Parent Directory
|
Revision Log
|
Revision Graph
|
Patch
--- manual/s_examples/barotropic_gyre/baro.tex 2001/11/13 20:13:54 1.7
+++ manual/s_examples/barotropic_gyre/baro.tex 2002/02/28 19:32:19 1.8
@@ -1,9 +1,6 @@
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/barotropic_gyre/baro.tex,v 1.7 2001/11/13 20:13:54 adcroft Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/barotropic_gyre/baro.tex,v 1.8 2002/02/28 19:32:19 cnh Exp $
% $Name: $
-\section{Example: Barotropic Ocean Gyre In Cartesian Coordinates}
-\label{sect:eg-baro}
-
\bodytext{bgcolor="#FFFFFFFF"}
%\begin{center}
@@ -16,7 +13,7 @@
%{\large May 2001}
%\end{center}
-This is the first in a series of sections describing
+This is the first in a series of tutorials describing
example MITgcm numerical experiments. The example experiments
include both straightforward examples of idealized geophysical
fluid simulations and more involved cases encompassing
@@ -28,7 +25,9 @@
the experimental configuration and detailed information on how to
configure the MITgcm code and input files for each experiment.
-\subsection{Experiment Overview}
+\section{Barotropic Ocean Gyre In Cartesian Coordinates}
+\label{sect:eg-baro}
+
This example experiment demonstrates using the MITgcm to simulate
a Barotropic, wind-forced, ocean gyre circulation. The experiment
@@ -45,19 +44,19 @@
equation
\begin{equation}
-\label{EQ:fcori}
+\label{EQ:eg-baro-fcori}
f(y) = f_{0}+\beta y
\end{equation}
\noindent where $y$ is the distance along the ``north-south'' axis of the
simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in
-(\ref{EQ:fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$.
+(\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$.
\\
\\
The sinusoidal wind-stress variations are defined according to
\begin{equation}
-\label{EQ:taux}
+\label{EQ:eg-baro-taux}
\tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})
\end{equation}
@@ -65,7 +64,7 @@
$\tau_0$ is set to $0.1N m^{-2}$.
\\
\\
-Figure \ref{FIG:simulation_config}
+Figure \ref{FIG:eg-baro-simulation_config}
summarizes the configuration simulated.
\begin{figure}
@@ -77,7 +76,7 @@
\caption{Schematic of simulation domain and wind-stress forcing function
for barotropic gyre numerical experiment. The domain is enclosed bu solid
walls at $x=$~0,1200km and at $y=$~0,1200km.}
-\label{FIG:simulation_config}
+\label{FIG:eg-baro-simulation_config}
\end{figure}
\subsection{Equations Solved}
@@ -92,7 +91,7 @@
configuration as follows
\begin{eqnarray}
-\label{EQ:model_equations}
+\label{EQ:eg-baro-model_equations}
\frac{Du}{Dt} - fv +
g\frac{\partial \eta}{\partial x} -
A_{h}\nabla_{h}^2u
@@ -128,7 +127,7 @@
This value is chosen to yield a Munk layer width \cite{adcroft:95},
\begin{eqnarray}
-\label{EQ:munk_layer}
+\label{EQ:eg-baro-munk_layer}
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
\end{eqnarray}
@@ -144,7 +143,7 @@
\begin{eqnarray}
-\label{EQ:laplacian_stability}
+\label{EQ:eg-baro-laplacian_stability}
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}
\end{eqnarray}
@@ -156,7 +155,7 @@
\cite{adcroft:95}
\begin{eqnarray}
-\label{EQ:inertial_stability}
+\label{EQ:eg-baro-inertial_stability}
S_{i} = f^{2} {\delta t}^2
\end{eqnarray}
@@ -168,7 +167,7 @@
horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$
\begin{eqnarray}
-\label{EQ:cfl_stability}
+\label{EQ:eg-baro-cfl_stability}
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}
\end{eqnarray}
@@ -176,7 +175,7 @@
of 0.5 and limits $\delta t$ to $1200s$.
\subsection{Code Configuration}
-\label{SEC:code_config}
+\label{SEC:eg-baro-code_config}
The model configuration for this experiment resides under the
directory {\it verification/exp0/}. The experiment files
| ViewVC Help | |
| Powered by ViewVC 1.1.22 |