| 1 | % $Header$ | % $Header$ | 
| 2 | % $Name$ | % $Name$ | 
| 3 |  |  | 
|  | \section{Example: Barotropic Ocean Gyre In Cartesian Coordinates} |  | 
|  |  |  | 
| 4 | \bodytext{bgcolor="#FFFFFFFF"} | \bodytext{bgcolor="#FFFFFFFF"} | 
| 5 |  |  | 
| 6 | %\begin{center} | %\begin{center} | 
| 13 | %{\large May 2001} | %{\large May 2001} | 
| 14 | %\end{center} | %\end{center} | 
| 15 |  |  | 
| 16 | \subsection{Introduction} | \section[Barotropic Gyre MITgcm Example]{Barotropic Ocean Gyre In Cartesian Coordinates} | 
| 17 |  | %\label{www:tutorials} | 
| 18 | This document is the first in a series of documents describing | \label{sec:eg-baro} | 
| 19 | example MITgcm numerical experiments. The example experiments | \begin{rawhtml} | 
| 20 | include both straightforward examples of idealised geophysical | <!-- CMIREDIR:eg-baro: --> | 
| 21 | fluid simulations and more involved cases encompassing | \end{rawhtml} | 
| 22 | large scale modeling and | \begin{center} | 
| 23 | automatic differentiation. Both hydrostatic and non-hydrostatic | (in directory: {\it verification/tutorial\_barotropic\_gyre/}) | 
| 24 | experiements are presented, as well as experiments employing | \end{center} | 
|  | cartesian, spherical-polar and cube-sphere coordinate systems. |  | 
|  | These ``case study'' documents include information describing |  | 
|  | the experimental configuration and detailed information on how to |  | 
|  | configure the MITgcm code and input files for each experiment. |  | 
|  |  |  | 
|  | \subsection{Experiment Overview} |  | 
| 25 |  |  | 
| 26 | This example experiment demonstrates using the MITgcm to simulate | This example experiment demonstrates using the MITgcm to simulate | 
| 27 | a barotropic, wind-forced, ocean gyre circulation. The experiment | a Barotropic, wind-forced, ocean gyre circulation. The files for this | 
| 28 | is a numerical rendition of the gyre circulation problem simliar | experiment can be found in the verification directory tutorial\_barotropic\_gyre. | 
| 29 |  | The experiment is a numerical rendition of the gyre circulation problem similar | 
| 30 | to the problems described analytically by Stommel in 1966 | to the problems described analytically by Stommel in 1966 | 
| 31 | \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. | \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. | 
| 32 |  |  | 
| 34 | is configured to represent a rectangular enclosed box of fluid, | is configured to represent a rectangular enclosed box of fluid, | 
| 35 | $1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced | $1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced | 
| 36 | by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally | by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally | 
| 37 | in the ``north-south'' direction. Topologically the grid is cartesian and | in the ``north-south'' direction. Topologically the grid is Cartesian and | 
| 38 | the coriolis parameter $f$ is defined according to a mid-latitude beta-plane | the coriolis parameter $f$ is defined according to a mid-latitude beta-plane | 
| 39 | equation | equation | 
| 40 |  |  | 
| 41 | \begin{equation} | \begin{equation} | 
| 42 | \label{EQ:fcori} | \label{eq:eg-baro-fcori} | 
| 43 | f(y) = f_{0}+\beta y | f(y) = f_{0}+\beta y | 
| 44 | \end{equation} | \end{equation} | 
| 45 |  |  | 
| 46 | \noindent where $y$ is the distance along the ``north-south'' axis of the | \noindent where $y$ is the distance along the ``north-south'' axis of the | 
| 47 | simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in | simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in | 
| 48 | (\ref{EQ:fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$. | (\ref{eq:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$. | 
| 49 | \\ | \\ | 
| 50 | \\ | \\ | 
| 51 | The sinusoidal wind-stress variations are defined according to | The sinusoidal wind-stress variations are defined according to | 
| 52 |  |  | 
| 53 | \begin{equation} | \begin{equation} | 
| 54 | \label{EQ:taux} | \label{eq:eg-baro-taux} | 
| 55 | \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y}) | \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y}) | 
| 56 | \end{equation} | \end{equation} | 
| 57 |  |  | 
| 59 | $\tau_0$ is set to $0.1N m^{-2}$. | $\tau_0$ is set to $0.1N m^{-2}$. | 
| 60 | \\ | \\ | 
| 61 | \\ | \\ | 
| 62 | Figure \ref{FIG:simulation_config} | Figure \ref{fig:eg-baro-simulation_config} | 
| 63 | summarises the configuration simulated. | summarizes the configuration simulated. | 
| 64 |  |  | 
| 65 |  | %% === eh3 === | 
| 66 | \begin{figure} | \begin{figure} | 
| 67 |  | %% \begin{center} | 
| 68 |  | %%  \resizebox{7.5in}{5.5in}{ | 
| 69 |  | %%    \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 70 |  | %%     {s_examples/barotropic_gyre/simulation_config.eps} } | 
| 71 |  | %% \end{center} | 
| 72 | \centerline{ | \centerline{ | 
| 73 | \resizebox{7.5in}{5.5in}{ | \scalefig{.95} | 
| 74 | \includegraphics*[0.2in,0.7in][10.5in,10.5in] | \epsfbox{s_examples/barotropic_gyre/simulation_config.eps} | 
|  | {part3/case_studies/barotropic_gyre/simulation_config.eps} } |  | 
| 75 | } | } | 
| 76 | \caption{Schematic of simulation domain and wind-stress forcing function | \caption{Schematic of simulation domain and wind-stress forcing function | 
| 77 | for barotropic gyre numerical experiment. The domain is enclosed bu solid | for barotropic gyre numerical experiment. The domain is enclosed bu solid | 
| 78 | walls at $x=$~0,1200km and at $y=$~0,1200km.} | walls at $x=$~0,1200km and at $y=$~0,1200km.} | 
| 79 | \label{FIG:simulation_config} | \label{fig:eg-baro-simulation_config} | 
| 80 | \end{figure} | \end{figure} | 
| 81 |  |  | 
| 82 | \subsection{Discrete Numerical Configuration} | \subsection{Equations Solved} | 
| 83 |  | %\label{www:tutorials} | 
| 84 | The model is configured in hydrostatic form.  The domain is discretised with | The model is configured in hydrostatic form. The implicit free surface form of the | 
| 85 | a uniform grid spacing in the horizontal set to | pressure equation described in Marshall et. al \cite{marshall:97a} is | 
| 86 | $\Delta x=\Delta y=20$~km, so | employed. | 
| 87 | that there are sixty grid cells in the $x$ and $y$ directions. Vertically the | A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous | 
|  | model is configured with a single layer with depth, $\Delta z$, of $5000$~m. |  | 
|  | The implicit free surface form of the |  | 
|  | pressure equation described in Marshall et. al \cite{Marshall97a} is |  | 
|  | employed. |  | 
|  | A horizontal laplacian operator $\nabla_{h}^2$ provides viscous |  | 
| 88 | dissipation. The wind-stress momentum input is added to the momentum equation | dissipation. The wind-stress momentum input is added to the momentum equation | 
| 89 | for the ``zonal flow'', $u$. Other terms in the model | for the ``zonal flow'', $u$. Other terms in the model | 
| 90 | are explicitly switched off for this experiement configuration (see section | are explicitly switched off for this experiment configuration (see section | 
| 91 | \ref{SEC:code_config} ), yielding an active set of equations solved in this | \ref{sec:eg-baro-code_config} ), yielding an active set of equations solved | 
| 92 | configuration as follows | in this configuration as follows | 
| 93 |  |  | 
| 94 | \begin{eqnarray} | \begin{eqnarray} | 
| 95 | \label{EQ:model_equations} | \label{eq:eg-baro-model_equations} | 
| 96 | \frac{Du}{Dt} - fv + | \frac{Du}{Dt} - fv + | 
| 97 | g\frac{\partial \eta}{\partial x} - | g\frac{\partial \eta}{\partial x} - | 
| 98 | A_{h}\nabla_{h}^2u | A_{h}\nabla_{h}^2u | 
| 99 | & = & | & = & | 
| 100 | \frac{\tau_{x}}{\rho_{0}\Delta z} | \frac{\tau_{x}}{\rho_{0}\Delta z} | 
| 101 | \\ | \\ | 
| 102 | \frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} - | \frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} - | 
| 103 | A_{h}\nabla_{h}^2v | A_{h}\nabla_{h}^2v | 
| 104 | & = & | & = & | 
| 105 | 0 | 0 | 
| 106 | \\ | \\ | 
| 110 | \end{eqnarray} | \end{eqnarray} | 
| 111 |  |  | 
| 112 | \noindent where $u$ and $v$ and the $x$ and $y$ components of the | \noindent where $u$ and $v$ and the $x$ and $y$ components of the | 
| 113 | flow vector $\vec{u}$. | flow vector $\vec{u}$. | 
| 114 | \\ | \\ | 
| 115 |  |  | 
| 116 |  |  | 
| 117 |  | \subsection{Discrete Numerical Configuration} | 
| 118 |  | %\label{www:tutorials} | 
| 119 |  |  | 
| 120 |  | The domain is discretised with | 
| 121 |  | a uniform grid spacing in the horizontal set to | 
| 122 |  | $\Delta x=\Delta y=20$~km, so | 
| 123 |  | that there are sixty grid cells in the $x$ and $y$ directions. Vertically the | 
| 124 |  | model is configured with a single layer with depth, $\Delta z$, of $5000$~m. | 
| 125 |  |  | 
| 126 | \subsubsection{Numerical Stability Criteria} | \subsubsection{Numerical Stability Criteria} | 
| 127 |  | %\label{www:tutorials} | 
| 128 |  |  | 
| 129 | The laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. | The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. | 
| 130 | This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, | This value is chosen to yield a Munk layer width \cite{adcroft:95}, | 
| 131 |  |  | 
| 132 | \begin{eqnarray} | \begin{eqnarray} | 
| 133 | \label{EQ:munk_layer} | \label{eq:eg-baro-munk_layer} | 
| 134 | M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} | M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} | 
| 135 | \end{eqnarray} | \end{eqnarray} | 
| 136 |  |  | 
| 141 |  |  | 
| 142 | \noindent The model is stepped forward with a | \noindent The model is stepped forward with a | 
| 143 | time step $\delta t=1200$secs. With this time step the stability | time step $\delta t=1200$secs. With this time step the stability | 
| 144 | parameter to the horizontal laplacian friction \cite{Adcroft_thesis} | parameter to the horizontal Laplacian friction \cite{adcroft:95} | 
| 145 |  |  | 
| 146 |  |  | 
| 147 |  |  | 
| 148 | \begin{eqnarray} | \begin{eqnarray} | 
| 149 | \label{EQ:laplacian_stability} | \label{eq:eg-baro-laplacian_stability} | 
| 150 | S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} | S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} | 
| 151 | \end{eqnarray} | \end{eqnarray} | 
| 152 |  |  | 
| 155 | \\ | \\ | 
| 156 |  |  | 
| 157 | \noindent The numerical stability for inertial oscillations | \noindent The numerical stability for inertial oscillations | 
| 158 | \cite{Adcroft_thesis} | \cite{adcroft:95} | 
| 159 |  |  | 
| 160 | \begin{eqnarray} | \begin{eqnarray} | 
| 161 | \label{EQ:inertial_stability} | \label{eq:eg-baro-inertial_stability} | 
| 162 | S_{i} = f^{2} {\delta t}^2 | S_{i} = f^{2} {\delta t}^2 | 
| 163 | \end{eqnarray} | \end{eqnarray} | 
| 164 |  |  | 
| 166 | limit for stability. | limit for stability. | 
| 167 | \\ | \\ | 
| 168 |  |  | 
| 169 | \noindent The advective CFL \cite{Adcroft_thesis} for an extreme maximum | \noindent The advective CFL \cite{adcroft:95} for an extreme maximum | 
| 170 | horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ | horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ | 
| 171 |  |  | 
| 172 | \begin{eqnarray} | \begin{eqnarray} | 
| 173 | \label{EQ:cfl_stability} | \label{eq:eg-baro-cfl_stability} | 
| 174 | S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} | S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} | 
| 175 | \end{eqnarray} | \end{eqnarray} | 
| 176 |  |  | 
| 178 | of 0.5 and limits $\delta t$ to $1200s$. | of 0.5 and limits $\delta t$ to $1200s$. | 
| 179 |  |  | 
| 180 | \subsection{Code Configuration} | \subsection{Code Configuration} | 
| 181 | \label{SEC:code_config} | %\label{www:tutorials} | 
| 182 |  | \label{sec:eg-baro-code_config} | 
| 183 |  |  | 
| 184 | The model configuration for this experiment resides under the | The model configuration for this experiment resides under the | 
| 185 | directory {\it verification/exp0/}.  The experiment files | directory {\it verification/tutorial\_barotropic\_gyre/}. | 
| 186 |  | The experiment files | 
| 187 | \begin{itemize} | \begin{itemize} | 
| 188 | \item {\it input/data} | \item {\it input/data} | 
| 189 | \item {\it input/data.pkg} | \item {\it input/data.pkg} | 
| 194 | \item {\it code/CPP\_OPTIONS.h}, | \item {\it code/CPP\_OPTIONS.h}, | 
| 195 | \item {\it code/SIZE.h}. | \item {\it code/SIZE.h}. | 
| 196 | \end{itemize} | \end{itemize} | 
| 197 | contain the code customisations and parameter settings for this | contain the code customizations and parameter settings for this | 
| 198 | experiements. Below we describe the customisations | experiments. Below we describe the customizations | 
| 199 | to these files associated with this experiment. | to these files associated with this experiment. | 
| 200 |  |  | 
| 201 | \subsubsection{File {\it input/data}} | \subsubsection{File {\it input/data}} | 
| 202 |  | %\label{www:tutorials} | 
| 203 |  |  | 
| 204 | This file, reproduced completely below, specifies the main parameters | This file, reproduced completely below, specifies the main parameters | 
| 205 | for the experiment. The parameters that are significant for this configuration | for the experiment. The parameters that are significant for this configuration | 
| 208 | \begin{itemize} | \begin{itemize} | 
| 209 |  |  | 
| 210 | \item Line 7, \begin{verbatim} viscAh=4.E2, \end{verbatim} this line sets | \item Line 7, \begin{verbatim} viscAh=4.E2, \end{verbatim} this line sets | 
| 211 | the laplacian friction coefficient to $400 m^2s^{-1}$ | the Laplacian friction coefficient to $400 m^2s^{-1}$ | 
| 212 | \item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets | \item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets | 
| 213 | $\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$ | $\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$ | 
| 214 |  |  | 
| 226 | startTime=0, | startTime=0, | 
| 227 | \end{verbatim} | \end{verbatim} | 
| 228 | this line indicates that the experiment should start from $t=0$ | this line indicates that the experiment should start from $t=0$ | 
| 229 | and implicitly supresses searching for checkpoint files associated | and implicitly suppresses searching for checkpoint files associated | 
| 230 | with restarting an numerical integration from a previously saved state. | with restarting an numerical integration from a previously saved state. | 
| 231 |  |  | 
| 232 | \item Line 29, | \item Line 29, | 
| 248 | usingCartesianGrid=.TRUE., | usingCartesianGrid=.TRUE., | 
| 249 | \end{verbatim} | \end{verbatim} | 
| 250 | This line requests that the simulation be performed in a | This line requests that the simulation be performed in a | 
| 251 | cartesian coordinate system. | Cartesian coordinate system. | 
| 252 |  |  | 
| 253 | \item Line 41, | \item Line 41, | 
| 254 | \begin{verbatim} | \begin{verbatim} | 
| 307 | notes. | notes. | 
| 308 |  |  | 
| 309 | \begin{small} | \begin{small} | 
| 310 | \input{part3/case_studies/barotropic_gyre/input/data} | \input{s_examples/barotropic_gyre/input/data} | 
| 311 | \end{small} | \end{small} | 
| 312 |  |  | 
| 313 | \subsubsection{File {\it input/data.pkg}} | \subsubsection{File {\it input/data.pkg}} | 
| 314 |  | %\label{www:tutorials} | 
| 315 |  |  | 
| 316 | This file uses standard default values and does not contain | This file uses standard default values and does not contain | 
| 317 | customisations for this experiment. | customizations for this experiment. | 
| 318 |  |  | 
| 319 | \subsubsection{File {\it input/eedata}} | \subsubsection{File {\it input/eedata}} | 
| 320 |  | %\label{www:tutorials} | 
| 321 |  |  | 
| 322 | This file uses standard default values and does not contain | This file uses standard default values and does not contain | 
| 323 | customisations for this experiment. | customizations for this experiment. | 
| 324 |  |  | 
| 325 | \subsubsection{File {\it input/windx.sin\_y}} | \subsubsection{File {\it input/windx.sin\_y}} | 
| 326 |  | %\label{www:tutorials} | 
| 327 |  |  | 
| 328 | The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) | The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) | 
| 329 | map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. | map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. | 
| 334 | code for creating the {\it input/windx.sin\_y} file. | code for creating the {\it input/windx.sin\_y} file. | 
| 335 |  |  | 
| 336 | \subsubsection{File {\it input/topog.box}} | \subsubsection{File {\it input/topog.box}} | 
| 337 |  | %\label{www:tutorials} | 
| 338 |  |  | 
| 339 |  |  | 
| 340 | The {\it input/topog.box} file specifies a two-dimensional ($x,y$) | The {\it input/topog.box} file specifies a two-dimensional ($x,y$) | 
| 346 | code for creating the {\it input/topog.box} file. | code for creating the {\it input/topog.box} file. | 
| 347 |  |  | 
| 348 | \subsubsection{File {\it code/SIZE.h}} | \subsubsection{File {\it code/SIZE.h}} | 
| 349 |  | %\label{www:tutorials} | 
| 350 |  |  | 
| 351 | Two lines are customized in this file for the current experiment | Two lines are customized in this file for the current experiment | 
| 352 |  |  | 
| 365 | \end{itemize} | \end{itemize} | 
| 366 |  |  | 
| 367 | \begin{small} | \begin{small} | 
| 368 | \input{part3/case_studies/barotropic_gyre/code/SIZE.h} | \input{s_examples/barotropic_gyre/code/SIZE.h} | 
| 369 | \end{small} | \end{small} | 
| 370 |  |  | 
| 371 | \subsubsection{File {\it code/CPP\_OPTIONS.h}} | \subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
| 372 |  | %\label{www:tutorials} | 
| 373 |  |  | 
| 374 | This file uses standard default values and does not contain | This file uses standard default values and does not contain | 
| 375 | customisations for this experiment. | customizations for this experiment. | 
| 376 |  |  | 
| 377 |  |  | 
| 378 | \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
| 379 |  | %\label{www:tutorials} | 
| 380 |  |  | 
| 381 | This file uses standard default values and does not contain | This file uses standard default values and does not contain | 
| 382 | customisations for this experiment. | customizations for this experiment. | 
| 383 |  |  |