--- manual/s_examples/barotropic_gyre/baro.tex 2001/10/25 18:36:54 1.4 +++ manual/s_examples/barotropic_gyre/baro.tex 2001/11/13 18:19:18 1.5 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/barotropic_gyre/baro.tex,v 1.4 2001/10/25 18:36:54 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/barotropic_gyre/baro.tex,v 1.5 2001/11/13 18:19:18 adcroft Exp $ % $Name: $ \section{Example: Barotropic Ocean Gyre In Cartesian Coordinates} @@ -125,7 +125,7 @@ \subsubsection{Numerical Stability Criteria} The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. -This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, +This value is chosen to yield a Munk layer width \cite{adcroft:95}, \begin{eqnarray} \label{EQ:munk_layer} @@ -139,7 +139,7 @@ \noindent The model is stepped forward with a time step $\delta t=1200$secs. With this time step the stability -parameter to the horizontal Laplacian friction \cite{Adcroft_thesis} +parameter to the horizontal Laplacian friction \cite{adcroft:95} @@ -153,7 +153,7 @@ \\ \noindent The numerical stability for inertial oscillations -\cite{Adcroft_thesis} +\cite{adcroft:95} \begin{eqnarray} \label{EQ:inertial_stability} @@ -164,7 +164,7 @@ limit for stability. \\ -\noindent The advective CFL \cite{Adcroft_thesis} for an extreme maximum +\noindent The advective CFL \cite{adcroft:95} for an extreme maximum horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ \begin{eqnarray}