/[MITgcm]/manual/s_examples/barotropic_gyre/baro.tex
ViewVC logotype

Annotation of /manual/s_examples/barotropic_gyre/baro.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (hide annotations) (download) (as text)
Thu May 16 15:54:37 2002 UTC (23 years, 2 months ago) by adcroft
Branch: MAIN
Changes since 1.8: +14 -1 lines
File MIME type: application/x-tex
Added \label{www:tutorials} to every section/subsection/subsubsection for
pages that need to appear in the Tutorials sectio of the web-site.

1 adcroft 1.9 % $Header: /u/gcmpack/mitgcmdoc/part3/case_studies/barotropic_gyre/baro.tex,v 1.8 2002/02/28 19:32:19 cnh Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4     \bodytext{bgcolor="#FFFFFFFF"}
5    
6     %\begin{center}
7     %{\Large \bf Using MITgcm to Simulate a Barotropic Ocean Gyre In Cartesian
8     %Coordinates}
9     %
10     %\vspace*{4mm}
11     %
12     %\vspace*{3mm}
13     %{\large May 2001}
14     %\end{center}
15    
16 cnh 1.8 This is the first in a series of tutorials describing
17 adcroft 1.1 example MITgcm numerical experiments. The example experiments
18 cnh 1.4 include both straightforward examples of idealized geophysical
19 adcroft 1.1 fluid simulations and more involved cases encompassing
20     large scale modeling and
21     automatic differentiation. Both hydrostatic and non-hydrostatic
22 cnh 1.3 experiments are presented, as well as experiments employing
23 cnh 1.4 Cartesian, spherical-polar and cube-sphere coordinate systems.
24 adcroft 1.1 These ``case study'' documents include information describing
25     the experimental configuration and detailed information on how to
26     configure the MITgcm code and input files for each experiment.
27    
28 cnh 1.8 \section{Barotropic Ocean Gyre In Cartesian Coordinates}
29     \label{sect:eg-baro}
30 adcroft 1.9 \label{www:tutorials}
31 cnh 1.8
32 adcroft 1.1
33     This example experiment demonstrates using the MITgcm to simulate
34 cnh 1.4 a Barotropic, wind-forced, ocean gyre circulation. The experiment
35     is a numerical rendition of the gyre circulation problem similar
36 adcroft 1.1 to the problems described analytically by Stommel in 1966
37     \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}.
38    
39     In this experiment the model
40     is configured to represent a rectangular enclosed box of fluid,
41     $1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced
42     by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally
43 cnh 1.4 in the ``north-south'' direction. Topologically the grid is Cartesian and
44 adcroft 1.1 the coriolis parameter $f$ is defined according to a mid-latitude beta-plane
45     equation
46    
47     \begin{equation}
48 cnh 1.8 \label{EQ:eg-baro-fcori}
49 adcroft 1.1 f(y) = f_{0}+\beta y
50     \end{equation}
51    
52     \noindent where $y$ is the distance along the ``north-south'' axis of the
53     simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in
54 cnh 1.8 (\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$.
55 adcroft 1.1 \\
56     \\
57     The sinusoidal wind-stress variations are defined according to
58    
59     \begin{equation}
60 cnh 1.8 \label{EQ:eg-baro-taux}
61 adcroft 1.1 \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})
62     \end{equation}
63    
64     \noindent where $L_{y}$ is the lateral domain extent ($1200$~km) and
65     $\tau_0$ is set to $0.1N m^{-2}$.
66     \\
67     \\
68 cnh 1.8 Figure \ref{FIG:eg-baro-simulation_config}
69 cnh 1.4 summarizes the configuration simulated.
70 adcroft 1.1
71     \begin{figure}
72 cnh 1.2 \begin{center}
73 adcroft 1.1 \resizebox{7.5in}{5.5in}{
74     \includegraphics*[0.2in,0.7in][10.5in,10.5in]
75     {part3/case_studies/barotropic_gyre/simulation_config.eps} }
76 cnh 1.2 \end{center}
77 adcroft 1.1 \caption{Schematic of simulation domain and wind-stress forcing function
78     for barotropic gyre numerical experiment. The domain is enclosed bu solid
79     walls at $x=$~0,1200km and at $y=$~0,1200km.}
80 cnh 1.8 \label{FIG:eg-baro-simulation_config}
81 adcroft 1.1 \end{figure}
82    
83 cnh 1.3 \subsection{Equations Solved}
84 adcroft 1.9 \label{www:tutorials}
85 cnh 1.3 The model is configured in hydrostatic form. The implicit free surface form of the
86 adcroft 1.6 pressure equation described in Marshall et. al \cite{marshall:97a} is
87 cnh 1.3 employed.
88 cnh 1.4 A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous
89 adcroft 1.1 dissipation. The wind-stress momentum input is added to the momentum equation
90     for the ``zonal flow'', $u$. Other terms in the model
91 cnh 1.4 are explicitly switched off for this experiment configuration (see section
92 cnh 1.3 \ref{SEC:code_config} ), yielding an active set of equations solved in this
93     configuration as follows
94 adcroft 1.1
95     \begin{eqnarray}
96 cnh 1.8 \label{EQ:eg-baro-model_equations}
97 cnh 1.3 \frac{Du}{Dt} - fv +
98     g\frac{\partial \eta}{\partial x} -
99     A_{h}\nabla_{h}^2u
100 adcroft 1.1 & = &
101     \frac{\tau_{x}}{\rho_{0}\Delta z}
102     \\
103     \frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} -
104 cnh 1.3 A_{h}\nabla_{h}^2v
105 adcroft 1.1 & = &
106     0
107     \\
108     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
109     &=&
110     0
111     \end{eqnarray}
112    
113     \noindent where $u$ and $v$ and the $x$ and $y$ components of the
114 cnh 1.3 flow vector $\vec{u}$.
115 adcroft 1.1 \\
116 cnh 1.3
117    
118     \subsection{Discrete Numerical Configuration}
119 adcroft 1.9 \label{www:tutorials}
120 cnh 1.3
121     The domain is discretised with
122     a uniform grid spacing in the horizontal set to
123     $\Delta x=\Delta y=20$~km, so
124     that there are sixty grid cells in the $x$ and $y$ directions. Vertically the
125     model is configured with a single layer with depth, $\Delta z$, of $5000$~m.
126 adcroft 1.1
127     \subsubsection{Numerical Stability Criteria}
128 adcroft 1.9 \label{www:tutorials}
129 adcroft 1.1
130 cnh 1.4 The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$.
131 adcroft 1.5 This value is chosen to yield a Munk layer width \cite{adcroft:95},
132 adcroft 1.1
133     \begin{eqnarray}
134 cnh 1.8 \label{EQ:eg-baro-munk_layer}
135 adcroft 1.1 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
136     \end{eqnarray}
137    
138     \noindent of $\approx 100$km. This is greater than the model
139     resolution $\Delta x$, ensuring that the frictional boundary
140     layer is well resolved.
141     \\
142    
143     \noindent The model is stepped forward with a
144     time step $\delta t=1200$secs. With this time step the stability
145 adcroft 1.5 parameter to the horizontal Laplacian friction \cite{adcroft:95}
146 adcroft 1.1
147    
148    
149     \begin{eqnarray}
150 cnh 1.8 \label{EQ:eg-baro-laplacian_stability}
151 adcroft 1.1 S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}
152     \end{eqnarray}
153    
154     \noindent evaluates to 0.012, which is well below the 0.3 upper limit
155     for stability.
156     \\
157    
158     \noindent The numerical stability for inertial oscillations
159 adcroft 1.5 \cite{adcroft:95}
160 adcroft 1.1
161     \begin{eqnarray}
162 cnh 1.8 \label{EQ:eg-baro-inertial_stability}
163 adcroft 1.1 S_{i} = f^{2} {\delta t}^2
164     \end{eqnarray}
165    
166     \noindent evaluates to $0.0144$, which is well below the $0.5$ upper
167     limit for stability.
168     \\
169    
170 adcroft 1.5 \noindent The advective CFL \cite{adcroft:95} for an extreme maximum
171 adcroft 1.1 horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$
172    
173     \begin{eqnarray}
174 cnh 1.8 \label{EQ:eg-baro-cfl_stability}
175 adcroft 1.1 S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}
176     \end{eqnarray}
177    
178     \noindent evaluates to 0.12. This is approaching the stability limit
179     of 0.5 and limits $\delta t$ to $1200s$.
180    
181     \subsection{Code Configuration}
182 adcroft 1.9 \label{www:tutorials}
183 cnh 1.8 \label{SEC:eg-baro-code_config}
184 adcroft 1.1
185     The model configuration for this experiment resides under the
186     directory {\it verification/exp0/}. The experiment files
187     \begin{itemize}
188     \item {\it input/data}
189     \item {\it input/data.pkg}
190     \item {\it input/eedata},
191     \item {\it input/windx.sin\_y},
192     \item {\it input/topog.box},
193     \item {\it code/CPP\_EEOPTIONS.h}
194     \item {\it code/CPP\_OPTIONS.h},
195     \item {\it code/SIZE.h}.
196     \end{itemize}
197 cnh 1.4 contain the code customizations and parameter settings for this
198     experiments. Below we describe the customizations
199 adcroft 1.1 to these files associated with this experiment.
200    
201     \subsubsection{File {\it input/data}}
202 adcroft 1.9 \label{www:tutorials}
203 adcroft 1.1
204     This file, reproduced completely below, specifies the main parameters
205     for the experiment. The parameters that are significant for this configuration
206     are
207    
208     \begin{itemize}
209    
210     \item Line 7, \begin{verbatim} viscAh=4.E2, \end{verbatim} this line sets
211 cnh 1.4 the Laplacian friction coefficient to $400 m^2s^{-1}$
212 adcroft 1.1 \item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets
213     $\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$
214    
215     \item Lines 15 and 16
216     \begin{verbatim}
217     rigidLid=.FALSE.,
218     implicitFreeSurface=.TRUE.,
219     \end{verbatim}
220     these lines suppress the rigid lid formulation of the surface
221     pressure inverter and activate the implicit free surface form
222     of the pressure inverter.
223    
224     \item Line 27,
225     \begin{verbatim}
226     startTime=0,
227     \end{verbatim}
228     this line indicates that the experiment should start from $t=0$
229 cnh 1.4 and implicitly suppresses searching for checkpoint files associated
230 adcroft 1.1 with restarting an numerical integration from a previously saved state.
231    
232     \item Line 29,
233     \begin{verbatim}
234     endTime=12000,
235     \end{verbatim}
236     this line indicates that the experiment should start finish at $t=12000s$.
237     A restart file will be written at this time that will enable the
238     simulation to be continued from this point.
239    
240     \item Line 30,
241     \begin{verbatim}
242     deltaTmom=1200,
243     \end{verbatim}
244     This line sets the momentum equation timestep to $1200s$.
245    
246     \item Line 39,
247     \begin{verbatim}
248     usingCartesianGrid=.TRUE.,
249     \end{verbatim}
250     This line requests that the simulation be performed in a
251 cnh 1.4 Cartesian coordinate system.
252 adcroft 1.1
253     \item Line 41,
254     \begin{verbatim}
255     delX=60*20E3,
256     \end{verbatim}
257     This line sets the horizontal grid spacing between each x-coordinate line
258     in the discrete grid. The syntax indicates that the discrete grid
259     should be comprise of $60$ grid lines each separated by $20 \times 10^{3}m$
260     ($20$~km).
261    
262     \item Line 42,
263     \begin{verbatim}
264     delY=60*20E3,
265     \end{verbatim}
266     This line sets the horizontal grid spacing between each y-coordinate line
267     in the discrete grid to $20 \times 10^{3}m$ ($20$~km).
268    
269     \item Line 43,
270     \begin{verbatim}
271     delZ=5000,
272     \end{verbatim}
273     This line sets the vertical grid spacing between each z-coordinate line
274     in the discrete grid to $5000m$ ($5$~km).
275    
276     \item Line 46,
277     \begin{verbatim}
278     bathyFile='topog.box'
279     \end{verbatim}
280     This line specifies the name of the file from which the domain
281     bathymetry is read. This file is a two-dimensional ($x,y$) map of
282     depths. This file is assumed to contain 64-bit binary numbers
283     giving the depth of the model at each grid cell, ordered with the x
284     coordinate varying fastest. The points are ordered from low coordinate
285     to high coordinate for both axes. The units and orientation of the
286     depths in this file are the same as used in the MITgcm code. In this
287     experiment, a depth of $0m$ indicates a solid wall and a depth
288     of $-5000m$ indicates open ocean. The matlab program
289     {\it input/gendata.m} shows an example of how to generate a
290     bathymetry file.
291    
292    
293     \item Line 49,
294     \begin{verbatim}
295     zonalWindFile='windx.sin_y'
296     \end{verbatim}
297     This line specifies the name of the file from which the x-direction
298     surface wind stress is read. This file is also a two-dimensional
299     ($x,y$) map and is enumerated and formatted in the same manner as the
300     bathymetry file. The matlab program {\it input/gendata.m} includes example
301     code to generate a valid {\bf zonalWindFile} file.
302    
303     \end{itemize}
304    
305     \noindent other lines in the file {\it input/data} are standard values
306     that are described in the MITgcm Getting Started and MITgcm Parameters
307     notes.
308    
309     \begin{small}
310     \input{part3/case_studies/barotropic_gyre/input/data}
311     \end{small}
312    
313     \subsubsection{File {\it input/data.pkg}}
314 adcroft 1.9 \label{www:tutorials}
315 adcroft 1.1
316     This file uses standard default values and does not contain
317 cnh 1.4 customizations for this experiment.
318 adcroft 1.1
319     \subsubsection{File {\it input/eedata}}
320 adcroft 1.9 \label{www:tutorials}
321 adcroft 1.1
322     This file uses standard default values and does not contain
323 cnh 1.4 customizations for this experiment.
324 adcroft 1.1
325     \subsubsection{File {\it input/windx.sin\_y}}
326 adcroft 1.9 \label{www:tutorials}
327 adcroft 1.1
328     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
329     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
330     Although $\tau_{x}$ is only a function of $y$n in this experiment
331     this file must still define a complete two-dimensional map in order
332     to be compatible with the standard code for loading forcing fields
333     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
334     code for creating the {\it input/windx.sin\_y} file.
335    
336     \subsubsection{File {\it input/topog.box}}
337 adcroft 1.9 \label{www:tutorials}
338 adcroft 1.1
339    
340     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
341     map of depth values. For this experiment values are either
342     $0m$ or {\bf -delZ}m, corresponding respectively to a wall or to deep
343     ocean. The file contains a raw binary stream of data that is enumerated
344     in the same way as standard MITgcm two-dimensional, horizontal arrays.
345     The included matlab program {\it input/gendata.m} gives a complete
346     code for creating the {\it input/topog.box} file.
347    
348     \subsubsection{File {\it code/SIZE.h}}
349 adcroft 1.9 \label{www:tutorials}
350 adcroft 1.1
351     Two lines are customized in this file for the current experiment
352    
353     \begin{itemize}
354    
355     \item Line 39,
356     \begin{verbatim} sNx=60, \end{verbatim} this line sets
357     the lateral domain extent in grid points for the
358     axis aligned with the x-coordinate.
359    
360     \item Line 40,
361     \begin{verbatim} sNy=60, \end{verbatim} this line sets
362     the lateral domain extent in grid points for the
363     axis aligned with the y-coordinate.
364    
365     \end{itemize}
366    
367     \begin{small}
368     \input{part3/case_studies/barotropic_gyre/code/SIZE.h}
369     \end{small}
370    
371     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
372 adcroft 1.9 \label{www:tutorials}
373 adcroft 1.1
374     This file uses standard default values and does not contain
375 cnh 1.4 customizations for this experiment.
376 adcroft 1.1
377    
378     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
379 adcroft 1.9 \label{www:tutorials}
380 adcroft 1.1
381     This file uses standard default values and does not contain
382 cnh 1.4 customizations for this experiment.
383 adcroft 1.1

  ViewVC Help
Powered by ViewVC 1.1.22