| 811 |  |  | \subsubsection{File {\it input/Qsurf.bin}} | 
| 812 | adcroft | 1.3 | \label{www:tutorials} | 
| 813 | helen | 1.1 |  | 
| 814 |  |  | The file {\it input/Qsurf.bin} specifies a two-dimensional ($x,y$) | 
| 815 |  |  | map of heat flux values where | 
| 816 |  |  | $Q = Q_o \times ( 0.5 + \mbox{random number between 0 and 1})$. | 
| 817 |  |  |  | 
| 818 |  |  | In the example $Q_o = 800$ W m$^{-2}$ so that values of $Q$ lie in the range 400 to | 
| 819 |  |  | 1200 W m$^{-2}$ with a mean of $Q_o$. Although the flux models a loss, because it is | 
| 820 |  |  | directed upwards, according to the model's sign convention, $Q$ is positive. | 
| 821 |  |  |  | 
| 822 |  |  |  | 
| 823 |  |  | \begin{figure} | 
| 824 |  |  | \begin{center} | 
| 825 |  |  | % \resizebox{15cm}{10cm}{ | 
| 826 |  |  | %   \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 827 | jmc | 1.9 | %   {s_examples/deep_convection/Qsurf.ps} } | 
| 828 | helen | 1.1 | \end{center} | 
| 829 |  |  | \caption{ | 
| 830 |  |  | } | 
| 831 | cnh | 1.2 | \label{FIG:eg-bconv-Qsurf} | 
| 832 | helen | 1.1 | \end{figure} | 
| 833 |  |  |  | 
| 834 |  |  | \subsection{Running the example} | 
| 835 | adcroft | 1.3 | \label{www:tutorials} | 
| 836 | helen | 1.1 |  | 
| 837 |  |  | \subsubsection{Code download} | 
| 838 | adcroft | 1.3 | \label{www:tutorials} | 
| 839 | helen | 1.1 |  | 
| 840 |  |  | In order to run the examples you must first download the code distribution. | 
| 841 |  |  | Instructions for downloading the code can be found in \ref{sect:obtainingCode}. | 
| 842 |  |  |  | 
| 843 |  |  | \subsubsection{Experiment Location} | 
| 844 | adcroft | 1.3 | \label{www:tutorials} | 
| 845 | helen | 1.1 |  | 
| 846 |  |  | This example experiments is located under the release sub-directory | 
| 847 |  |  |  | 
| 848 |  |  | \vspace{5mm} | 
| 849 |  |  | {\it verification/convection/ } | 
| 850 |  |  |  | 
| 851 |  |  | \subsubsection{Running the Experiment} | 
| 852 | adcroft | 1.3 | \label{www:tutorials} | 
| 853 | helen | 1.1 |  | 
| 854 |  |  | To run the experiment | 
| 855 |  |  |  | 
| 856 |  |  | \begin{enumerate} | 
| 857 |  |  | \item Set the current directory to {\it input/ } | 
| 858 |  |  |  | 
| 859 |  |  | \begin{verbatim} | 
| 860 |  |  | % cd input | 
| 861 |  |  | \end{verbatim} | 
| 862 |  |  |  | 
| 863 |  |  | \item Verify that current directory is now correct | 
| 864 |  |  |  | 
| 865 |  |  | \begin{verbatim} | 
| 866 |  |  | % pwd | 
| 867 |  |  | \end{verbatim} | 
| 868 |  |  |  | 
| 869 |  |  | You should see a response on the screen ending in | 
| 870 |  |  |  | 
| 871 |  |  | {\it verification/convection/input } | 
| 872 |  |  |  | 
| 873 |  |  |  | 
| 874 |  |  | \item Run the genmake script to create the experiment {\it Makefile} | 
| 875 |  |  |  | 
| 876 |  |  | \begin{verbatim} | 
| 877 |  |  | % ../../../tools/genmake -mods=../code | 
| 878 |  |  | \end{verbatim} | 
| 879 |  |  |  | 
| 880 |  |  | \item Create a list of header file dependencies in {\it Makefile} | 
| 881 |  |  |  | 
| 882 |  |  | \begin{verbatim} | 
| 883 |  |  | % make depend | 
| 884 |  |  | \end{verbatim} | 
| 885 |  |  |  | 
| 886 |  |  | \item Build the executable file. | 
| 887 |  |  |  | 
| 888 |  |  | \begin{verbatim} | 
| 889 |  |  | % make | 
| 890 |  |  | \end{verbatim} | 
| 891 |  |  |  | 
| 892 |  |  | \item Run the {\it mitgcmuv} executable | 
| 893 |  |  |  | 
| 894 |  |  | \begin{verbatim} | 
| 895 |  |  | % ./mitgcmuv | 
| 896 |  |  | \end{verbatim} | 
| 897 |  |  |  | 
| 898 |  |  | \end{enumerate} | 
| 899 |  |  |  | 
| 900 |  |  |  |