--- manual/s_examples/barotropic_gyre/baro.tex 2002/02/28 19:32:19 1.8 +++ manual/s_examples/barotropic_gyre/baro.tex 2006/06/27 19:08:22 1.14 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/barotropic_gyre/baro.tex,v 1.8 2002/02/28 19:32:19 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/barotropic_gyre/baro.tex,v 1.14 2006/06/27 19:08:22 molod Exp $ % $Name: $ \bodytext{bgcolor="#FFFFFFFF"} @@ -13,25 +13,18 @@ %{\large May 2001} %\end{center} -This is the first in a series of tutorials describing -example MITgcm numerical experiments. The example experiments -include both straightforward examples of idealized geophysical -fluid simulations and more involved cases encompassing -large scale modeling and -automatic differentiation. Both hydrostatic and non-hydrostatic -experiments are presented, as well as experiments employing -Cartesian, spherical-polar and cube-sphere coordinate systems. -These ``case study'' documents include information describing -the experimental configuration and detailed information on how to -configure the MITgcm code and input files for each experiment. - -\section{Barotropic Ocean Gyre In Cartesian Coordinates} +\section[Barotropic Gyre MITgcm Example]{Barotropic Ocean Gyre In Cartesian Coordinates} \label{sect:eg-baro} +\label{www:tutorials} +\begin{rawhtml} + +\end{rawhtml} This example experiment demonstrates using the MITgcm to simulate -a Barotropic, wind-forced, ocean gyre circulation. The experiment -is a numerical rendition of the gyre circulation problem similar +a Barotropic, wind-forced, ocean gyre circulation. The files for this +experiment can be found in the verification directory tutorial\_barotropic\_gyre. +The experiment is a numerical rendition of the gyre circulation problem similar to the problems described analytically by Stommel in 1966 \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. @@ -67,12 +60,17 @@ Figure \ref{FIG:eg-baro-simulation_config} summarizes the configuration simulated. +%% === eh3 === \begin{figure} -\begin{center} - \resizebox{7.5in}{5.5in}{ - \includegraphics*[0.2in,0.7in][10.5in,10.5in] - {part3/case_studies/barotropic_gyre/simulation_config.eps} } -\end{center} +%% \begin{center} +%% \resizebox{7.5in}{5.5in}{ +%% \includegraphics*[0.2in,0.7in][10.5in,10.5in] +%% {part3/case_studies/barotropic_gyre/simulation_config.eps} } +%% \end{center} +\centerline{ + \scalefig{.95} + \epsfbox{part3/case_studies/barotropic_gyre/simulation_config.eps} +} \caption{Schematic of simulation domain and wind-stress forcing function for barotropic gyre numerical experiment. The domain is enclosed bu solid walls at $x=$~0,1200km and at $y=$~0,1200km.} @@ -80,6 +78,7 @@ \end{figure} \subsection{Equations Solved} +\label{www:tutorials} The model is configured in hydrostatic form. The implicit free surface form of the pressure equation described in Marshall et. al \cite{marshall:97a} is employed. @@ -114,6 +113,7 @@ \subsection{Discrete Numerical Configuration} +\label{www:tutorials} The domain is discretised with a uniform grid spacing in the horizontal set to @@ -122,6 +122,7 @@ model is configured with a single layer with depth, $\Delta z$, of $5000$~m. \subsubsection{Numerical Stability Criteria} +\label{www:tutorials} The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. This value is chosen to yield a Munk layer width \cite{adcroft:95}, @@ -175,6 +176,7 @@ of 0.5 and limits $\delta t$ to $1200s$. \subsection{Code Configuration} +\label{www:tutorials} \label{SEC:eg-baro-code_config} The model configuration for this experiment resides under the @@ -194,6 +196,7 @@ to these files associated with this experiment. \subsubsection{File {\it input/data}} +\label{www:tutorials} This file, reproduced completely below, specifies the main parameters for the experiment. The parameters that are significant for this configuration @@ -305,16 +308,19 @@ \end{small} \subsubsection{File {\it input/data.pkg}} +\label{www:tutorials} This file uses standard default values and does not contain customizations for this experiment. \subsubsection{File {\it input/eedata}} +\label{www:tutorials} This file uses standard default values and does not contain customizations for this experiment. \subsubsection{File {\it input/windx.sin\_y}} +\label{www:tutorials} The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. @@ -325,6 +331,7 @@ code for creating the {\it input/windx.sin\_y} file. \subsubsection{File {\it input/topog.box}} +\label{www:tutorials} The {\it input/topog.box} file specifies a two-dimensional ($x,y$) @@ -336,6 +343,7 @@ code for creating the {\it input/topog.box} file. \subsubsection{File {\it code/SIZE.h}} +\label{www:tutorials} Two lines are customized in this file for the current experiment @@ -358,12 +366,14 @@ \end{small} \subsubsection{File {\it code/CPP\_OPTIONS.h}} +\label{www:tutorials} This file uses standard default values and does not contain customizations for this experiment. \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} +\label{www:tutorials} This file uses standard default values and does not contain customizations for this experiment.