| 1 | 
 % $Header$ | 
 % $Header$ | 
| 2 | 
 % $Name$ | 
 % $Name$ | 
| 3 | 
  | 
  | 
 | 
 \section{Example: Barotropic Ocean Gyre In Cartesian Coordinates} | 
  | 
 | 
  | 
  | 
| 4 | 
 \bodytext{bgcolor="#FFFFFFFF"} | 
 \bodytext{bgcolor="#FFFFFFFF"} | 
| 5 | 
  | 
  | 
| 6 | 
 %\begin{center}  | 
 %\begin{center}  | 
| 13 | 
 %{\large May 2001} | 
 %{\large May 2001} | 
| 14 | 
 %\end{center} | 
 %\end{center} | 
| 15 | 
  | 
  | 
| 16 | 
 \subsection{Introduction} | 
 \section[Barotropic Gyre MITgcm Example]{Barotropic Ocean Gyre In Cartesian Coordinates} | 
| 17 | 
  | 
 \label{www:tutorials} | 
| 18 | 
 This document is the first in a series of documents describing | 
 \label{sect:eg-baro} | 
| 19 | 
 example MITgcm numerical experiments. The example experiments  | 
 \begin{rawhtml} | 
| 20 | 
 include both straightforward examples of idealised geophysical  | 
 <!-- CMIREDIR:eg-baro: --> | 
| 21 | 
 fluid simulations and more involved cases encompassing | 
 \end{rawhtml} | 
| 22 | 
 large scale modeling and | 
 \begin{center}  | 
| 23 | 
 automatic differentiation. Both hydrostatic and non-hydrostatic  | 
 (in directory: {\it verification/tutorial\_barotropic\_gyre/}) | 
| 24 | 
 experiements are presented, as well as experiments employing | 
 \end{center} | 
 | 
 cartesian, spherical-polar and cube-sphere coordinate systems. | 
  | 
 | 
 These ``case study'' documents include information describing | 
  | 
 | 
 the experimental configuration and detailed information on how to | 
  | 
 | 
 configure the MITgcm code and input files for each experiment. | 
  | 
 | 
  | 
  | 
 | 
 \subsection{Experiment Overview} | 
  | 
| 25 | 
  | 
  | 
| 26 | 
 This example experiment demonstrates using the MITgcm to simulate | 
 This example experiment demonstrates using the MITgcm to simulate | 
| 27 | 
 a barotropic, wind-forced, ocean gyre circulation. The experiment  | 
 a Barotropic, wind-forced, ocean gyre circulation. The files for this | 
| 28 | 
 is a numerical rendition of the gyre circulation problem simliar | 
 experiment can be found in the verification directory tutorial\_barotropic\_gyre. | 
| 29 | 
  | 
 The experiment is a numerical rendition of the gyre circulation problem similar | 
| 30 | 
 to the problems described analytically by Stommel in 1966  | 
 to the problems described analytically by Stommel in 1966  | 
| 31 | 
 \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. | 
 \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. | 
| 32 | 
  | 
  | 
| 34 | 
 is configured to represent a rectangular enclosed box of fluid, | 
 is configured to represent a rectangular enclosed box of fluid, | 
| 35 | 
 $1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced | 
 $1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced | 
| 36 | 
 by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally | 
 by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally | 
| 37 | 
 in the ``north-south'' direction. Topologically the grid is cartesian and  | 
 in the ``north-south'' direction. Topologically the grid is Cartesian and  | 
| 38 | 
 the coriolis parameter $f$ is defined according to a mid-latitude beta-plane  | 
 the coriolis parameter $f$ is defined according to a mid-latitude beta-plane  | 
| 39 | 
 equation | 
 equation | 
| 40 | 
  | 
  | 
| 41 | 
 \begin{equation} | 
 \begin{equation} | 
| 42 | 
 \label{EQ:fcori} | 
 \label{EQ:eg-baro-fcori} | 
| 43 | 
 f(y) = f_{0}+\beta y | 
 f(y) = f_{0}+\beta y | 
| 44 | 
 \end{equation} | 
 \end{equation} | 
| 45 | 
   | 
   | 
| 46 | 
 \noindent where $y$ is the distance along the ``north-south'' axis of the  | 
 \noindent where $y$ is the distance along the ``north-south'' axis of the  | 
| 47 | 
 simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in  | 
 simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in  | 
| 48 | 
 (\ref{EQ:fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$.  | 
 (\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$.  | 
| 49 | 
 \\ | 
 \\ | 
| 50 | 
 \\ | 
 \\ | 
| 51 | 
  The sinusoidal wind-stress variations are defined according to  | 
  The sinusoidal wind-stress variations are defined according to  | 
| 52 | 
  | 
  | 
| 53 | 
 \begin{equation} | 
 \begin{equation} | 
| 54 | 
 \label{EQ:taux} | 
 \label{EQ:eg-baro-taux} | 
| 55 | 
 \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y}) | 
 \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y}) | 
| 56 | 
 \end{equation} | 
 \end{equation} | 
| 57 | 
   | 
   | 
| 59 | 
 $\tau_0$ is set to $0.1N m^{-2}$.  | 
 $\tau_0$ is set to $0.1N m^{-2}$.  | 
| 60 | 
 \\ | 
 \\ | 
| 61 | 
 \\ | 
 \\ | 
| 62 | 
 Figure \ref{FIG:simulation_config} | 
 Figure \ref{FIG:eg-baro-simulation_config} | 
| 63 | 
 summarises the configuration simulated. | 
 summarizes the configuration simulated. | 
| 64 | 
  | 
  | 
| 65 | 
  | 
 %% === eh3 === | 
| 66 | 
 \begin{figure} | 
 \begin{figure} | 
| 67 | 
  | 
 %% \begin{center} | 
| 68 | 
  | 
 %%  \resizebox{7.5in}{5.5in}{ | 
| 69 | 
  | 
 %%    \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 70 | 
  | 
 %%     {part3/case_studies/barotropic_gyre/simulation_config.eps} } | 
| 71 | 
  | 
 %% \end{center} | 
| 72 | 
 \centerline{ | 
 \centerline{ | 
| 73 | 
  \resizebox{7.5in}{5.5in}{ | 
   \scalefig{.95} | 
| 74 | 
    \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
   \epsfbox{part3/case_studies/barotropic_gyre/simulation_config.eps} | 
 | 
     {part3/case_studies/barotropic_gyre/simulation_config.eps} } | 
  | 
| 75 | 
 } | 
 } | 
| 76 | 
 \caption{Schematic of simulation domain and wind-stress forcing function  | 
 \caption{Schematic of simulation domain and wind-stress forcing function  | 
| 77 | 
 for barotropic gyre numerical experiment. The domain is enclosed bu solid | 
 for barotropic gyre numerical experiment. The domain is enclosed bu solid | 
| 78 | 
 walls at $x=$~0,1200km and at $y=$~0,1200km.} | 
 walls at $x=$~0,1200km and at $y=$~0,1200km.} | 
| 79 | 
 \label{FIG:simulation_config} | 
 \label{FIG:eg-baro-simulation_config} | 
| 80 | 
 \end{figure} | 
 \end{figure} | 
| 81 | 
  | 
  | 
| 82 | 
 \subsection{Discrete Numerical Configuration} | 
 \subsection{Equations Solved} | 
| 83 | 
  | 
 \label{www:tutorials} | 
| 84 | 
  The model is configured in hydrostatic form.  The domain is discretised with  | 
 The model is configured in hydrostatic form. The implicit free surface form of the | 
| 85 | 
 a uniform grid spacing in the horizontal set to | 
 pressure equation described in Marshall et. al \cite{marshall:97a} is | 
| 86 | 
  $\Delta x=\Delta y=20$~km, so  | 
 employed. | 
| 87 | 
 that there are sixty grid cells in the $x$ and $y$ directions. Vertically the  | 
 A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous | 
 | 
 model is configured with a single layer with depth, $\Delta z$, of $5000$~m.  | 
  | 
 | 
 The implicit free surface form of the  | 
  | 
 | 
 pressure equation described in Marshall et. al \cite{Marshall97a} is  | 
  | 
 | 
 employed.  | 
  | 
 | 
 A horizontal laplacian operator $\nabla_{h}^2$ provides viscous | 
  | 
| 88 | 
 dissipation. The wind-stress momentum input is added to the momentum equation | 
 dissipation. The wind-stress momentum input is added to the momentum equation | 
| 89 | 
 for the ``zonal flow'', $u$. Other terms in the model | 
 for the ``zonal flow'', $u$. Other terms in the model | 
| 90 | 
 are explicitly switched off for this experiement configuration (see section | 
 are explicitly switched off for this experiment configuration (see section | 
| 91 | 
 \ref{SEC:code_config} ), yielding an active set of equations solved in this  | 
 \ref{SEC:code_config} ), yielding an active set of equations solved in this | 
| 92 | 
 configuration as follows | 
 configuration as follows  | 
| 93 | 
  | 
  | 
| 94 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 95 | 
 \label{EQ:model_equations} | 
 \label{EQ:eg-baro-model_equations} | 
| 96 | 
 \frac{Du}{Dt} - fv +  | 
 \frac{Du}{Dt} - fv + | 
| 97 | 
               g\frac{\partial \eta}{\partial x} -  | 
               g\frac{\partial \eta}{\partial x} - | 
| 98 | 
               A_{h}\nabla_{h}^2u  | 
               A_{h}\nabla_{h}^2u | 
| 99 | 
 & = & | 
 & = & | 
| 100 | 
 \frac{\tau_{x}}{\rho_{0}\Delta z} | 
 \frac{\tau_{x}}{\rho_{0}\Delta z} | 
| 101 | 
 \\ | 
 \\ | 
| 102 | 
 \frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} - | 
 \frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} - | 
| 103 | 
               A_{h}\nabla_{h}^2v  | 
               A_{h}\nabla_{h}^2v | 
| 104 | 
 & = & | 
 & = & | 
| 105 | 
 0 | 
 0 | 
| 106 | 
 \\ | 
 \\ | 
| 110 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 111 | 
  | 
  | 
| 112 | 
 \noindent where $u$ and $v$ and the $x$ and $y$ components of the | 
 \noindent where $u$ and $v$ and the $x$ and $y$ components of the | 
| 113 | 
 flow vector $\vec{u}$.  | 
 flow vector $\vec{u}$. | 
| 114 | 
 \\ | 
 \\ | 
| 115 | 
  | 
  | 
| 116 | 
  | 
  | 
| 117 | 
  | 
 \subsection{Discrete Numerical Configuration} | 
| 118 | 
  | 
 \label{www:tutorials} | 
| 119 | 
  | 
  | 
| 120 | 
  | 
  The domain is discretised with  | 
| 121 | 
  | 
 a uniform grid spacing in the horizontal set to | 
| 122 | 
  | 
  $\Delta x=\Delta y=20$~km, so  | 
| 123 | 
  | 
 that there are sixty grid cells in the $x$ and $y$ directions. Vertically the  | 
| 124 | 
  | 
 model is configured with a single layer with depth, $\Delta z$, of $5000$~m.  | 
| 125 | 
  | 
  | 
| 126 | 
 \subsubsection{Numerical Stability Criteria} | 
 \subsubsection{Numerical Stability Criteria} | 
| 127 | 
  | 
 \label{www:tutorials} | 
| 128 | 
  | 
  | 
| 129 | 
 The laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. | 
 The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. | 
| 130 | 
 This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, | 
 This value is chosen to yield a Munk layer width \cite{adcroft:95}, | 
| 131 | 
  | 
  | 
| 132 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 133 | 
 \label{EQ:munk_layer} | 
 \label{EQ:eg-baro-munk_layer} | 
| 134 | 
 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} | 
 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} | 
| 135 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 136 | 
  | 
  | 
| 141 | 
  | 
  | 
| 142 | 
 \noindent The model is stepped forward with a  | 
 \noindent The model is stepped forward with a  | 
| 143 | 
 time step $\delta t=1200$secs. With this time step the stability  | 
 time step $\delta t=1200$secs. With this time step the stability  | 
| 144 | 
 parameter to the horizontal laplacian friction \cite{Adcroft_thesis} | 
 parameter to the horizontal Laplacian friction \cite{adcroft:95} | 
| 145 | 
  | 
  | 
| 146 | 
  | 
  | 
| 147 | 
  | 
  | 
| 148 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 149 | 
 \label{EQ:laplacian_stability} | 
 \label{EQ:eg-baro-laplacian_stability} | 
| 150 | 
 S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} | 
 S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} | 
| 151 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 152 | 
  | 
  | 
| 155 | 
 \\ | 
 \\ | 
| 156 | 
  | 
  | 
| 157 | 
 \noindent The numerical stability for inertial oscillations   | 
 \noindent The numerical stability for inertial oscillations   | 
| 158 | 
 \cite{Adcroft_thesis}  | 
 \cite{adcroft:95}  | 
| 159 | 
  | 
  | 
| 160 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 161 | 
 \label{EQ:inertial_stability} | 
 \label{EQ:eg-baro-inertial_stability} | 
| 162 | 
 S_{i} = f^{2} {\delta t}^2 | 
 S_{i} = f^{2} {\delta t}^2 | 
| 163 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 164 | 
  | 
  | 
| 166 | 
 limit for stability. | 
 limit for stability. | 
| 167 | 
 \\ | 
 \\ | 
| 168 | 
  | 
  | 
| 169 | 
 \noindent The advective CFL \cite{Adcroft_thesis} for an extreme maximum  | 
 \noindent The advective CFL \cite{adcroft:95} for an extreme maximum  | 
| 170 | 
 horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ | 
 horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ | 
| 171 | 
  | 
  | 
| 172 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 173 | 
 \label{EQ:cfl_stability} | 
 \label{EQ:eg-baro-cfl_stability} | 
| 174 | 
 S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} | 
 S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} | 
| 175 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 176 | 
  | 
  | 
| 178 | 
 of 0.5 and limits $\delta t$ to $1200s$. | 
 of 0.5 and limits $\delta t$ to $1200s$. | 
| 179 | 
  | 
  | 
| 180 | 
 \subsection{Code Configuration} | 
 \subsection{Code Configuration} | 
| 181 | 
 \label{SEC:code_config} | 
 \label{www:tutorials} | 
| 182 | 
  | 
 \label{SEC:eg-baro-code_config} | 
| 183 | 
  | 
  | 
| 184 | 
 The model configuration for this experiment resides under the  | 
 The model configuration for this experiment resides under the  | 
| 185 | 
 directory {\it verification/exp0/}.  The experiment files  | 
 directory {\it verification/tutorial\_barotropic\_gyre/}.   | 
| 186 | 
  | 
 The experiment files  | 
| 187 | 
 \begin{itemize} | 
 \begin{itemize} | 
| 188 | 
 \item {\it input/data} | 
 \item {\it input/data} | 
| 189 | 
 \item {\it input/data.pkg} | 
 \item {\it input/data.pkg} | 
| 194 | 
 \item {\it code/CPP\_OPTIONS.h}, | 
 \item {\it code/CPP\_OPTIONS.h}, | 
| 195 | 
 \item {\it code/SIZE.h}.  | 
 \item {\it code/SIZE.h}.  | 
| 196 | 
 \end{itemize} | 
 \end{itemize} | 
| 197 | 
 contain the code customisations and parameter settings for this  | 
 contain the code customizations and parameter settings for this  | 
| 198 | 
 experiements. Below we describe the customisations | 
 experiments. Below we describe the customizations | 
| 199 | 
 to these files associated with this experiment. | 
 to these files associated with this experiment. | 
| 200 | 
  | 
  | 
| 201 | 
 \subsubsection{File {\it input/data}} | 
 \subsubsection{File {\it input/data}} | 
| 202 | 
  | 
 \label{www:tutorials} | 
| 203 | 
  | 
  | 
| 204 | 
 This file, reproduced completely below, specifies the main parameters  | 
 This file, reproduced completely below, specifies the main parameters  | 
| 205 | 
 for the experiment. The parameters that are significant for this configuration | 
 for the experiment. The parameters that are significant for this configuration | 
| 208 | 
 \begin{itemize} | 
 \begin{itemize} | 
| 209 | 
  | 
  | 
| 210 | 
 \item Line 7, \begin{verbatim} viscAh=4.E2, \end{verbatim} this line sets | 
 \item Line 7, \begin{verbatim} viscAh=4.E2, \end{verbatim} this line sets | 
| 211 | 
 the laplacian friction coefficient to $400 m^2s^{-1}$ | 
 the Laplacian friction coefficient to $400 m^2s^{-1}$ | 
| 212 | 
 \item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets | 
 \item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets | 
| 213 | 
 $\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$ | 
 $\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$ | 
| 214 | 
  | 
  | 
| 226 | 
 startTime=0, | 
 startTime=0, | 
| 227 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 228 | 
 this line indicates that the experiment should start from $t=0$ | 
 this line indicates that the experiment should start from $t=0$ | 
| 229 | 
 and implicitly supresses searching for checkpoint files associated | 
 and implicitly suppresses searching for checkpoint files associated | 
| 230 | 
 with restarting an numerical integration from a previously saved state. | 
 with restarting an numerical integration from a previously saved state. | 
| 231 | 
  | 
  | 
| 232 | 
 \item Line 29, | 
 \item Line 29, | 
| 248 | 
 usingCartesianGrid=.TRUE., | 
 usingCartesianGrid=.TRUE., | 
| 249 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 250 | 
 This line requests that the simulation be performed in a  | 
 This line requests that the simulation be performed in a  | 
| 251 | 
 cartesian coordinate system. | 
 Cartesian coordinate system. | 
| 252 | 
  | 
  | 
| 253 | 
 \item Line 41, | 
 \item Line 41, | 
| 254 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 311 | 
 \end{small} | 
 \end{small} | 
| 312 | 
  | 
  | 
| 313 | 
 \subsubsection{File {\it input/data.pkg}} | 
 \subsubsection{File {\it input/data.pkg}} | 
| 314 | 
  | 
 \label{www:tutorials} | 
| 315 | 
  | 
  | 
| 316 | 
 This file uses standard default values and does not contain | 
 This file uses standard default values and does not contain | 
| 317 | 
 customisations for this experiment. | 
 customizations for this experiment. | 
| 318 | 
  | 
  | 
| 319 | 
 \subsubsection{File {\it input/eedata}} | 
 \subsubsection{File {\it input/eedata}} | 
| 320 | 
  | 
 \label{www:tutorials} | 
| 321 | 
  | 
  | 
| 322 | 
 This file uses standard default values and does not contain | 
 This file uses standard default values and does not contain | 
| 323 | 
 customisations for this experiment. | 
 customizations for this experiment. | 
| 324 | 
  | 
  | 
| 325 | 
 \subsubsection{File {\it input/windx.sin\_y}} | 
 \subsubsection{File {\it input/windx.sin\_y}} | 
| 326 | 
  | 
 \label{www:tutorials} | 
| 327 | 
  | 
  | 
| 328 | 
 The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)  | 
 The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)  | 
| 329 | 
 map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. | 
 map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. | 
| 334 | 
 code for creating the {\it input/windx.sin\_y} file. | 
 code for creating the {\it input/windx.sin\_y} file. | 
| 335 | 
  | 
  | 
| 336 | 
 \subsubsection{File {\it input/topog.box}} | 
 \subsubsection{File {\it input/topog.box}} | 
| 337 | 
  | 
 \label{www:tutorials} | 
| 338 | 
  | 
  | 
| 339 | 
  | 
  | 
| 340 | 
 The {\it input/topog.box} file specifies a two-dimensional ($x,y$)  | 
 The {\it input/topog.box} file specifies a two-dimensional ($x,y$)  | 
| 346 | 
 code for creating the {\it input/topog.box} file. | 
 code for creating the {\it input/topog.box} file. | 
| 347 | 
  | 
  | 
| 348 | 
 \subsubsection{File {\it code/SIZE.h}} | 
 \subsubsection{File {\it code/SIZE.h}} | 
| 349 | 
  | 
 \label{www:tutorials} | 
| 350 | 
  | 
  | 
| 351 | 
 Two lines are customized in this file for the current experiment | 
 Two lines are customized in this file for the current experiment | 
| 352 | 
  | 
  | 
| 369 | 
 \end{small} | 
 \end{small} | 
| 370 | 
  | 
  | 
| 371 | 
 \subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
 \subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
| 372 | 
  | 
 \label{www:tutorials} | 
| 373 | 
  | 
  | 
| 374 | 
 This file uses standard default values and does not contain | 
 This file uses standard default values and does not contain | 
| 375 | 
 customisations for this experiment. | 
 customizations for this experiment. | 
| 376 | 
  | 
  | 
| 377 | 
  | 
  | 
| 378 | 
 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
| 379 | 
  | 
 \label{www:tutorials} | 
| 380 | 
  | 
  | 
| 381 | 
 This file uses standard default values and does not contain | 
 This file uses standard default values and does not contain | 
| 382 | 
 customisations for this experiment. | 
 customizations for this experiment. | 
| 383 | 
  | 
  |