/[MITgcm]/manual/s_examples/barotropic_gyre/baro.tex
ViewVC logotype

Annotation of /manual/s_examples/barotropic_gyre/baro.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.10 - (hide annotations) (download) (as text)
Thu Jan 29 15:11:39 2004 UTC (21 years, 5 months ago) by edhill
Branch: MAIN
Changes since 1.9: +11 -6 lines
File MIME type: application/x-tex
 o more changes to genmake2 in part3
 o trial of the "epsfig" package

1 edhill 1.10 % $Header: /u/u3/gcmpack/manual/part3/case_studies/barotropic_gyre/baro.tex,v 1.9 2002/05/16 15:54:37 adcroft Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4     \bodytext{bgcolor="#FFFFFFFF"}
5    
6     %\begin{center}
7     %{\Large \bf Using MITgcm to Simulate a Barotropic Ocean Gyre In Cartesian
8     %Coordinates}
9     %
10     %\vspace*{4mm}
11     %
12     %\vspace*{3mm}
13     %{\large May 2001}
14     %\end{center}
15    
16 cnh 1.8 This is the first in a series of tutorials describing
17 adcroft 1.1 example MITgcm numerical experiments. The example experiments
18 cnh 1.4 include both straightforward examples of idealized geophysical
19 adcroft 1.1 fluid simulations and more involved cases encompassing
20     large scale modeling and
21     automatic differentiation. Both hydrostatic and non-hydrostatic
22 cnh 1.3 experiments are presented, as well as experiments employing
23 cnh 1.4 Cartesian, spherical-polar and cube-sphere coordinate systems.
24 adcroft 1.1 These ``case study'' documents include information describing
25     the experimental configuration and detailed information on how to
26     configure the MITgcm code and input files for each experiment.
27    
28 cnh 1.8 \section{Barotropic Ocean Gyre In Cartesian Coordinates}
29     \label{sect:eg-baro}
30 adcroft 1.9 \label{www:tutorials}
31 cnh 1.8
32 adcroft 1.1
33     This example experiment demonstrates using the MITgcm to simulate
34 cnh 1.4 a Barotropic, wind-forced, ocean gyre circulation. The experiment
35     is a numerical rendition of the gyre circulation problem similar
36 adcroft 1.1 to the problems described analytically by Stommel in 1966
37     \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}.
38    
39     In this experiment the model
40     is configured to represent a rectangular enclosed box of fluid,
41     $1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced
42     by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally
43 cnh 1.4 in the ``north-south'' direction. Topologically the grid is Cartesian and
44 adcroft 1.1 the coriolis parameter $f$ is defined according to a mid-latitude beta-plane
45     equation
46    
47     \begin{equation}
48 cnh 1.8 \label{EQ:eg-baro-fcori}
49 adcroft 1.1 f(y) = f_{0}+\beta y
50     \end{equation}
51    
52     \noindent where $y$ is the distance along the ``north-south'' axis of the
53     simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in
54 cnh 1.8 (\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$.
55 adcroft 1.1 \\
56     \\
57     The sinusoidal wind-stress variations are defined according to
58    
59     \begin{equation}
60 cnh 1.8 \label{EQ:eg-baro-taux}
61 adcroft 1.1 \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})
62     \end{equation}
63    
64     \noindent where $L_{y}$ is the lateral domain extent ($1200$~km) and
65     $\tau_0$ is set to $0.1N m^{-2}$.
66     \\
67     \\
68 cnh 1.8 Figure \ref{FIG:eg-baro-simulation_config}
69 cnh 1.4 summarizes the configuration simulated.
70 adcroft 1.1
71 edhill 1.10 %% === eh3 ===
72 adcroft 1.1 \begin{figure}
73 edhill 1.10 %% \begin{center}
74     %% \resizebox{7.5in}{5.5in}{
75     %% \includegraphics*[0.2in,0.7in][10.5in,10.5in]
76     %% {part3/case_studies/barotropic_gyre/simulation_config.eps} }
77     %% \end{center}
78     \centerline{
79     \scalefig{.95}
80     \epsfbox{part3/case_studies/barotropic_gyre/simulation_config.eps}
81     }
82 adcroft 1.1 \caption{Schematic of simulation domain and wind-stress forcing function
83     for barotropic gyre numerical experiment. The domain is enclosed bu solid
84     walls at $x=$~0,1200km and at $y=$~0,1200km.}
85 cnh 1.8 \label{FIG:eg-baro-simulation_config}
86 adcroft 1.1 \end{figure}
87    
88 cnh 1.3 \subsection{Equations Solved}
89 adcroft 1.9 \label{www:tutorials}
90 cnh 1.3 The model is configured in hydrostatic form. The implicit free surface form of the
91 adcroft 1.6 pressure equation described in Marshall et. al \cite{marshall:97a} is
92 cnh 1.3 employed.
93 cnh 1.4 A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous
94 adcroft 1.1 dissipation. The wind-stress momentum input is added to the momentum equation
95     for the ``zonal flow'', $u$. Other terms in the model
96 cnh 1.4 are explicitly switched off for this experiment configuration (see section
97 cnh 1.3 \ref{SEC:code_config} ), yielding an active set of equations solved in this
98     configuration as follows
99 adcroft 1.1
100     \begin{eqnarray}
101 cnh 1.8 \label{EQ:eg-baro-model_equations}
102 cnh 1.3 \frac{Du}{Dt} - fv +
103     g\frac{\partial \eta}{\partial x} -
104     A_{h}\nabla_{h}^2u
105 adcroft 1.1 & = &
106     \frac{\tau_{x}}{\rho_{0}\Delta z}
107     \\
108     \frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} -
109 cnh 1.3 A_{h}\nabla_{h}^2v
110 adcroft 1.1 & = &
111     0
112     \\
113     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
114     &=&
115     0
116     \end{eqnarray}
117    
118     \noindent where $u$ and $v$ and the $x$ and $y$ components of the
119 cnh 1.3 flow vector $\vec{u}$.
120 adcroft 1.1 \\
121 cnh 1.3
122    
123     \subsection{Discrete Numerical Configuration}
124 adcroft 1.9 \label{www:tutorials}
125 cnh 1.3
126     The domain is discretised with
127     a uniform grid spacing in the horizontal set to
128     $\Delta x=\Delta y=20$~km, so
129     that there are sixty grid cells in the $x$ and $y$ directions. Vertically the
130     model is configured with a single layer with depth, $\Delta z$, of $5000$~m.
131 adcroft 1.1
132     \subsubsection{Numerical Stability Criteria}
133 adcroft 1.9 \label{www:tutorials}
134 adcroft 1.1
135 cnh 1.4 The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$.
136 adcroft 1.5 This value is chosen to yield a Munk layer width \cite{adcroft:95},
137 adcroft 1.1
138     \begin{eqnarray}
139 cnh 1.8 \label{EQ:eg-baro-munk_layer}
140 adcroft 1.1 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
141     \end{eqnarray}
142    
143     \noindent of $\approx 100$km. This is greater than the model
144     resolution $\Delta x$, ensuring that the frictional boundary
145     layer is well resolved.
146     \\
147    
148     \noindent The model is stepped forward with a
149     time step $\delta t=1200$secs. With this time step the stability
150 adcroft 1.5 parameter to the horizontal Laplacian friction \cite{adcroft:95}
151 adcroft 1.1
152    
153    
154     \begin{eqnarray}
155 cnh 1.8 \label{EQ:eg-baro-laplacian_stability}
156 adcroft 1.1 S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}
157     \end{eqnarray}
158    
159     \noindent evaluates to 0.012, which is well below the 0.3 upper limit
160     for stability.
161     \\
162    
163     \noindent The numerical stability for inertial oscillations
164 adcroft 1.5 \cite{adcroft:95}
165 adcroft 1.1
166     \begin{eqnarray}
167 cnh 1.8 \label{EQ:eg-baro-inertial_stability}
168 adcroft 1.1 S_{i} = f^{2} {\delta t}^2
169     \end{eqnarray}
170    
171     \noindent evaluates to $0.0144$, which is well below the $0.5$ upper
172     limit for stability.
173     \\
174    
175 adcroft 1.5 \noindent The advective CFL \cite{adcroft:95} for an extreme maximum
176 adcroft 1.1 horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$
177    
178     \begin{eqnarray}
179 cnh 1.8 \label{EQ:eg-baro-cfl_stability}
180 adcroft 1.1 S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}
181     \end{eqnarray}
182    
183     \noindent evaluates to 0.12. This is approaching the stability limit
184     of 0.5 and limits $\delta t$ to $1200s$.
185    
186     \subsection{Code Configuration}
187 adcroft 1.9 \label{www:tutorials}
188 cnh 1.8 \label{SEC:eg-baro-code_config}
189 adcroft 1.1
190     The model configuration for this experiment resides under the
191     directory {\it verification/exp0/}. The experiment files
192     \begin{itemize}
193     \item {\it input/data}
194     \item {\it input/data.pkg}
195     \item {\it input/eedata},
196     \item {\it input/windx.sin\_y},
197     \item {\it input/topog.box},
198     \item {\it code/CPP\_EEOPTIONS.h}
199     \item {\it code/CPP\_OPTIONS.h},
200     \item {\it code/SIZE.h}.
201     \end{itemize}
202 cnh 1.4 contain the code customizations and parameter settings for this
203     experiments. Below we describe the customizations
204 adcroft 1.1 to these files associated with this experiment.
205    
206     \subsubsection{File {\it input/data}}
207 adcroft 1.9 \label{www:tutorials}
208 adcroft 1.1
209     This file, reproduced completely below, specifies the main parameters
210     for the experiment. The parameters that are significant for this configuration
211     are
212    
213     \begin{itemize}
214    
215     \item Line 7, \begin{verbatim} viscAh=4.E2, \end{verbatim} this line sets
216 cnh 1.4 the Laplacian friction coefficient to $400 m^2s^{-1}$
217 adcroft 1.1 \item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets
218     $\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$
219    
220     \item Lines 15 and 16
221     \begin{verbatim}
222     rigidLid=.FALSE.,
223     implicitFreeSurface=.TRUE.,
224     \end{verbatim}
225     these lines suppress the rigid lid formulation of the surface
226     pressure inverter and activate the implicit free surface form
227     of the pressure inverter.
228    
229     \item Line 27,
230     \begin{verbatim}
231     startTime=0,
232     \end{verbatim}
233     this line indicates that the experiment should start from $t=0$
234 cnh 1.4 and implicitly suppresses searching for checkpoint files associated
235 adcroft 1.1 with restarting an numerical integration from a previously saved state.
236    
237     \item Line 29,
238     \begin{verbatim}
239     endTime=12000,
240     \end{verbatim}
241     this line indicates that the experiment should start finish at $t=12000s$.
242     A restart file will be written at this time that will enable the
243     simulation to be continued from this point.
244    
245     \item Line 30,
246     \begin{verbatim}
247     deltaTmom=1200,
248     \end{verbatim}
249     This line sets the momentum equation timestep to $1200s$.
250    
251     \item Line 39,
252     \begin{verbatim}
253     usingCartesianGrid=.TRUE.,
254     \end{verbatim}
255     This line requests that the simulation be performed in a
256 cnh 1.4 Cartesian coordinate system.
257 adcroft 1.1
258     \item Line 41,
259     \begin{verbatim}
260     delX=60*20E3,
261     \end{verbatim}
262     This line sets the horizontal grid spacing between each x-coordinate line
263     in the discrete grid. The syntax indicates that the discrete grid
264     should be comprise of $60$ grid lines each separated by $20 \times 10^{3}m$
265     ($20$~km).
266    
267     \item Line 42,
268     \begin{verbatim}
269     delY=60*20E3,
270     \end{verbatim}
271     This line sets the horizontal grid spacing between each y-coordinate line
272     in the discrete grid to $20 \times 10^{3}m$ ($20$~km).
273    
274     \item Line 43,
275     \begin{verbatim}
276     delZ=5000,
277     \end{verbatim}
278     This line sets the vertical grid spacing between each z-coordinate line
279     in the discrete grid to $5000m$ ($5$~km).
280    
281     \item Line 46,
282     \begin{verbatim}
283     bathyFile='topog.box'
284     \end{verbatim}
285     This line specifies the name of the file from which the domain
286     bathymetry is read. This file is a two-dimensional ($x,y$) map of
287     depths. This file is assumed to contain 64-bit binary numbers
288     giving the depth of the model at each grid cell, ordered with the x
289     coordinate varying fastest. The points are ordered from low coordinate
290     to high coordinate for both axes. The units and orientation of the
291     depths in this file are the same as used in the MITgcm code. In this
292     experiment, a depth of $0m$ indicates a solid wall and a depth
293     of $-5000m$ indicates open ocean. The matlab program
294     {\it input/gendata.m} shows an example of how to generate a
295     bathymetry file.
296    
297    
298     \item Line 49,
299     \begin{verbatim}
300     zonalWindFile='windx.sin_y'
301     \end{verbatim}
302     This line specifies the name of the file from which the x-direction
303     surface wind stress is read. This file is also a two-dimensional
304     ($x,y$) map and is enumerated and formatted in the same manner as the
305     bathymetry file. The matlab program {\it input/gendata.m} includes example
306     code to generate a valid {\bf zonalWindFile} file.
307    
308     \end{itemize}
309    
310     \noindent other lines in the file {\it input/data} are standard values
311     that are described in the MITgcm Getting Started and MITgcm Parameters
312     notes.
313    
314     \begin{small}
315     \input{part3/case_studies/barotropic_gyre/input/data}
316     \end{small}
317    
318     \subsubsection{File {\it input/data.pkg}}
319 adcroft 1.9 \label{www:tutorials}
320 adcroft 1.1
321     This file uses standard default values and does not contain
322 cnh 1.4 customizations for this experiment.
323 adcroft 1.1
324     \subsubsection{File {\it input/eedata}}
325 adcroft 1.9 \label{www:tutorials}
326 adcroft 1.1
327     This file uses standard default values and does not contain
328 cnh 1.4 customizations for this experiment.
329 adcroft 1.1
330     \subsubsection{File {\it input/windx.sin\_y}}
331 adcroft 1.9 \label{www:tutorials}
332 adcroft 1.1
333     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
334     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
335     Although $\tau_{x}$ is only a function of $y$n in this experiment
336     this file must still define a complete two-dimensional map in order
337     to be compatible with the standard code for loading forcing fields
338     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
339     code for creating the {\it input/windx.sin\_y} file.
340    
341     \subsubsection{File {\it input/topog.box}}
342 adcroft 1.9 \label{www:tutorials}
343 adcroft 1.1
344    
345     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
346     map of depth values. For this experiment values are either
347     $0m$ or {\bf -delZ}m, corresponding respectively to a wall or to deep
348     ocean. The file contains a raw binary stream of data that is enumerated
349     in the same way as standard MITgcm two-dimensional, horizontal arrays.
350     The included matlab program {\it input/gendata.m} gives a complete
351     code for creating the {\it input/topog.box} file.
352    
353     \subsubsection{File {\it code/SIZE.h}}
354 adcroft 1.9 \label{www:tutorials}
355 adcroft 1.1
356     Two lines are customized in this file for the current experiment
357    
358     \begin{itemize}
359    
360     \item Line 39,
361     \begin{verbatim} sNx=60, \end{verbatim} this line sets
362     the lateral domain extent in grid points for the
363     axis aligned with the x-coordinate.
364    
365     \item Line 40,
366     \begin{verbatim} sNy=60, \end{verbatim} this line sets
367     the lateral domain extent in grid points for the
368     axis aligned with the y-coordinate.
369    
370     \end{itemize}
371    
372     \begin{small}
373     \input{part3/case_studies/barotropic_gyre/code/SIZE.h}
374     \end{small}
375    
376     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
377 adcroft 1.9 \label{www:tutorials}
378 adcroft 1.1
379     This file uses standard default values and does not contain
380 cnh 1.4 customizations for this experiment.
381 adcroft 1.1
382    
383     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
384 adcroft 1.9 \label{www:tutorials}
385 adcroft 1.1
386     This file uses standard default values and does not contain
387 cnh 1.4 customizations for this experiment.
388 adcroft 1.1

  ViewVC Help
Powered by ViewVC 1.1.22