| 2 |
% $Name$ |
% $Name$ |
| 3 |
|
|
| 4 |
\section{Example: Barotropic Ocean Gyre In Cartesian Coordinates} |
\section{Example: Barotropic Ocean Gyre In Cartesian Coordinates} |
| 5 |
\label{sec:eg-baro} |
\label{sect:eg-baro} |
| 6 |
|
|
| 7 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
| 8 |
|
|
| 82 |
|
|
| 83 |
\subsection{Equations Solved} |
\subsection{Equations Solved} |
| 84 |
The model is configured in hydrostatic form. The implicit free surface form of the |
The model is configured in hydrostatic form. The implicit free surface form of the |
| 85 |
pressure equation described in Marshall et. al \cite{Marshall97a} is |
pressure equation described in Marshall et. al \cite{marshall:97a} is |
| 86 |
employed. |
employed. |
| 87 |
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
| 88 |
dissipation. The wind-stress momentum input is added to the momentum equation |
dissipation. The wind-stress momentum input is added to the momentum equation |
| 125 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
| 126 |
|
|
| 127 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
| 128 |
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
| 129 |
|
|
| 130 |
\begin{eqnarray} |
\begin{eqnarray} |
| 131 |
\label{EQ:munk_layer} |
\label{EQ:munk_layer} |
| 139 |
|
|
| 140 |
\noindent The model is stepped forward with a |
\noindent The model is stepped forward with a |
| 141 |
time step $\delta t=1200$secs. With this time step the stability |
time step $\delta t=1200$secs. With this time step the stability |
| 142 |
parameter to the horizontal Laplacian friction \cite{Adcroft_thesis} |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
| 143 |
|
|
| 144 |
|
|
| 145 |
|
|
| 153 |
\\ |
\\ |
| 154 |
|
|
| 155 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
| 156 |
\cite{Adcroft_thesis} |
\cite{adcroft:95} |
| 157 |
|
|
| 158 |
\begin{eqnarray} |
\begin{eqnarray} |
| 159 |
\label{EQ:inertial_stability} |
\label{EQ:inertial_stability} |
| 164 |
limit for stability. |
limit for stability. |
| 165 |
\\ |
\\ |
| 166 |
|
|
| 167 |
\noindent The advective CFL \cite{Adcroft_thesis} for an extreme maximum |
\noindent The advective CFL \cite{adcroft:95} for an extreme maximum |
| 168 |
horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ |
horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ |
| 169 |
|
|
| 170 |
\begin{eqnarray} |
\begin{eqnarray} |