1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
|
\section{Example: Barotropic Ocean Gyre In Cartesian Coordinates} |
|
|
\label{sec:eg-baro} |
|
|
|
|
4 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
5 |
|
|
6 |
%\begin{center} |
%\begin{center} |
13 |
%{\large May 2001} |
%{\large May 2001} |
14 |
%\end{center} |
%\end{center} |
15 |
|
|
16 |
This is the first in a series of sections describing |
\section[Barotropic Gyre MITgcm Example]{Barotropic Ocean Gyre In Cartesian Coordinates} |
17 |
example MITgcm numerical experiments. The example experiments |
\label{sect:eg-baro} |
18 |
include both straightforward examples of idealized geophysical |
\label{www:tutorials} |
19 |
fluid simulations and more involved cases encompassing |
\begin{rawhtml} |
20 |
large scale modeling and |
<!-- CMIREDIR:eg-baro: --> |
21 |
automatic differentiation. Both hydrostatic and non-hydrostatic |
\end{rawhtml} |
|
experiments are presented, as well as experiments employing |
|
|
Cartesian, spherical-polar and cube-sphere coordinate systems. |
|
|
These ``case study'' documents include information describing |
|
|
the experimental configuration and detailed information on how to |
|
|
configure the MITgcm code and input files for each experiment. |
|
22 |
|
|
|
\subsection{Experiment Overview} |
|
23 |
|
|
24 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
25 |
a Barotropic, wind-forced, ocean gyre circulation. The experiment |
a Barotropic, wind-forced, ocean gyre circulation. The files for this |
26 |
is a numerical rendition of the gyre circulation problem similar |
experiment can be found in the verification directory tutorial\_barotropic\_gyre. |
27 |
|
The experiment is a numerical rendition of the gyre circulation problem similar |
28 |
to the problems described analytically by Stommel in 1966 |
to the problems described analytically by Stommel in 1966 |
29 |
\cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. |
\cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. |
30 |
|
|
37 |
equation |
equation |
38 |
|
|
39 |
\begin{equation} |
\begin{equation} |
40 |
\label{EQ:fcori} |
\label{EQ:eg-baro-fcori} |
41 |
f(y) = f_{0}+\beta y |
f(y) = f_{0}+\beta y |
42 |
\end{equation} |
\end{equation} |
43 |
|
|
44 |
\noindent where $y$ is the distance along the ``north-south'' axis of the |
\noindent where $y$ is the distance along the ``north-south'' axis of the |
45 |
simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in |
simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in |
46 |
(\ref{EQ:fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$. |
(\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$. |
47 |
\\ |
\\ |
48 |
\\ |
\\ |
49 |
The sinusoidal wind-stress variations are defined according to |
The sinusoidal wind-stress variations are defined according to |
50 |
|
|
51 |
\begin{equation} |
\begin{equation} |
52 |
\label{EQ:taux} |
\label{EQ:eg-baro-taux} |
53 |
\tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y}) |
\tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y}) |
54 |
\end{equation} |
\end{equation} |
55 |
|
|
57 |
$\tau_0$ is set to $0.1N m^{-2}$. |
$\tau_0$ is set to $0.1N m^{-2}$. |
58 |
\\ |
\\ |
59 |
\\ |
\\ |
60 |
Figure \ref{FIG:simulation_config} |
Figure \ref{FIG:eg-baro-simulation_config} |
61 |
summarizes the configuration simulated. |
summarizes the configuration simulated. |
62 |
|
|
63 |
|
%% === eh3 === |
64 |
\begin{figure} |
\begin{figure} |
65 |
\begin{center} |
%% \begin{center} |
66 |
\resizebox{7.5in}{5.5in}{ |
%% \resizebox{7.5in}{5.5in}{ |
67 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
%% \includegraphics*[0.2in,0.7in][10.5in,10.5in] |
68 |
{part3/case_studies/barotropic_gyre/simulation_config.eps} } |
%% {part3/case_studies/barotropic_gyre/simulation_config.eps} } |
69 |
\end{center} |
%% \end{center} |
70 |
|
\centerline{ |
71 |
|
\scalefig{.95} |
72 |
|
\epsfbox{part3/case_studies/barotropic_gyre/simulation_config.eps} |
73 |
|
} |
74 |
\caption{Schematic of simulation domain and wind-stress forcing function |
\caption{Schematic of simulation domain and wind-stress forcing function |
75 |
for barotropic gyre numerical experiment. The domain is enclosed bu solid |
for barotropic gyre numerical experiment. The domain is enclosed bu solid |
76 |
walls at $x=$~0,1200km and at $y=$~0,1200km.} |
walls at $x=$~0,1200km and at $y=$~0,1200km.} |
77 |
\label{FIG:simulation_config} |
\label{FIG:eg-baro-simulation_config} |
78 |
\end{figure} |
\end{figure} |
79 |
|
|
80 |
\subsection{Equations Solved} |
\subsection{Equations Solved} |
81 |
|
\label{www:tutorials} |
82 |
The model is configured in hydrostatic form. The implicit free surface form of the |
The model is configured in hydrostatic form. The implicit free surface form of the |
83 |
pressure equation described in Marshall et. al \cite{Marshall97a} is |
pressure equation described in Marshall et. al \cite{marshall:97a} is |
84 |
employed. |
employed. |
85 |
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
86 |
dissipation. The wind-stress momentum input is added to the momentum equation |
dissipation. The wind-stress momentum input is added to the momentum equation |
90 |
configuration as follows |
configuration as follows |
91 |
|
|
92 |
\begin{eqnarray} |
\begin{eqnarray} |
93 |
\label{EQ:model_equations} |
\label{EQ:eg-baro-model_equations} |
94 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
95 |
g\frac{\partial \eta}{\partial x} - |
g\frac{\partial \eta}{\partial x} - |
96 |
A_{h}\nabla_{h}^2u |
A_{h}\nabla_{h}^2u |
113 |
|
|
114 |
|
|
115 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
116 |
|
\label{www:tutorials} |
117 |
|
|
118 |
The domain is discretised with |
The domain is discretised with |
119 |
a uniform grid spacing in the horizontal set to |
a uniform grid spacing in the horizontal set to |
122 |
model is configured with a single layer with depth, $\Delta z$, of $5000$~m. |
model is configured with a single layer with depth, $\Delta z$, of $5000$~m. |
123 |
|
|
124 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
125 |
|
\label{www:tutorials} |
126 |
|
|
127 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
128 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
129 |
|
|
130 |
\begin{eqnarray} |
\begin{eqnarray} |
131 |
\label{EQ:munk_layer} |
\label{EQ:eg-baro-munk_layer} |
132 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
133 |
\end{eqnarray} |
\end{eqnarray} |
134 |
|
|
144 |
|
|
145 |
|
|
146 |
\begin{eqnarray} |
\begin{eqnarray} |
147 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-baro-laplacian_stability} |
148 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
149 |
\end{eqnarray} |
\end{eqnarray} |
150 |
|
|
156 |
\cite{adcroft:95} |
\cite{adcroft:95} |
157 |
|
|
158 |
\begin{eqnarray} |
\begin{eqnarray} |
159 |
\label{EQ:inertial_stability} |
\label{EQ:eg-baro-inertial_stability} |
160 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
161 |
\end{eqnarray} |
\end{eqnarray} |
162 |
|
|
168 |
horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ |
horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ |
169 |
|
|
170 |
\begin{eqnarray} |
\begin{eqnarray} |
171 |
\label{EQ:cfl_stability} |
\label{EQ:eg-baro-cfl_stability} |
172 |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
173 |
\end{eqnarray} |
\end{eqnarray} |
174 |
|
|
176 |
of 0.5 and limits $\delta t$ to $1200s$. |
of 0.5 and limits $\delta t$ to $1200s$. |
177 |
|
|
178 |
\subsection{Code Configuration} |
\subsection{Code Configuration} |
179 |
\label{SEC:code_config} |
\label{www:tutorials} |
180 |
|
\label{SEC:eg-baro-code_config} |
181 |
|
|
182 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
183 |
directory {\it verification/exp0/}. The experiment files |
directory {\it verification/exp0/}. The experiment files |
196 |
to these files associated with this experiment. |
to these files associated with this experiment. |
197 |
|
|
198 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
199 |
|
\label{www:tutorials} |
200 |
|
|
201 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |
202 |
for the experiment. The parameters that are significant for this configuration |
for the experiment. The parameters that are significant for this configuration |
308 |
\end{small} |
\end{small} |
309 |
|
|
310 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
311 |
|
\label{www:tutorials} |
312 |
|
|
313 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
314 |
customizations for this experiment. |
customizations for this experiment. |
315 |
|
|
316 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
317 |
|
\label{www:tutorials} |
318 |
|
|
319 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
320 |
customizations for this experiment. |
customizations for this experiment. |
321 |
|
|
322 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
323 |
|
\label{www:tutorials} |
324 |
|
|
325 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
326 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
331 |
code for creating the {\it input/windx.sin\_y} file. |
code for creating the {\it input/windx.sin\_y} file. |
332 |
|
|
333 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/topog.box}} |
334 |
|
\label{www:tutorials} |
335 |
|
|
336 |
|
|
337 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
343 |
code for creating the {\it input/topog.box} file. |
code for creating the {\it input/topog.box} file. |
344 |
|
|
345 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
346 |
|
\label{www:tutorials} |
347 |
|
|
348 |
Two lines are customized in this file for the current experiment |
Two lines are customized in this file for the current experiment |
349 |
|
|
366 |
\end{small} |
\end{small} |
367 |
|
|
368 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
369 |
|
\label{www:tutorials} |
370 |
|
|
371 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
372 |
customizations for this experiment. |
customizations for this experiment. |
373 |
|
|
374 |
|
|
375 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
376 |
|
\label{www:tutorials} |
377 |
|
|
378 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
379 |
customizations for this experiment. |
customizations for this experiment. |