/[MITgcm]/manual/s_examples/barotropic_gyre/baro.tex
ViewVC logotype

Diff of /manual/s_examples/barotropic_gyre/baro.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

--- manual/s_examples/barotropic_gyre/baro.tex	2001/11/13 20:13:54	1.7
+++ manual/s_examples/barotropic_gyre/baro.tex	2002/02/28 19:32:19	1.8
@@ -1,9 +1,6 @@
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/barotropic_gyre/baro.tex,v 1.7 2001/11/13 20:13:54 adcroft Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/barotropic_gyre/baro.tex,v 1.8 2002/02/28 19:32:19 cnh Exp $
 % $Name:  $
 
-\section{Example: Barotropic Ocean Gyre In Cartesian Coordinates}
-\label{sect:eg-baro}
-
 \bodytext{bgcolor="#FFFFFFFF"}
 
 %\begin{center} 
@@ -16,7 +13,7 @@
 %{\large May 2001}
 %\end{center}
 
-This is the first in a series of sections describing
+This is the first in a series of tutorials describing
 example MITgcm numerical experiments. The example experiments 
 include both straightforward examples of idealized geophysical 
 fluid simulations and more involved cases encompassing
@@ -28,7 +25,9 @@
 the experimental configuration and detailed information on how to
 configure the MITgcm code and input files for each experiment.
 
-\subsection{Experiment Overview}
+\section{Barotropic Ocean Gyre In Cartesian Coordinates}
+\label{sect:eg-baro}
+
 
 This example experiment demonstrates using the MITgcm to simulate
 a Barotropic, wind-forced, ocean gyre circulation. The experiment 
@@ -45,19 +44,19 @@
 equation
 
 \begin{equation}
-\label{EQ:fcori}
+\label{EQ:eg-baro-fcori}
 f(y) = f_{0}+\beta y
 \end{equation}
  
 \noindent where $y$ is the distance along the ``north-south'' axis of the 
 simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in 
-(\ref{EQ:fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$. 
+(\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$. 
 \\
 \\
  The sinusoidal wind-stress variations are defined according to 
 
 \begin{equation}
-\label{EQ:taux}
+\label{EQ:eg-baro-taux}
 \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})
 \end{equation}
  
@@ -65,7 +64,7 @@
 $\tau_0$ is set to $0.1N m^{-2}$. 
 \\
 \\
-Figure \ref{FIG:simulation_config}
+Figure \ref{FIG:eg-baro-simulation_config}
 summarizes the configuration simulated.
 
 \begin{figure}
@@ -77,7 +76,7 @@
 \caption{Schematic of simulation domain and wind-stress forcing function 
 for barotropic gyre numerical experiment. The domain is enclosed bu solid
 walls at $x=$~0,1200km and at $y=$~0,1200km.}
-\label{FIG:simulation_config}
+\label{FIG:eg-baro-simulation_config}
 \end{figure}
 
 \subsection{Equations Solved}
@@ -92,7 +91,7 @@
 configuration as follows 
 
 \begin{eqnarray}
-\label{EQ:model_equations}
+\label{EQ:eg-baro-model_equations}
 \frac{Du}{Dt} - fv +
               g\frac{\partial \eta}{\partial x} -
               A_{h}\nabla_{h}^2u
@@ -128,7 +127,7 @@
 This value is chosen to yield a Munk layer width \cite{adcroft:95},
 
 \begin{eqnarray}
-\label{EQ:munk_layer}
+\label{EQ:eg-baro-munk_layer}
 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
 \end{eqnarray}
 
@@ -144,7 +143,7 @@
 
 
 \begin{eqnarray}
-\label{EQ:laplacian_stability}
+\label{EQ:eg-baro-laplacian_stability}
 S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}
 \end{eqnarray}
 
@@ -156,7 +155,7 @@
 \cite{adcroft:95} 
 
 \begin{eqnarray}
-\label{EQ:inertial_stability}
+\label{EQ:eg-baro-inertial_stability}
 S_{i} = f^{2} {\delta t}^2
 \end{eqnarray}
 
@@ -168,7 +167,7 @@
 horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$
 
 \begin{eqnarray}
-\label{EQ:cfl_stability}
+\label{EQ:eg-baro-cfl_stability}
 S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}
 \end{eqnarray}
 
@@ -176,7 +175,7 @@
 of 0.5 and limits $\delta t$ to $1200s$.
 
 \subsection{Code Configuration}
-\label{SEC:code_config}
+\label{SEC:eg-baro-code_config}
 
 The model configuration for this experiment resides under the 
 directory {\it verification/exp0/}.  The experiment files 

 

  ViewVC Help
Powered by ViewVC 1.1.22