| 125 | \subsubsection{Numerical Stability Criteria} | \subsubsection{Numerical Stability Criteria} | 
| 126 |  |  | 
| 127 | The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. | The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. | 
| 128 | This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, | This value is chosen to yield a Munk layer width \cite{adcroft:95}, | 
| 129 |  |  | 
| 130 | \begin{eqnarray} | \begin{eqnarray} | 
| 131 | \label{EQ:munk_layer} | \label{EQ:munk_layer} | 
| 139 |  |  | 
| 140 | \noindent The model is stepped forward with a | \noindent The model is stepped forward with a | 
| 141 | time step $\delta t=1200$secs. With this time step the stability | time step $\delta t=1200$secs. With this time step the stability | 
| 142 | parameter to the horizontal Laplacian friction \cite{Adcroft_thesis} | parameter to the horizontal Laplacian friction \cite{adcroft:95} | 
| 143 |  |  | 
| 144 |  |  | 
| 145 |  |  | 
| 153 | \\ | \\ | 
| 154 |  |  | 
| 155 | \noindent The numerical stability for inertial oscillations | \noindent The numerical stability for inertial oscillations | 
| 156 | \cite{Adcroft_thesis} | \cite{adcroft:95} | 
| 157 |  |  | 
| 158 | \begin{eqnarray} | \begin{eqnarray} | 
| 159 | \label{EQ:inertial_stability} | \label{EQ:inertial_stability} | 
| 164 | limit for stability. | limit for stability. | 
| 165 | \\ | \\ | 
| 166 |  |  | 
| 167 | \noindent The advective CFL \cite{Adcroft_thesis} for an extreme maximum | \noindent The advective CFL \cite{adcroft:95} for an extreme maximum | 
| 168 | horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ | horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ | 
| 169 |  |  | 
| 170 | \begin{eqnarray} | \begin{eqnarray} |