1 |
cnh |
1.2 |
\section{Surface Driven Convection} |
2 |
adcroft |
1.3 |
\label{www:tutorials} |
3 |
helen |
1.1 |
\label{sect:eg-bconv} |
4 |
edhill |
1.5 |
\begin{rawhtml} |
5 |
|
|
<!-- CMIREDIR:eg-bconv: --> |
6 |
|
|
\end{rawhtml} |
7 |
helen |
1.1 |
|
8 |
|
|
\bodytext{bgcolor="#FFFFFFFF"} |
9 |
|
|
|
10 |
|
|
%\begin{center} |
11 |
|
|
%{\Large \bf Surface driven convection} |
12 |
|
|
% |
13 |
|
|
%\vspace*{4mm} |
14 |
|
|
% |
15 |
|
|
%\vspace*{3mm} |
16 |
|
|
%{\large Dec 2001} |
17 |
|
|
%\end{center} |
18 |
|
|
|
19 |
|
|
\begin{figure} |
20 |
|
|
\begin{center} |
21 |
|
|
\resizebox{7.5cm}{5.5cm}{ |
22 |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
23 |
|
|
{part3/case_studies/doubly_periodic_convection/simulation_config.eps} } |
24 |
|
|
\end{center} |
25 |
|
|
\caption{Schematic of simulation domain |
26 |
|
|
for the surface driven convection experiment. The domain is doubly periodic |
27 |
|
|
with an initially uniform temperature of 20 $^oC$. |
28 |
|
|
} |
29 |
cnh |
1.2 |
\label{FIG:eg-bconv-simulation_config} |
30 |
helen |
1.1 |
\end{figure} |
31 |
|
|
|
32 |
molod |
1.7 |
This experiment, figure \ref{FIG:eg-bconv-simulation_config}, showcasing MITgcm's non-hydrostatic |
33 |
|
|
capability, was designed to explore |
34 |
helen |
1.1 |
the temporal and spatial characteristics of convection plumes as they might exist during a |
35 |
molod |
1.7 |
period of oceanic deep convection. The files for this experiment can be found in the verification |
36 |
|
|
directory under tutorial\_deep\_convection. It is |
37 |
helen |
1.1 |
|
38 |
|
|
\begin{itemize} |
39 |
|
|
\item non-hydrostatic |
40 |
|
|
\item doubly-periodic with cubic geometry |
41 |
|
|
\item has 50 m resolution |
42 |
|
|
\item Cartesian |
43 |
|
|
\item is on an $f$-plane |
44 |
|
|
\item with a linear equation of state |
45 |
|
|
\end{itemize} |
46 |
|
|
|
47 |
|
|
\subsection{Overview} |
48 |
adcroft |
1.3 |
\label{www:tutorials} |
49 |
helen |
1.1 |
|
50 |
|
|
The model domain consists of an approximately 3 |
51 |
|
|
km square by 1 km deep box of initially |
52 |
|
|
unstratified, resting fluid. The domain is doubly periodic. |
53 |
|
|
|
54 |
|
|
The experiment has 20 levels in the vertical, each of equal thickness $\Delta z =$ 50 |
55 |
|
|
m (the horizontal resolution is also 50 m). The fluid is initially unstratified with a |
56 |
|
|
uniform reference potential temperature $\theta = $ 20 $^o$C. The equation of state |
57 |
|
|
used in this experiment is linear |
58 |
|
|
|
59 |
|
|
\begin{equation} |
60 |
cnh |
1.2 |
\label{EQ:eg-bconv-linear1_eos} |
61 |
helen |
1.1 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
62 |
|
|
\end{equation} |
63 |
|
|
|
64 |
|
|
\noindent which is implemented in the model as a density anomaly equation |
65 |
|
|
|
66 |
|
|
\begin{equation} |
67 |
cnh |
1.2 |
\label{EQ:eg-bconv-linear1_eos_pert} |
68 |
helen |
1.1 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
69 |
|
|
\end{equation} |
70 |
|
|
|
71 |
|
|
\noindent with $\rho_{0}=1000\,{\rm kg\,m}^{-3}$ and |
72 |
|
|
$\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in |
73 |
|
|
this configuration the model state variable {\bf theta} is equivalent to |
74 |
|
|
either in-situ temperature, $T$, or potential temperature, $\theta$. For |
75 |
|
|
consistency with other examples, in which the equation of state is |
76 |
|
|
non-linear, we use $\theta$ to represent temperature here. This is |
77 |
|
|
the quantity that is carried in the model core equations. |
78 |
|
|
|
79 |
|
|
As the fluid in the surface layer is cooled (at a mean rate of 800 Wm$^2$), it becomes |
80 |
|
|
convectively unstable and |
81 |
|
|
overturns, at first close to the grid-scale, but, as the flow matures, on larger scales |
82 |
cnh |
1.2 |
(figures \ref{FIG:eg-bconv-vertsection} and \ref{FIG:eg-bconv-horizsection}), under the influence of |
83 |
helen |
1.1 |
rotation ($f_o = 10^{-4}$ s$^{-1}$) . |
84 |
|
|
|
85 |
cnh |
1.2 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN surf-convection-vertsection\end{rawhtml} |
86 |
helen |
1.1 |
\begin{figure} |
87 |
|
|
\begin{center} |
88 |
|
|
\resizebox{15cm}{10cm}{ |
89 |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
90 |
|
|
{part3/case_studies/doubly_periodic_convection/verticalsection.ps} } |
91 |
|
|
\end{center} |
92 |
|
|
\caption{ |
93 |
|
|
} |
94 |
cnh |
1.2 |
\label{FIG:eg-bconv-vertsection} |
95 |
|
|
\label{fig:surf-convection-vertsection} |
96 |
helen |
1.1 |
\end{figure} |
97 |
cnh |
1.2 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml} |
98 |
helen |
1.1 |
|
99 |
cnh |
1.2 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN surf-convection-horizsection\end{rawhtml} |
100 |
helen |
1.1 |
\begin{figure} |
101 |
|
|
\begin{center} |
102 |
|
|
\resizebox{10cm}{10cm}{ |
103 |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
104 |
|
|
{part3/case_studies/doubly_periodic_convection/surfacesection.ps} } |
105 |
|
|
\end{center} |
106 |
|
|
\caption{ |
107 |
|
|
} |
108 |
cnh |
1.2 |
\label{FIG:eg-bconv-horizsection} |
109 |
|
|
\label{fig:surf-convection-horizsection} |
110 |
helen |
1.1 |
\end{figure} |
111 |
cnh |
1.2 |
\begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml} |
112 |
helen |
1.1 |
|
113 |
|
|
Model parameters are specified in file {\it input/data}. The grid dimensions are |
114 |
|
|
prescribed in {\it code/SIZE.h}. The forcing (file {\it input/Qsurf.bin}) is specified |
115 |
|
|
in a binary data file generated using the Matlab script {\it input/gendata.m}. |
116 |
|
|
|
117 |
|
|
\subsection{Equations solved} |
118 |
adcroft |
1.3 |
\label{www:tutorials} |
119 |
helen |
1.1 |
|
120 |
|
|
The model is configured in nonhydrostatic form, that is, all terms in the Navier |
121 |
|
|
Stokes equations are retained and the pressure field is found, subject to appropriate |
122 |
|
|
bounday condintions, through inversion of a three-dimensional elliptic equation. |
123 |
|
|
|
124 |
|
|
The implicit free surface form of the |
125 |
|
|
pressure equation described in Marshall et. al \cite{marshall:97a} is |
126 |
|
|
employed. A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
127 |
|
|
dissipation. The thermodynamic forcing appears as a sink in the potential temperature, |
128 |
cnh |
1.2 |
$\theta$, equation (\ref{EQ:eg-bconv-global_forcing_ft}). This produces a set of equations |
129 |
helen |
1.1 |
solved in this configuration as follows: |
130 |
|
|
|
131 |
|
|
\begin{eqnarray} |
132 |
cnh |
1.2 |
\label{EQ:eg-bconv-model_equations} |
133 |
helen |
1.1 |
\frac{Du}{Dt} - fv + |
134 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
135 |
|
|
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
136 |
|
|
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} |
137 |
|
|
& = & |
138 |
|
|
\begin{cases} |
139 |
|
|
0 & \text{(surface)} \\ |
140 |
|
|
0 & \text{(interior)} |
141 |
|
|
\end{cases} |
142 |
|
|
\\ |
143 |
|
|
\frac{Dv}{Dt} + fu + |
144 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
145 |
|
|
\nabla_{h}\cdot A_{h}\nabla_{h}v - |
146 |
|
|
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} |
147 |
|
|
& = & |
148 |
|
|
\begin{cases} |
149 |
|
|
0 & \text{(surface)} \\ |
150 |
|
|
0 & \text{(interior)} |
151 |
|
|
\end{cases} |
152 |
|
|
\\ |
153 |
|
|
\frac{Dw}{Dt} + g \frac{\rho^{'}}{\rho} + |
154 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial z} - |
155 |
|
|
\nabla_{h}\cdot A_{h}\nabla_{h}w - |
156 |
|
|
\frac{\partial}{\partial z}A_{z}\frac{\partial w}{\partial z} |
157 |
|
|
& = & |
158 |
|
|
\begin{cases} |
159 |
|
|
0 & \text{(surface)} \\ |
160 |
|
|
0 & \text{(interior)} |
161 |
|
|
\end{cases} |
162 |
|
|
\\ |
163 |
|
|
\frac{\partial u}{\partial x} + |
164 |
|
|
\frac{\partial v}{\partial y} + |
165 |
|
|
\frac{\partial w}{\partial z} + |
166 |
|
|
&=& |
167 |
|
|
0 |
168 |
|
|
\\ |
169 |
|
|
\frac{D\theta}{Dt} - |
170 |
|
|
\nabla_{h}\cdot K_{h}\nabla_{h}\theta |
171 |
|
|
- \frac{\partial}{\partial z}K_{z}\frac{\partial\theta}{\partial z} |
172 |
|
|
& = & |
173 |
|
|
\begin{cases} |
174 |
|
|
{\cal F}_\theta & \text{(surface)} \\ |
175 |
|
|
0 & \text{(interior)} |
176 |
|
|
\end{cases} |
177 |
|
|
\end{eqnarray} |
178 |
|
|
|
179 |
|
|
\noindent where $u=\frac{Dx}{Dt}$, $v=\frac{Dy}{Dt}$ and |
180 |
|
|
$w=\frac{Dz}{Dt}$ are the components of the |
181 |
|
|
flow vector in directions $x$, $y$ and $z$. |
182 |
|
|
The pressure is diagnosed through inversion (subject to appropriate boundary |
183 |
|
|
conditions) of a 3-D elliptic equation derived from the divergence of the momentum |
184 |
|
|
equations and continuity (see section \ref{sec:finding_the_pressure_field}). |
185 |
|
|
\\ |
186 |
|
|
|
187 |
|
|
\subsection{Discrete numerical configuration} |
188 |
adcroft |
1.3 |
\label{www:tutorials} |
189 |
helen |
1.1 |
|
190 |
|
|
The domain is discretised with a uniform grid spacing in each direction. There are 64 |
191 |
|
|
grid cells in directions $x$ and $y$ and 20 vertical levels thus the domain |
192 |
|
|
comprises a total of just over 80 000 gridpoints. |
193 |
|
|
|
194 |
|
|
\subsection{Numerical stability criteria and other considerations} |
195 |
adcroft |
1.3 |
\label{www:tutorials} |
196 |
helen |
1.1 |
|
197 |
|
|
For a heat flux of 800 Wm$^2$ and a rotation rate of $10^{-4}$ s$^{-1}$ the |
198 |
|
|
plume-scale can be expected to be a few hundred meters guiding our choice of grid |
199 |
|
|
resolution. This in turn restricts the timestep we can take. It is also desirable to |
200 |
|
|
minimise the level of diffusion and viscosity we apply. |
201 |
|
|
|
202 |
|
|
For this class of problem it is generally the advective time-scale which restricts |
203 |
|
|
the timestep. |
204 |
|
|
|
205 |
|
|
For an extreme maximum flow speed of $ | \vec{u} | = 1 ms^{-1}$, at a resolution of |
206 |
|
|
50 m, the implied maximum timestep for stability, $\delta t_u$ is |
207 |
|
|
|
208 |
|
|
\begin{eqnarray} |
209 |
cnh |
1.2 |
\label{EQ:eg-bconv-advectiveCFLcondition} |
210 |
helen |
1.1 |
%\delta t_u = \frac{\Delta x}{| \vec{u} \} = 50 s |
211 |
|
|
\end{eqnarray} |
212 |
|
|
|
213 |
|
|
The choice of $\delta t = 10$ s is a safe 20 percent of this maximum. |
214 |
|
|
|
215 |
|
|
Interpreted in terms of a mixing-length hypothesis, a magnitude of Laplacian |
216 |
|
|
diffusion coefficient $\kappa_h (= |
217 |
|
|
\kappa_v) = 0.1$ m$^2$s$^{-1}$ is consistent with an eddy velocity of 2 mm s$^{-1}$ |
218 |
|
|
correlated over 50 m. |
219 |
|
|
|
220 |
|
|
\subsection{Experiment configuration} |
221 |
adcroft |
1.3 |
\label{www:tutorials} |
222 |
helen |
1.1 |
|
223 |
|
|
The model configuration for this experiment resides under the directory |
224 |
|
|
{\it verification/convection/}. The experiment files |
225 |
|
|
\begin{itemize} |
226 |
|
|
\item {\it code/CPP\_EEOPTIONS.h} |
227 |
|
|
\item {\it code/CPP\_OPTIONS.h}, |
228 |
|
|
\item {\it code/SIZE.h}. |
229 |
|
|
\item {\it input/data} |
230 |
|
|
\item {\it input/data.pkg} |
231 |
|
|
\item {\it input/eedata}, |
232 |
|
|
\item {\it input/Qsurf.bin}, |
233 |
|
|
\end{itemize} |
234 |
|
|
contain the code customisations and parameter settings for this |
235 |
|
|
experiment. Below we describe these experiment-specific customisations. |
236 |
|
|
|
237 |
|
|
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
238 |
adcroft |
1.3 |
\label{www:tutorials} |
239 |
helen |
1.1 |
|
240 |
|
|
This file uses standard default values and does not contain |
241 |
|
|
customisations for this experiment. |
242 |
|
|
|
243 |
|
|
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
244 |
adcroft |
1.3 |
\label{www:tutorials} |
245 |
helen |
1.1 |
|
246 |
|
|
This file uses standard default values and does not contain |
247 |
|
|
customisations for this experiment. |
248 |
|
|
|
249 |
|
|
\subsubsection{File {\it code/SIZE.h}} |
250 |
adcroft |
1.3 |
\label{www:tutorials} |
251 |
helen |
1.1 |
|
252 |
|
|
Three lines are customized in this file. These prescribe the domain grid dimensions. |
253 |
|
|
\begin{itemize} |
254 |
|
|
|
255 |
|
|
\item Line 36, |
256 |
|
|
\begin{verbatim} sNx=64, \end{verbatim} this line sets |
257 |
|
|
the lateral domain extent in grid points for the |
258 |
|
|
axis aligned with the $x$-coordinate. |
259 |
|
|
|
260 |
|
|
\item Line 37, |
261 |
|
|
\begin{verbatim} sNy=64, \end{verbatim} this line sets |
262 |
|
|
the lateral domain extent in grid points for the |
263 |
|
|
axis aligned with the $y$-coordinate. |
264 |
|
|
|
265 |
|
|
\item Line 46, |
266 |
|
|
\begin{verbatim} Nr=20, \end{verbatim} this line sets |
267 |
|
|
the vertical domain extent in grid points. |
268 |
|
|
|
269 |
|
|
\end{itemize} |
270 |
|
|
|
271 |
|
|
\begin{rawhtml}<PRE>\end{rawhtml} |
272 |
|
|
\begin{small} |
273 |
|
|
\input{part3/case_studies/doubly_periodic_convection/code/SIZE.h} |
274 |
|
|
\end{small} |
275 |
|
|
\begin{rawhtml}</PRE>\end{rawhtml} |
276 |
|
|
|
277 |
|
|
\subsubsection{File {\it input/data}} |
278 |
adcroft |
1.3 |
\label{www:tutorials} |
279 |
helen |
1.1 |
|
280 |
|
|
This file, reproduced completely below, specifies the main parameters |
281 |
|
|
for the experiment. The parameters that are significant for this configuration |
282 |
|
|
are |
283 |
|
|
|
284 |
|
|
\begin{itemize} |
285 |
|
|
|
286 |
|
|
\item Line 4, |
287 |
|
|
\begin{verbatim} |
288 |
edhill |
1.5 |
4 tRef=20*20.0, |
289 |
helen |
1.1 |
\end{verbatim} |
290 |
|
|
this line sets |
291 |
|
|
the initial and reference values of potential temperature at each model |
292 |
edhill |
1.6 |
level in units of $^{\circ}\mathrm{C}$. Here the value is arbitrary since, in this case, the |
293 |
helen |
1.1 |
flow evolves independently of the absolute magnitude of the reference temperature. |
294 |
|
|
For each depth level the initial and reference profiles will be uniform in |
295 |
|
|
$x$ and $y$. The values specified are read into the |
296 |
|
|
variable |
297 |
|
|
{\bf |
298 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/OK.htm> \end{rawhtml} |
299 |
helen |
1.1 |
tRef |
300 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
301 |
|
|
} |
302 |
|
|
in the model code, by procedure |
303 |
|
|
{\it |
304 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
305 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
306 |
|
|
\begin{rawhtml} </A>\end{rawhtml}. |
307 |
|
|
} |
308 |
|
|
The temperature field is initialised, by procedure |
309 |
|
|
{\it |
310 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/OK.htm> \end{rawhtml} |
311 |
helen |
1.1 |
S/R INI\_THETA ({\it ini\_theta.F}) |
312 |
|
|
\begin{rawhtml} </A>\end{rawhtml}. |
313 |
|
|
} |
314 |
|
|
|
315 |
|
|
|
316 |
|
|
\item Line 5, |
317 |
|
|
\begin{verbatim} |
318 |
edhill |
1.5 |
5 sRef=20*35.0, |
319 |
helen |
1.1 |
\end{verbatim} |
320 |
|
|
this line sets the initial and reference values of salinity at each model |
321 |
|
|
level in units of ppt. In this case salinity is set to an (arbitrary) uniform value of |
322 |
|
|
35.0 ppt. However since, in this example, density is independent of salinity, |
323 |
|
|
an appropriatly defined initial salinity could provide a useful passive |
324 |
|
|
tracer. For each depth level the initial and reference profiles will be uniform in |
325 |
|
|
$x$ and $y$. The values specified are read into the |
326 |
|
|
variable |
327 |
|
|
{\bf |
328 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/OK.htm> \end{rawhtml} |
329 |
helen |
1.1 |
sRef |
330 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
331 |
|
|
} |
332 |
|
|
in the model code, by procedure |
333 |
|
|
{\it |
334 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
335 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
336 |
|
|
} |
337 |
|
|
\begin{rawhtml} </A>\end{rawhtml}. |
338 |
|
|
The salinity field is initialised, by procedure |
339 |
|
|
{\it |
340 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/OK.htm> \end{rawhtml} |
341 |
helen |
1.1 |
S/R INI\_SALT ({\it ini\_salt.F}) |
342 |
|
|
\begin{rawhtml} </A>\end{rawhtml}. |
343 |
|
|
} |
344 |
|
|
|
345 |
|
|
|
346 |
|
|
\item Line 6, |
347 |
|
|
\begin{verbatim} |
348 |
edhill |
1.5 |
6 viscAh=0.1, |
349 |
helen |
1.1 |
\end{verbatim} |
350 |
|
|
this line sets the horizontal laplacian dissipation coefficient to |
351 |
|
|
0.1 ${\rm m^{2}s^{-1}}$. Boundary conditions |
352 |
|
|
for this operator are specified later. |
353 |
|
|
The variable |
354 |
|
|
{\bf |
355 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/SI.htm> \end{rawhtml} |
356 |
helen |
1.1 |
viscAh |
357 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
358 |
|
|
} |
359 |
|
|
is read in the routine |
360 |
|
|
{\it |
361 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
362 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_params.F}) |
363 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
364 |
|
|
} and applied in routines |
365 |
|
|
{\it |
366 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
367 |
helen |
1.1 |
S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) |
368 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
369 |
|
|
} and |
370 |
|
|
{\it |
371 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
372 |
helen |
1.1 |
S/R CALC\_GW ({\it calc\_gw.F}) |
373 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
374 |
|
|
}. |
375 |
|
|
|
376 |
|
|
|
377 |
|
|
\item Line 7, |
378 |
|
|
\begin{verbatim} |
379 |
edhill |
1.5 |
7 viscAz=0.1, |
380 |
helen |
1.1 |
\end{verbatim} |
381 |
|
|
this line sets the vertical laplacian frictional dissipation coefficient to |
382 |
|
|
0.1 ${\rm m^{2}s^{-1}}$. Boundary conditions |
383 |
|
|
for this operator are specified later. |
384 |
|
|
The variable |
385 |
|
|
{\bf |
386 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZQ.htm> \end{rawhtml} |
387 |
helen |
1.1 |
viscAz |
388 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
389 |
|
|
} |
390 |
|
|
is read in the routine |
391 |
|
|
{\it |
392 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
393 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
394 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
395 |
|
|
} |
396 |
|
|
and is copied into model general vertical coordinate variable |
397 |
|
|
{\bf |
398 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/PF.htm> \end{rawhtml} |
399 |
helen |
1.1 |
viscAr |
400 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
401 |
|
|
}. At each time step, the viscous term contribution to the momentum equations |
402 |
|
|
is calculated in routine |
403 |
|
|
{\it |
404 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
405 |
helen |
1.1 |
S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) |
406 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
407 |
|
|
}. |
408 |
|
|
|
409 |
|
|
|
410 |
|
|
\item Line 8, |
411 |
|
|
\begin{verbatim} |
412 |
|
|
no_slip_sides=.FALSE. |
413 |
|
|
\end{verbatim} |
414 |
|
|
this line selects a free-slip lateral boundary condition for |
415 |
|
|
the horizontal laplacian friction operator |
416 |
|
|
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
417 |
|
|
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
418 |
|
|
The variable |
419 |
|
|
{\bf |
420 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/UT.htm> \end{rawhtml} |
421 |
helen |
1.1 |
no\_slip\_sides |
422 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
423 |
|
|
} |
424 |
|
|
is read in the routine |
425 |
|
|
{\it |
426 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
427 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
428 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
429 |
|
|
} and the boundary condition is evaluated in routine |
430 |
|
|
{\it |
431 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
432 |
helen |
1.1 |
S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) |
433 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
434 |
|
|
}. |
435 |
|
|
|
436 |
|
|
|
437 |
|
|
\item Lines 9, |
438 |
|
|
\begin{verbatim} |
439 |
|
|
no_slip_bottom=.TRUE. |
440 |
|
|
\end{verbatim} |
441 |
|
|
this line selects a no-slip boundary condition for the bottom |
442 |
|
|
boundary condition in the vertical laplacian friction operator |
443 |
|
|
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
444 |
|
|
The variable |
445 |
|
|
{\bf |
446 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/UK.htm> \end{rawhtml} |
447 |
helen |
1.1 |
no\_slip\_bottom |
448 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
449 |
|
|
} |
450 |
|
|
is read in the routine |
451 |
|
|
{\it |
452 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
453 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
454 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
455 |
|
|
} and is applied in the routine |
456 |
|
|
{\it |
457 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
458 |
helen |
1.1 |
S/R CALC\_MOM\_RHS ({\it calc\_mom\_rhs.F}) |
459 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
460 |
|
|
}. |
461 |
|
|
|
462 |
|
|
\item Line 11, |
463 |
|
|
\begin{verbatim} |
464 |
|
|
diffKhT=0.1, |
465 |
|
|
\end{verbatim} |
466 |
|
|
this line sets the horizontal diffusion coefficient for temperature |
467 |
|
|
to 0.1 $\rm m^{2}s^{-1}$. The boundary condition on this |
468 |
|
|
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at |
469 |
|
|
all boundaries. |
470 |
|
|
The variable |
471 |
|
|
{\bf |
472 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/RC.htm> \end{rawhtml} |
473 |
helen |
1.1 |
diffKhT |
474 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
475 |
|
|
} |
476 |
|
|
is read in the routine |
477 |
|
|
{\it |
478 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
479 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
480 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
481 |
|
|
} and used in routine |
482 |
|
|
{\it |
483 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
484 |
helen |
1.1 |
S/R CALC\_GT ({\it calc\_gt.F}) |
485 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
486 |
|
|
}. |
487 |
|
|
|
488 |
|
|
\item Line 12, |
489 |
|
|
\begin{verbatim} |
490 |
|
|
diffKzT=0.1, |
491 |
|
|
\end{verbatim} |
492 |
|
|
this line sets the vertical diffusion coefficient for temperature |
493 |
|
|
to 0.1 ${\rm m^{2}s^{-1}}$. The boundary condition on this |
494 |
|
|
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
495 |
|
|
The variable |
496 |
|
|
{\bf |
497 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZT.htm> \end{rawhtml} |
498 |
helen |
1.1 |
diffKzT |
499 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
500 |
|
|
} |
501 |
|
|
is read in the routine |
502 |
|
|
{\it |
503 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
504 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
505 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
506 |
|
|
}. |
507 |
|
|
It is copied into model general vertical coordinate variable |
508 |
|
|
{\bf |
509 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/PD.htm> \end{rawhtml} |
510 |
helen |
1.1 |
diffKrT |
511 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
512 |
|
|
} which is used in routine |
513 |
|
|
{\it |
514 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
515 |
helen |
1.1 |
S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) |
516 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
517 |
|
|
}. |
518 |
|
|
|
519 |
|
|
|
520 |
|
|
\item Line 13, |
521 |
|
|
\begin{verbatim} |
522 |
|
|
diffKhS=0.1, |
523 |
|
|
\end{verbatim} |
524 |
|
|
this line sets the horizontal diffusion coefficient for salinity |
525 |
|
|
to 0.1 $\rm m^{2}s^{-1}$. The boundary condition on this |
526 |
|
|
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on |
527 |
|
|
all boundaries. |
528 |
|
|
The variable |
529 |
|
|
{\bf |
530 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/RC.htm> \end{rawhtml} |
531 |
helen |
1.1 |
diffKsT |
532 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
533 |
|
|
} |
534 |
|
|
is read in the routine |
535 |
|
|
{\it |
536 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
537 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
538 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
539 |
|
|
} and used in routine |
540 |
|
|
{\it |
541 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
542 |
helen |
1.1 |
S/R CALC\_GS ({\it calc\_gs.F}) |
543 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
544 |
|
|
}. |
545 |
|
|
|
546 |
|
|
|
547 |
|
|
\item Line 14, |
548 |
|
|
\begin{verbatim} |
549 |
|
|
diffKzS=0.1, |
550 |
|
|
\end{verbatim} |
551 |
|
|
this line sets the vertical diffusion coefficient for temperature |
552 |
|
|
to 0.1 ${\rm m^{2}s^{-1}}$. The boundary condition on this |
553 |
|
|
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
554 |
|
|
The variable |
555 |
|
|
{\bf |
556 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZT.htm> \end{rawhtml} |
557 |
helen |
1.1 |
diffKzS |
558 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
559 |
|
|
} |
560 |
|
|
is read in the routine |
561 |
|
|
{\it |
562 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
563 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
564 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
565 |
|
|
}. |
566 |
|
|
It is copied into model general vertical coordinate variable |
567 |
|
|
{\bf |
568 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/PD.htm> \end{rawhtml} |
569 |
helen |
1.1 |
diffKrS |
570 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
571 |
|
|
} which is used in routine |
572 |
|
|
{\it |
573 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
574 |
helen |
1.1 |
S/R CALC\_DIFFUSIVITY ({\it calc\_diffusivity.F}) |
575 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
576 |
|
|
}. |
577 |
|
|
|
578 |
|
|
|
579 |
|
|
\item Line 15, |
580 |
|
|
\begin{verbatim} |
581 |
|
|
f0=1E-4, |
582 |
|
|
\end{verbatim} |
583 |
|
|
this line sets the Coriolis parameter to $1 \times 10^{-4}$ s$^{-1}$. |
584 |
|
|
Since $\beta = 0.0$ this value is then adopted throughout the domain. |
585 |
|
|
|
586 |
|
|
|
587 |
|
|
\item Line 16, |
588 |
|
|
\begin{verbatim} |
589 |
|
|
beta=0.E-11, |
590 |
|
|
\end{verbatim} |
591 |
|
|
this line sets the the variation of Coriolis parameter with latitude to $0$. |
592 |
|
|
|
593 |
|
|
|
594 |
|
|
\item Line 17, |
595 |
|
|
\begin{verbatim} |
596 |
|
|
tAlpha=2.E-4, |
597 |
|
|
\end{verbatim} |
598 |
|
|
This line sets the thermal expansion coefficient for the fluid |
599 |
|
|
to $2 \times 10^{-4}$ $^o$ C$^{-1}$. |
600 |
|
|
The variable |
601 |
|
|
{\bf |
602 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/ZV.htm> \end{rawhtml} |
603 |
helen |
1.1 |
tAlpha |
604 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
605 |
|
|
} |
606 |
|
|
is read in the routine |
607 |
|
|
{\it |
608 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
609 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
610 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
611 |
|
|
}. |
612 |
|
|
The routine |
613 |
|
|
{\it |
614 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
615 |
helen |
1.1 |
S/R FIND\_RHO ({\it find\_rho.F}) |
616 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
617 |
|
|
} makes use of {\bf tAlpha}. |
618 |
|
|
|
619 |
|
|
\item Line 18, |
620 |
|
|
\begin{verbatim} |
621 |
|
|
sBeta=0, |
622 |
|
|
\end{verbatim} |
623 |
|
|
This line sets the saline expansion coefficient for the fluid |
624 |
|
|
to $0$ consistent with salt's passive role in this example. |
625 |
|
|
|
626 |
|
|
|
627 |
|
|
\item Line 23-24, |
628 |
|
|
\begin{verbatim} |
629 |
|
|
rigidLid=.FALSE., |
630 |
|
|
implicitFreeSurface=.TRUE., |
631 |
|
|
\end{verbatim} |
632 |
|
|
Selects the barotropic pressure equation to be the implicit free surface |
633 |
|
|
formulation. |
634 |
|
|
|
635 |
|
|
\item Line 25, |
636 |
|
|
\begin{verbatim} |
637 |
|
|
eosType='LINEAR', |
638 |
|
|
\end{verbatim} |
639 |
|
|
Selects the linear form of the equation of state. |
640 |
|
|
|
641 |
|
|
|
642 |
|
|
\item Line 26, |
643 |
|
|
\begin{verbatim} |
644 |
|
|
nonHydrostatic=.TRUE., |
645 |
|
|
\end{verbatim} |
646 |
|
|
Selects for non-hydrostatic code. |
647 |
|
|
|
648 |
|
|
|
649 |
|
|
\item Line 27, |
650 |
|
|
\begin{verbatim} |
651 |
|
|
readBinaryPrec=64, |
652 |
|
|
\end{verbatim} |
653 |
|
|
Sets format for reading binary input datasets holding model fields to |
654 |
|
|
use 64-bit representation for floating-point numbers. |
655 |
|
|
|
656 |
|
|
\item Line 31, |
657 |
|
|
\begin{verbatim} |
658 |
|
|
cg2dMaxIters=1000, |
659 |
|
|
\end{verbatim} |
660 |
|
|
Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D |
661 |
|
|
elliptic equation. |
662 |
|
|
|
663 |
|
|
|
664 |
|
|
\item Line 32, |
665 |
|
|
\begin{verbatim} |
666 |
|
|
cg2dTargetResidual=1.E-9, |
667 |
|
|
\end{verbatim} |
668 |
|
|
Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D |
669 |
|
|
elliptic equation. |
670 |
|
|
|
671 |
|
|
|
672 |
|
|
\item Line 33, |
673 |
|
|
\begin{verbatim} |
674 |
|
|
cg3dMaxIters=40, |
675 |
|
|
\end{verbatim} |
676 |
|
|
This line sets the maximum number of iterations the three-dimensional, conjugate |
677 |
|
|
gradient solver will use to 40, {\bf irrespective of the convergence |
678 |
|
|
criteria being met}. Used in routine |
679 |
|
|
{\it |
680 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
681 |
helen |
1.1 |
S/R CG3D ({\it cg3d.F}) |
682 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
683 |
|
|
}. |
684 |
|
|
|
685 |
|
|
|
686 |
|
|
|
687 |
|
|
\item Line 34, |
688 |
|
|
\begin{verbatim} |
689 |
|
|
cg3dTargetResidual=1.E-9, |
690 |
|
|
\end{verbatim} |
691 |
|
|
Sets the tolerance which the three-dimensional, conjugate |
692 |
|
|
gradient solver will use to test for convergence in equation |
693 |
cnh |
1.2 |
\ref{EQ:eg-bconv-congrad_3d_resid} to $1 \times 10^{-9}$. |
694 |
helen |
1.1 |
The solver will iterate until the |
695 |
|
|
tolerance falls below this value or until the maximum number of |
696 |
|
|
solver iterations is reached. Used in routine |
697 |
|
|
{\it |
698 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
699 |
helen |
1.1 |
S/R CG3D ({\it cg3d.F}) |
700 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
701 |
|
|
}. |
702 |
|
|
|
703 |
|
|
|
704 |
|
|
\item Line 38, |
705 |
|
|
\begin{verbatim} |
706 |
|
|
startTime=0, |
707 |
|
|
\end{verbatim} |
708 |
|
|
Sets the starting time for the model internal time counter. |
709 |
|
|
When set to non-zero this option implicitly requests a |
710 |
|
|
checkpoint file be read for initial state. |
711 |
|
|
By default the checkpoint file is named according to |
712 |
|
|
the integer number of time steps in the {\bf startTime} value. |
713 |
|
|
The internal time counter works in seconds. |
714 |
|
|
|
715 |
|
|
\item Line 39, |
716 |
|
|
\begin{verbatim} |
717 |
|
|
nTimeSteps=8640., |
718 |
|
|
\end{verbatim} |
719 |
|
|
Sets the number of timesteps at which this simulation will terminate (in this case |
720 |
|
|
8640 timesteps or 1 day or $\delta t = 10$ s). |
721 |
|
|
At the end of a simulation a checkpoint file is automatically |
722 |
|
|
written so that a numerical experiment can consist of multiple |
723 |
|
|
stages. |
724 |
|
|
|
725 |
|
|
\item Line 40, |
726 |
|
|
\begin{verbatim} |
727 |
|
|
deltaT=10, |
728 |
|
|
\end{verbatim} |
729 |
|
|
Sets the timestep $\delta t$ to 10 s. |
730 |
|
|
|
731 |
|
|
|
732 |
|
|
\item Line 51, |
733 |
|
|
\begin{verbatim} |
734 |
|
|
dXspacing=50.0, |
735 |
|
|
\end{verbatim} |
736 |
|
|
Sets horizontal ($x$-direction) grid interval to 50 m. |
737 |
|
|
|
738 |
|
|
|
739 |
|
|
\item Line 52, |
740 |
|
|
\begin{verbatim} |
741 |
|
|
dYspacing=50.0, |
742 |
|
|
\end{verbatim} |
743 |
|
|
Sets horizontal ($y$-direction) grid interval to 50 m. |
744 |
|
|
|
745 |
|
|
|
746 |
|
|
\item Line 53, |
747 |
|
|
\begin{verbatim} |
748 |
|
|
delZ=20*50.0, |
749 |
|
|
\end{verbatim} |
750 |
|
|
Sets vertical grid spacing to 50 m. Must be consistent with {\it code/SIZE.h}. Here, |
751 |
|
|
20 corresponds to the number of vertical levels. |
752 |
|
|
|
753 |
|
|
\item Line 57, |
754 |
|
|
\begin{verbatim} |
755 |
|
|
surfQfile='Qsurf.bin' |
756 |
|
|
\end{verbatim} |
757 |
|
|
This line specifies the name of the file from which the surface heat flux |
758 |
|
|
is read. This file is a two-dimensional |
759 |
|
|
($x,y$) map. It is assumed to contain 64-bit binary numbers |
760 |
|
|
giving the value of $Q$ (W m$^2$) to be applied in each surface grid cell, ordered with |
761 |
|
|
the $x$ coordinate varying fastest. The points are ordered from low coordinate |
762 |
|
|
to high coordinate for both axes. The matlab program |
763 |
|
|
{\it input/gendata.m} shows how to generate the |
764 |
|
|
surface heat flux file used in the example. |
765 |
|
|
The variable |
766 |
|
|
{\bf |
767 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/names/179.htm> \end{rawhtml} |
768 |
helen |
1.1 |
Qsurf |
769 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
770 |
|
|
} |
771 |
|
|
is read in the routine |
772 |
|
|
{\it |
773 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
774 |
helen |
1.1 |
S/R INI\_PARMS ({\it ini\_parms.F}) |
775 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
776 |
|
|
} |
777 |
|
|
and applied in |
778 |
|
|
{\it |
779 |
edhill |
1.4 |
\begin{rawhtml} <A href=../code_reference/vdb/code/94.htm> \end{rawhtml} |
780 |
helen |
1.1 |
S/R EXTERNAL\_FORCING\_SURF ({\it external\_forcing\_surf.F}) |
781 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
782 |
|
|
} where the flux is converted to a temperature tendency. |
783 |
|
|
|
784 |
|
|
|
785 |
|
|
\end{itemize} |
786 |
|
|
|
787 |
|
|
|
788 |
|
|
\begin{rawhtml}<PRE>\end{rawhtml} |
789 |
|
|
\begin{small} |
790 |
|
|
\input{part3/case_studies/doubly_periodic_convection/input/data} |
791 |
|
|
\end{small} |
792 |
|
|
\begin{rawhtml}</PRE>\end{rawhtml} |
793 |
|
|
|
794 |
|
|
|
795 |
|
|
\subsubsection{File {\it input/data.pkg}} |
796 |
adcroft |
1.3 |
\label{www:tutorials} |
797 |
helen |
1.1 |
|
798 |
|
|
This file uses standard default values and does not contain |
799 |
|
|
customisations for this experiment. |
800 |
|
|
|
801 |
|
|
\subsubsection{File {\it input/eedata}} |
802 |
adcroft |
1.3 |
\label{www:tutorials} |
803 |
helen |
1.1 |
|
804 |
|
|
This file uses standard default values and does not contain |
805 |
|
|
customisations for this experiment. |
806 |
|
|
|
807 |
|
|
|
808 |
|
|
\subsubsection{File {\it input/Qsurf.bin}} |
809 |
adcroft |
1.3 |
\label{www:tutorials} |
810 |
helen |
1.1 |
|
811 |
|
|
The file {\it input/Qsurf.bin} specifies a two-dimensional ($x,y$) |
812 |
|
|
map of heat flux values where |
813 |
|
|
$Q = Q_o \times ( 0.5 + \mbox{random number between 0 and 1})$. |
814 |
|
|
|
815 |
|
|
In the example $Q_o = 800$ W m$^{-2}$ so that values of $Q$ lie in the range 400 to |
816 |
|
|
1200 W m$^{-2}$ with a mean of $Q_o$. Although the flux models a loss, because it is |
817 |
|
|
directed upwards, according to the model's sign convention, $Q$ is positive. |
818 |
|
|
|
819 |
|
|
|
820 |
|
|
\begin{figure} |
821 |
|
|
\begin{center} |
822 |
|
|
% \resizebox{15cm}{10cm}{ |
823 |
|
|
% \includegraphics*[0.2in,0.7in][10.5in,10.5in] |
824 |
|
|
% {part3/case_studies/doubly_periodic_convection/Qsurf.ps} } |
825 |
|
|
\end{center} |
826 |
|
|
\caption{ |
827 |
|
|
} |
828 |
cnh |
1.2 |
\label{FIG:eg-bconv-Qsurf} |
829 |
helen |
1.1 |
\end{figure} |
830 |
|
|
|
831 |
|
|
\subsection{Running the example} |
832 |
adcroft |
1.3 |
\label{www:tutorials} |
833 |
helen |
1.1 |
|
834 |
|
|
\subsubsection{Code download} |
835 |
adcroft |
1.3 |
\label{www:tutorials} |
836 |
helen |
1.1 |
|
837 |
|
|
In order to run the examples you must first download the code distribution. |
838 |
|
|
Instructions for downloading the code can be found in \ref{sect:obtainingCode}. |
839 |
|
|
|
840 |
|
|
\subsubsection{Experiment Location} |
841 |
adcroft |
1.3 |
\label{www:tutorials} |
842 |
helen |
1.1 |
|
843 |
|
|
This example experiments is located under the release sub-directory |
844 |
|
|
|
845 |
|
|
\vspace{5mm} |
846 |
|
|
{\it verification/convection/ } |
847 |
|
|
|
848 |
|
|
\subsubsection{Running the Experiment} |
849 |
adcroft |
1.3 |
\label{www:tutorials} |
850 |
helen |
1.1 |
|
851 |
|
|
To run the experiment |
852 |
|
|
|
853 |
|
|
\begin{enumerate} |
854 |
|
|
\item Set the current directory to {\it input/ } |
855 |
|
|
|
856 |
|
|
\begin{verbatim} |
857 |
|
|
% cd input |
858 |
|
|
\end{verbatim} |
859 |
|
|
|
860 |
|
|
\item Verify that current directory is now correct |
861 |
|
|
|
862 |
|
|
\begin{verbatim} |
863 |
|
|
% pwd |
864 |
|
|
\end{verbatim} |
865 |
|
|
|
866 |
|
|
You should see a response on the screen ending in |
867 |
|
|
|
868 |
|
|
{\it verification/convection/input } |
869 |
|
|
|
870 |
|
|
|
871 |
|
|
\item Run the genmake script to create the experiment {\it Makefile} |
872 |
|
|
|
873 |
|
|
\begin{verbatim} |
874 |
|
|
% ../../../tools/genmake -mods=../code |
875 |
|
|
\end{verbatim} |
876 |
|
|
|
877 |
|
|
\item Create a list of header file dependencies in {\it Makefile} |
878 |
|
|
|
879 |
|
|
\begin{verbatim} |
880 |
|
|
% make depend |
881 |
|
|
\end{verbatim} |
882 |
|
|
|
883 |
|
|
\item Build the executable file. |
884 |
|
|
|
885 |
|
|
\begin{verbatim} |
886 |
|
|
% make |
887 |
|
|
\end{verbatim} |
888 |
|
|
|
889 |
|
|
\item Run the {\it mitgcmuv} executable |
890 |
|
|
|
891 |
|
|
\begin{verbatim} |
892 |
|
|
% ./mitgcmuv |
893 |
|
|
\end{verbatim} |
894 |
|
|
|
895 |
|
|
\end{enumerate} |
896 |
|
|
|
897 |
|
|
|