| 1 |
% $Header$ |
% $Header$ |
| 2 |
% $Name$ |
% $Name$ |
| 3 |
|
|
|
\section{Example: Barotropic Ocean Gyre In Cartesian Coordinates} |
|
|
\label{sec:eg-baro} |
|
|
|
|
| 4 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
| 5 |
|
|
| 6 |
%\begin{center} |
%\begin{center} |
| 13 |
%{\large May 2001} |
%{\large May 2001} |
| 14 |
%\end{center} |
%\end{center} |
| 15 |
|
|
| 16 |
This is the first in a series of sections describing |
This is the first in a series of tutorials describing |
| 17 |
example MITgcm numerical experiments. The example experiments |
example MITgcm numerical experiments. The example experiments |
| 18 |
include both straightforward examples of idealized geophysical |
include both straightforward examples of idealized geophysical |
| 19 |
fluid simulations and more involved cases encompassing |
fluid simulations and more involved cases encompassing |
| 25 |
the experimental configuration and detailed information on how to |
the experimental configuration and detailed information on how to |
| 26 |
configure the MITgcm code and input files for each experiment. |
configure the MITgcm code and input files for each experiment. |
| 27 |
|
|
| 28 |
\subsection{Experiment Overview} |
\section{Barotropic Ocean Gyre In Cartesian Coordinates} |
| 29 |
|
\label{sect:eg-baro} |
| 30 |
|
|
| 31 |
|
|
| 32 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
| 33 |
a Barotropic, wind-forced, ocean gyre circulation. The experiment |
a Barotropic, wind-forced, ocean gyre circulation. The experiment |
| 44 |
equation |
equation |
| 45 |
|
|
| 46 |
\begin{equation} |
\begin{equation} |
| 47 |
\label{EQ:fcori} |
\label{EQ:eg-baro-fcori} |
| 48 |
f(y) = f_{0}+\beta y |
f(y) = f_{0}+\beta y |
| 49 |
\end{equation} |
\end{equation} |
| 50 |
|
|
| 51 |
\noindent where $y$ is the distance along the ``north-south'' axis of the |
\noindent where $y$ is the distance along the ``north-south'' axis of the |
| 52 |
simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in |
simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in |
| 53 |
(\ref{EQ:fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$. |
(\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$. |
| 54 |
\\ |
\\ |
| 55 |
\\ |
\\ |
| 56 |
The sinusoidal wind-stress variations are defined according to |
The sinusoidal wind-stress variations are defined according to |
| 57 |
|
|
| 58 |
\begin{equation} |
\begin{equation} |
| 59 |
\label{EQ:taux} |
\label{EQ:eg-baro-taux} |
| 60 |
\tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y}) |
\tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y}) |
| 61 |
\end{equation} |
\end{equation} |
| 62 |
|
|
| 64 |
$\tau_0$ is set to $0.1N m^{-2}$. |
$\tau_0$ is set to $0.1N m^{-2}$. |
| 65 |
\\ |
\\ |
| 66 |
\\ |
\\ |
| 67 |
Figure \ref{FIG:simulation_config} |
Figure \ref{FIG:eg-baro-simulation_config} |
| 68 |
summarizes the configuration simulated. |
summarizes the configuration simulated. |
| 69 |
|
|
| 70 |
\begin{figure} |
\begin{figure} |
| 76 |
\caption{Schematic of simulation domain and wind-stress forcing function |
\caption{Schematic of simulation domain and wind-stress forcing function |
| 77 |
for barotropic gyre numerical experiment. The domain is enclosed bu solid |
for barotropic gyre numerical experiment. The domain is enclosed bu solid |
| 78 |
walls at $x=$~0,1200km and at $y=$~0,1200km.} |
walls at $x=$~0,1200km and at $y=$~0,1200km.} |
| 79 |
\label{FIG:simulation_config} |
\label{FIG:eg-baro-simulation_config} |
| 80 |
\end{figure} |
\end{figure} |
| 81 |
|
|
| 82 |
\subsection{Equations Solved} |
\subsection{Equations Solved} |
| 91 |
configuration as follows |
configuration as follows |
| 92 |
|
|
| 93 |
\begin{eqnarray} |
\begin{eqnarray} |
| 94 |
\label{EQ:model_equations} |
\label{EQ:eg-baro-model_equations} |
| 95 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
| 96 |
g\frac{\partial \eta}{\partial x} - |
g\frac{\partial \eta}{\partial x} - |
| 97 |
A_{h}\nabla_{h}^2u |
A_{h}\nabla_{h}^2u |
| 127 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
| 128 |
|
|
| 129 |
\begin{eqnarray} |
\begin{eqnarray} |
| 130 |
\label{EQ:munk_layer} |
\label{EQ:eg-baro-munk_layer} |
| 131 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
| 132 |
\end{eqnarray} |
\end{eqnarray} |
| 133 |
|
|
| 143 |
|
|
| 144 |
|
|
| 145 |
\begin{eqnarray} |
\begin{eqnarray} |
| 146 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-baro-laplacian_stability} |
| 147 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
| 148 |
\end{eqnarray} |
\end{eqnarray} |
| 149 |
|
|
| 155 |
\cite{adcroft:95} |
\cite{adcroft:95} |
| 156 |
|
|
| 157 |
\begin{eqnarray} |
\begin{eqnarray} |
| 158 |
\label{EQ:inertial_stability} |
\label{EQ:eg-baro-inertial_stability} |
| 159 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
| 160 |
\end{eqnarray} |
\end{eqnarray} |
| 161 |
|
|
| 167 |
horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ |
horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ |
| 168 |
|
|
| 169 |
\begin{eqnarray} |
\begin{eqnarray} |
| 170 |
\label{EQ:cfl_stability} |
\label{EQ:eg-baro-cfl_stability} |
| 171 |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
| 172 |
\end{eqnarray} |
\end{eqnarray} |
| 173 |
|
|
| 175 |
of 0.5 and limits $\delta t$ to $1200s$. |
of 0.5 and limits $\delta t$ to $1200s$. |
| 176 |
|
|
| 177 |
\subsection{Code Configuration} |
\subsection{Code Configuration} |
| 178 |
\label{SEC:code_config} |
\label{SEC:eg-baro-code_config} |
| 179 |
|
|
| 180 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
| 181 |
directory {\it verification/exp0/}. The experiment files |
directory {\it verification/exp0/}. The experiment files |