1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
|
\section{Example: Barotropic Ocean Gyre In Cartesian Coordinates} |
|
|
|
|
4 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
5 |
|
|
6 |
%\begin{center} |
%\begin{center} |
13 |
%{\large May 2001} |
%{\large May 2001} |
14 |
%\end{center} |
%\end{center} |
15 |
|
|
16 |
\subsection{Introduction} |
This is the first in a series of tutorials describing |
|
|
|
|
This document is the first in a series of documents describing |
|
17 |
example MITgcm numerical experiments. The example experiments |
example MITgcm numerical experiments. The example experiments |
18 |
include both straightforward examples of idealised geophysical |
include both straightforward examples of idealized geophysical |
19 |
fluid simulations and more involved cases encompassing |
fluid simulations and more involved cases encompassing |
20 |
large scale modeling and |
large scale modeling and |
21 |
automatic differentiation. Both hydrostatic and non-hydrostatic |
automatic differentiation. Both hydrostatic and non-hydrostatic |
22 |
experiements are presented, as well as experiments employing |
experiments are presented, as well as experiments employing |
23 |
cartesian, spherical-polar and cube-sphere coordinate systems. |
Cartesian, spherical-polar and cube-sphere coordinate systems. |
24 |
These ``case study'' documents include information describing |
These ``case study'' documents include information describing |
25 |
the experimental configuration and detailed information on how to |
the experimental configuration and detailed information on how to |
26 |
configure the MITgcm code and input files for each experiment. |
configure the MITgcm code and input files for each experiment. |
27 |
|
|
28 |
\subsection{Experiment Overview} |
\section{Barotropic Ocean Gyre In Cartesian Coordinates} |
29 |
|
\label{sect:eg-baro} |
30 |
|
\label{www:tutorials} |
31 |
|
|
32 |
|
|
33 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
34 |
a barotropic, wind-forced, ocean gyre circulation. The experiment |
a Barotropic, wind-forced, ocean gyre circulation. The experiment |
35 |
is a numerical rendition of the gyre circulation problem simliar |
is a numerical rendition of the gyre circulation problem similar |
36 |
to the problems described analytically by Stommel in 1966 |
to the problems described analytically by Stommel in 1966 |
37 |
\cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. |
\cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. |
38 |
|
|
40 |
is configured to represent a rectangular enclosed box of fluid, |
is configured to represent a rectangular enclosed box of fluid, |
41 |
$1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced |
$1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced |
42 |
by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally |
by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally |
43 |
in the ``north-south'' direction. Topologically the grid is cartesian and |
in the ``north-south'' direction. Topologically the grid is Cartesian and |
44 |
the coriolis parameter $f$ is defined according to a mid-latitude beta-plane |
the coriolis parameter $f$ is defined according to a mid-latitude beta-plane |
45 |
equation |
equation |
46 |
|
|
47 |
\begin{equation} |
\begin{equation} |
48 |
\label{EQ:fcori} |
\label{EQ:eg-baro-fcori} |
49 |
f(y) = f_{0}+\beta y |
f(y) = f_{0}+\beta y |
50 |
\end{equation} |
\end{equation} |
51 |
|
|
52 |
\noindent where $y$ is the distance along the ``north-south'' axis of the |
\noindent where $y$ is the distance along the ``north-south'' axis of the |
53 |
simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in |
simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in |
54 |
(\ref{EQ:fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$. |
(\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$. |
55 |
\\ |
\\ |
56 |
\\ |
\\ |
57 |
The sinusoidal wind-stress variations are defined according to |
The sinusoidal wind-stress variations are defined according to |
58 |
|
|
59 |
\begin{equation} |
\begin{equation} |
60 |
\label{EQ:taux} |
\label{EQ:eg-baro-taux} |
61 |
\tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y}) |
\tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y}) |
62 |
\end{equation} |
\end{equation} |
63 |
|
|
65 |
$\tau_0$ is set to $0.1N m^{-2}$. |
$\tau_0$ is set to $0.1N m^{-2}$. |
66 |
\\ |
\\ |
67 |
\\ |
\\ |
68 |
Figure \ref{FIG:simulation_config} |
Figure \ref{FIG:eg-baro-simulation_config} |
69 |
summarises the configuration simulated. |
summarizes the configuration simulated. |
70 |
|
|
71 |
|
%% === eh3 === |
72 |
\begin{figure} |
\begin{figure} |
73 |
|
%% \begin{center} |
74 |
|
%% \resizebox{7.5in}{5.5in}{ |
75 |
|
%% \includegraphics*[0.2in,0.7in][10.5in,10.5in] |
76 |
|
%% {part3/case_studies/barotropic_gyre/simulation_config.eps} } |
77 |
|
%% \end{center} |
78 |
\centerline{ |
\centerline{ |
79 |
\resizebox{7.5in}{5.5in}{ |
\scalefig{.95} |
80 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
\epsfbox{part3/case_studies/barotropic_gyre/simulation_config.eps} |
|
{part3/case_studies/barotropic_gyre/simulation_config.eps} } |
|
81 |
} |
} |
82 |
\caption{Schematic of simulation domain and wind-stress forcing function |
\caption{Schematic of simulation domain and wind-stress forcing function |
83 |
for barotropic gyre numerical experiment. The domain is enclosed bu solid |
for barotropic gyre numerical experiment. The domain is enclosed bu solid |
84 |
walls at $x=$~0,1200km and at $y=$~0,1200km.} |
walls at $x=$~0,1200km and at $y=$~0,1200km.} |
85 |
\label{FIG:simulation_config} |
\label{FIG:eg-baro-simulation_config} |
86 |
\end{figure} |
\end{figure} |
87 |
|
|
88 |
\subsection{Discrete Numerical Configuration} |
\subsection{Equations Solved} |
89 |
|
\label{www:tutorials} |
90 |
The model is configured in hydrostatic form. The domain is discretised with |
The model is configured in hydrostatic form. The implicit free surface form of the |
91 |
a uniform grid spacing in the horizontal set to |
pressure equation described in Marshall et. al \cite{marshall:97a} is |
92 |
$\Delta x=\Delta y=20$~km, so |
employed. |
93 |
that there are sixty grid cells in the $x$ and $y$ directions. Vertically the |
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
|
model is configured with a single layer with depth, $\Delta z$, of $5000$~m. |
|
|
The implicit free surface form of the |
|
|
pressure equation described in Marshall et. al \cite{Marshall97a} is |
|
|
employed. |
|
|
A horizontal laplacian operator $\nabla_{h}^2$ provides viscous |
|
94 |
dissipation. The wind-stress momentum input is added to the momentum equation |
dissipation. The wind-stress momentum input is added to the momentum equation |
95 |
for the ``zonal flow'', $u$. Other terms in the model |
for the ``zonal flow'', $u$. Other terms in the model |
96 |
are explicitly switched off for this experiement configuration (see section |
are explicitly switched off for this experiment configuration (see section |
97 |
\ref{SEC:code_config} ), yielding an active set of equations solved in this |
\ref{SEC:code_config} ), yielding an active set of equations solved in this |
98 |
configuration as follows |
configuration as follows |
99 |
|
|
100 |
\begin{eqnarray} |
\begin{eqnarray} |
101 |
\label{EQ:model_equations} |
\label{EQ:eg-baro-model_equations} |
102 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
103 |
g\frac{\partial \eta}{\partial x} - |
g\frac{\partial \eta}{\partial x} - |
104 |
A_{h}\nabla_{h}^2u |
A_{h}\nabla_{h}^2u |
105 |
& = & |
& = & |
106 |
\frac{\tau_{x}}{\rho_{0}\Delta z} |
\frac{\tau_{x}}{\rho_{0}\Delta z} |
107 |
\\ |
\\ |
108 |
\frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} - |
\frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} - |
109 |
A_{h}\nabla_{h}^2v |
A_{h}\nabla_{h}^2v |
110 |
& = & |
& = & |
111 |
0 |
0 |
112 |
\\ |
\\ |
116 |
\end{eqnarray} |
\end{eqnarray} |
117 |
|
|
118 |
\noindent where $u$ and $v$ and the $x$ and $y$ components of the |
\noindent where $u$ and $v$ and the $x$ and $y$ components of the |
119 |
flow vector $\vec{u}$. |
flow vector $\vec{u}$. |
120 |
\\ |
\\ |
121 |
|
|
122 |
|
|
123 |
|
\subsection{Discrete Numerical Configuration} |
124 |
|
\label{www:tutorials} |
125 |
|
|
126 |
|
The domain is discretised with |
127 |
|
a uniform grid spacing in the horizontal set to |
128 |
|
$\Delta x=\Delta y=20$~km, so |
129 |
|
that there are sixty grid cells in the $x$ and $y$ directions. Vertically the |
130 |
|
model is configured with a single layer with depth, $\Delta z$, of $5000$~m. |
131 |
|
|
132 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
133 |
|
\label{www:tutorials} |
134 |
|
|
135 |
The laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
136 |
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
137 |
|
|
138 |
\begin{eqnarray} |
\begin{eqnarray} |
139 |
\label{EQ:munk_layer} |
\label{EQ:eg-baro-munk_layer} |
140 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
141 |
\end{eqnarray} |
\end{eqnarray} |
142 |
|
|
147 |
|
|
148 |
\noindent The model is stepped forward with a |
\noindent The model is stepped forward with a |
149 |
time step $\delta t=1200$secs. With this time step the stability |
time step $\delta t=1200$secs. With this time step the stability |
150 |
parameter to the horizontal laplacian friction \cite{Adcroft_thesis} |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
151 |
|
|
152 |
|
|
153 |
|
|
154 |
\begin{eqnarray} |
\begin{eqnarray} |
155 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-baro-laplacian_stability} |
156 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
157 |
\end{eqnarray} |
\end{eqnarray} |
158 |
|
|
161 |
\\ |
\\ |
162 |
|
|
163 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
164 |
\cite{Adcroft_thesis} |
\cite{adcroft:95} |
165 |
|
|
166 |
\begin{eqnarray} |
\begin{eqnarray} |
167 |
\label{EQ:inertial_stability} |
\label{EQ:eg-baro-inertial_stability} |
168 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
169 |
\end{eqnarray} |
\end{eqnarray} |
170 |
|
|
172 |
limit for stability. |
limit for stability. |
173 |
\\ |
\\ |
174 |
|
|
175 |
\noindent The advective CFL \cite{Adcroft_thesis} for an extreme maximum |
\noindent The advective CFL \cite{adcroft:95} for an extreme maximum |
176 |
horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ |
horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ |
177 |
|
|
178 |
\begin{eqnarray} |
\begin{eqnarray} |
179 |
\label{EQ:cfl_stability} |
\label{EQ:eg-baro-cfl_stability} |
180 |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
181 |
\end{eqnarray} |
\end{eqnarray} |
182 |
|
|
184 |
of 0.5 and limits $\delta t$ to $1200s$. |
of 0.5 and limits $\delta t$ to $1200s$. |
185 |
|
|
186 |
\subsection{Code Configuration} |
\subsection{Code Configuration} |
187 |
\label{SEC:code_config} |
\label{www:tutorials} |
188 |
|
\label{SEC:eg-baro-code_config} |
189 |
|
|
190 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
191 |
directory {\it verification/exp0/}. The experiment files |
directory {\it verification/exp0/}. The experiment files |
199 |
\item {\it code/CPP\_OPTIONS.h}, |
\item {\it code/CPP\_OPTIONS.h}, |
200 |
\item {\it code/SIZE.h}. |
\item {\it code/SIZE.h}. |
201 |
\end{itemize} |
\end{itemize} |
202 |
contain the code customisations and parameter settings for this |
contain the code customizations and parameter settings for this |
203 |
experiements. Below we describe the customisations |
experiments. Below we describe the customizations |
204 |
to these files associated with this experiment. |
to these files associated with this experiment. |
205 |
|
|
206 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
207 |
|
\label{www:tutorials} |
208 |
|
|
209 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |
210 |
for the experiment. The parameters that are significant for this configuration |
for the experiment. The parameters that are significant for this configuration |
213 |
\begin{itemize} |
\begin{itemize} |
214 |
|
|
215 |
\item Line 7, \begin{verbatim} viscAh=4.E2, \end{verbatim} this line sets |
\item Line 7, \begin{verbatim} viscAh=4.E2, \end{verbatim} this line sets |
216 |
the laplacian friction coefficient to $400 m^2s^{-1}$ |
the Laplacian friction coefficient to $400 m^2s^{-1}$ |
217 |
\item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets |
\item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets |
218 |
$\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$ |
$\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$ |
219 |
|
|
231 |
startTime=0, |
startTime=0, |
232 |
\end{verbatim} |
\end{verbatim} |
233 |
this line indicates that the experiment should start from $t=0$ |
this line indicates that the experiment should start from $t=0$ |
234 |
and implicitly supresses searching for checkpoint files associated |
and implicitly suppresses searching for checkpoint files associated |
235 |
with restarting an numerical integration from a previously saved state. |
with restarting an numerical integration from a previously saved state. |
236 |
|
|
237 |
\item Line 29, |
\item Line 29, |
253 |
usingCartesianGrid=.TRUE., |
usingCartesianGrid=.TRUE., |
254 |
\end{verbatim} |
\end{verbatim} |
255 |
This line requests that the simulation be performed in a |
This line requests that the simulation be performed in a |
256 |
cartesian coordinate system. |
Cartesian coordinate system. |
257 |
|
|
258 |
\item Line 41, |
\item Line 41, |
259 |
\begin{verbatim} |
\begin{verbatim} |
316 |
\end{small} |
\end{small} |
317 |
|
|
318 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
319 |
|
\label{www:tutorials} |
320 |
|
|
321 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
322 |
customisations for this experiment. |
customizations for this experiment. |
323 |
|
|
324 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
325 |
|
\label{www:tutorials} |
326 |
|
|
327 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
328 |
customisations for this experiment. |
customizations for this experiment. |
329 |
|
|
330 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
331 |
|
\label{www:tutorials} |
332 |
|
|
333 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
334 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
339 |
code for creating the {\it input/windx.sin\_y} file. |
code for creating the {\it input/windx.sin\_y} file. |
340 |
|
|
341 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/topog.box}} |
342 |
|
\label{www:tutorials} |
343 |
|
|
344 |
|
|
345 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
351 |
code for creating the {\it input/topog.box} file. |
code for creating the {\it input/topog.box} file. |
352 |
|
|
353 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
354 |
|
\label{www:tutorials} |
355 |
|
|
356 |
Two lines are customized in this file for the current experiment |
Two lines are customized in this file for the current experiment |
357 |
|
|
374 |
\end{small} |
\end{small} |
375 |
|
|
376 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
377 |
|
\label{www:tutorials} |
378 |
|
|
379 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
380 |
customisations for this experiment. |
customizations for this experiment. |
381 |
|
|
382 |
|
|
383 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
384 |
|
\label{www:tutorials} |
385 |
|
|
386 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
387 |
customisations for this experiment. |
customizations for this experiment. |
388 |
|
|