--- manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/10/25 01:15:16 1.7 +++ manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/10/25 12:06:56 1.8 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.7 2001/10/25 01:15:16 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.8 2001/10/25 12:06:56 cnh Exp $ % $Name: $ \section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} @@ -67,8 +67,8 @@ current experiment simulates a spherical polar domain. As indicated by the axes in the lower left of the figure the model code works internally in a locally orthoganal coordinate $(x,y,z)$. For this experiment description -of this document the local orthogonal model coordinate $(x,y,z)$ is synonomous -with the spherical polar coordinate shown in figure +the local orthogonal model coordinate $(x,y,z)$ is synonomous +with the coordinates $(\lambda,\varphi,r)$ shown in figure \ref{fig:spherical-polar-coord} \\ @@ -118,9 +118,9 @@ \end{figure} \subsection{Equations solved} - -The implicit free surface {\bf HPE} form of the -equations described in Marshall et. al \cite{Marshall97a} is +For this problem +the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the +equations described in Marshall et. al \cite{Marshall97a} are employed. The flow is three-dimensional with just temperature, $\theta$, as an active tracer. The equation of state is linear. A horizontal laplacian operator $\nabla_{h}^2$ provides viscous @@ -185,7 +185,7 @@ part due to variations in density, $\rho^{\prime}$, integrated through the water column. -The suffices ${s},{i}$ indicate surface and interior of the domain. +The suffices ${s},{i}$ indicate surface layer and the interior of the domain. The windstress forcing, ${\cal F}_{\lambda}$, is applied in the surface layer by a source term in the zonal momentum equation. In the ocean interior this term is zero. @@ -248,17 +248,22 @@ is evaluated prognostically. The centered second-order scheme with Adams-Bashforth time stepping described in section \ref{sec:tracer_equations_abII} is used to step forward the temperature -equation. The pressure forces that drive the fluid motions, ( +equation. Prognostic terms in +the momentum equations are solved using flux form as +described in section \ref{sec:flux-form_momentum_eqautions}. +The pressure forces that drive the fluid motions, ( $\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the -pressure is evaluated explicitly by integrating density. The sea-surface -height, $\eta$, is solved for implicitly as described in section -\ref{sect:pressure-method-linear-backward}. +pressure is diagnosed explicitly by integrating density. The sea-surface +height, $\eta$, is diagnosed using an implicit scheme. The pressure +field solution method is described in sections +\ref{sect:pressure-method-linear-backward} and +\ref{sec:finding_the_pressure_field}. \subsubsection{Numerical Stability Criteria} -The laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. -This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, +The laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. +This value is chosen to yield a Munk layer width, \begin{eqnarray} \label{EQ:munk_layer} @@ -266,13 +271,15 @@ \end{eqnarray} \noindent of $\approx 100$km. This is greater than the model -resolution in mid-latitudes $\Delta x$, ensuring that the frictional +resolution in mid-latitudes +$\Delta x=r \cos(\varphi) \Delta \lambda \approx 80~{\rm km}$ at +$\varphi=45^{\circ}$, ensuring that the frictional boundary layer is well resolved. \\ \noindent The model is stepped forward with a time step $\delta t=1200$secs. With this time step the stability -parameter to the horizontal laplacian friction \cite{Adcroft_thesis} +parameter to the horizontal laplacian friction \begin{eqnarray} \label{EQ:laplacian_stability} @@ -280,7 +287,7 @@ \end{eqnarray} \noindent evaluates to 0.012, which is well below the 0.3 upper limit -for stability. +for stability for this term under ABII time-stepping. \\ \noindent The vertical dissipation coefficient, $A_{z}$, is set to @@ -298,7 +305,6 @@ \\ \noindent The numerical stability for inertial oscillations -\cite{Adcroft_thesis} \begin{eqnarray} \label{EQ:inertial_stability} @@ -309,35 +315,35 @@ limit for stability. \\ -\noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum +\noindent The advective CFL for a extreme maximum horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ \begin{eqnarray} \label{EQ:cfl_stability} -S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} +C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} \end{eqnarray} \noindent evaluates to $5 \times 10^{-2}$. This is well below the stability limit of 0.5. \\ -\noindent The stability parameter for internal gravity waves -\cite{Adcroft_thesis} +\noindent The stability parameter for internal gravity waves +propogating at $2~{\rm m}~{\rm s}^{-1}$ \begin{eqnarray} \label{EQ:igw_stability} S_{c} = \frac{c_{g} \delta t}{ \Delta x} \end{eqnarray} -\noindent evaluates to $5 \times 10^{-2}$. This is well below the linear +\noindent evaluates to $\approx 5 \times 10^{-2}$. This is well below the linear stability limit of 0.25. \subsection{Code Configuration} \label{SEC:eg_fourl_code_config} The model configuration for this experiment resides under the -directory {\it verification/exp1/}. The experiment files +directory {\it verification/exp2/}. The experiment files \begin{itemize} \item {\it input/data} \item {\it input/data.pkg} @@ -432,7 +438,9 @@ \begin{rawhtml} \end{rawhtml} viscAr \begin{rawhtml} \end{rawhtml} -}. +}. At each time step, the viscous term contribution to the momentum eqautions +is calculated in routine +{\it S/R CALC\_DIFFUSIVITY}. \fbox{ \begin{minipage}{5.0in} @@ -463,7 +471,7 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +} and applied in routines {\it CALC\_MOM\_RHS} and {\it CALC\_GW}. \fbox{ \begin{minipage}{5.0in} @@ -506,7 +514,8 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +} and the boundary condition is evaluated in routine +{\it S/R CALC\_MOM\_RHS}. \fbox{ @@ -538,7 +547,7 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +} and is applied in the routine {\it S/R CALC\_MOM\_RHS}. \fbox{ \begin{minipage}{5.0in} @@ -570,7 +579,7 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +} and used in routine {\it S/R CALC\_GT}. \fbox{ \begin{minipage}{5.0in} {\it S/R CALC\_GT}({\it calc\_gt.F}) @@ -606,7 +615,7 @@ \begin{rawhtml} \end{rawhtml} diffKrT \begin{rawhtml} \end{rawhtml} -}. +} which is used in routine {\it S/R CALC\_DIFFUSIVITY}. \fbox{ \begin{minipage}{5.0in} {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) @@ -637,7 +646,7 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +}. The routine {\it S/R FIND\_RHO} makes use of {\bf tAlpha}. \fbox{ \begin{minipage}{5.0in} @@ -666,7 +675,8 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +}. The values of {\bf eosType} sets which formula in routine +{\it FIND\_RHO} is used to calculate density. \fbox{ \begin{minipage}{5.0in} @@ -701,7 +711,9 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +}. When set to {\bf .TRUE.} the settings of {\bf delX} and {\bf delY} are +taken to be in degrees. These values are used in the +routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. \fbox{ \begin{minipage}{5.0in} @@ -736,7 +748,7 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +} and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. \fbox{ \begin{minipage}{5.0in} @@ -766,7 +778,7 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +} and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. \fbox{ \begin{minipage}{5.0in} @@ -796,7 +808,7 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +} and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. \fbox{ \begin{minipage}{5.0in} @@ -834,7 +846,7 @@ \begin{rawhtml} \end{rawhtml} delR \begin{rawhtml} \end{rawhtml} -}. +} which is used in routine {\it INI\_VERTICAL\_GRID}. \fbox{ \begin{minipage}{5.0in} @@ -873,7 +885,7 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +}. The bathymetry file is read in the routine {\it INI\_DEPTHS}. \fbox{ \begin{minipage}{5.0in} @@ -892,7 +904,7 @@ zonalWindFile='windx.sin_y' \end{verbatim} This line specifies the name of the file from which the x-direction -surface wind stress is read. This file is also a two-dimensional +(zonal) surface wind stress is read. This file is also a two-dimensional ($x,y$) map and is enumerated and formatted in the same manner as the bathymetry file. The matlab program {\it input/gendata.m} includes example code to generate a valid @@ -909,7 +921,8 @@ \begin{rawhtml} \end{rawhtml} INI\_PARMS \begin{rawhtml} \end{rawhtml} -}. +}. The wind-stress file is read in the routine +{\it EXTERNAL\_FIELDS\_LOAD}. \fbox{ \begin{minipage}{5.0in} @@ -924,9 +937,7 @@ \end{itemize} -\noindent other lines in the file {\it input/data} are standard values -that are described in the MITgcm Getting Started and MITgcm Parameters -notes. +\noindent other lines in the file {\it input/data} are standard values. \begin{rawhtml}
\end{rawhtml} \begin{small} @@ -947,11 +958,14 @@ \subsubsection{File {\it input/windx.sin\_y}} The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) -map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. -Although $\tau_{x}$ is only a function of $y$n in this experiment +map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ (the +default for MITgcm). +Although $\tau_{x}$ is only a function of latituted, $y$, +in this experiment this file must still define a complete two-dimensional map in order to be compatible with the standard code for loading forcing fields -in MITgcm. The included matlab program {\it input/gendata.m} gives a complete +in MITgcm (routine {\it EXTERNAL\_FIELDS\_LOAD}. +The included matlab program {\it input/gendata.m} gives a complete code for creating the {\it input/windx.sin\_y} file. \subsubsection{File {\it input/topog.box}} @@ -959,7 +973,7 @@ The {\it input/topog.box} file specifies a two-dimensional ($x,y$) map of depth values. For this experiment values are either -$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep +$0~{\rm m}$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep ocean. The file contains a raw binary stream of data that is enumerated in the same way as standard MITgcm two-dimensional, horizontal arrays. The included matlab program {\it input/gendata.m} gives a complete @@ -1020,15 +1034,15 @@ \subsubsection{Code Download} In order to run the examples you must first download the code distribution. -Instructions for downloading the code can be found in the Getting Started -Guide \cite{MITgcm_Getting_Started}. +Instructions for downloading the code can be found in section +\ref{sect:obtainingCode}. \subsubsection{Experiment Location} This example experiments is located under the release sub-directory \vspace{5mm} -{\it verification/exp1/ } +{\it verification/exp2/ } \subsubsection{Running the Experiment} @@ -1049,7 +1063,7 @@ You shold see a response on the screen ending in -{\it verification/exp1/input } +{\it verification/exp2/input } \item Run the genmake script to create the experiment {\it Makefile}