--- manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/10/24 15:21:27 1.3 +++ manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/10/24 19:43:07 1.4 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.3 2001/10/24 15:21:27 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.4 2001/10/24 19:43:07 cnh Exp $ % $Name: $ \section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} @@ -133,13 +133,13 @@ \begin{eqnarray} \label{EQ:model_equations} \frac{Du}{Dt} - fv + - \frac{1}{\rho}\frac{\partial p^{'}}{\partial \lambda} - + \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} & = & \cal{F} \\ \frac{Dv}{Dt} + fu + - \frac{1}{\rho}\frac{\partial p^{'}}{\partial \varphi} - + \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \varphi} - A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} & = & 0 @@ -154,10 +154,10 @@ & = & 0 \\ -p^{'} & = & -g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz +p^{\prime} & = & +g\rho_{0} \eta + \int^{0}_{-z}\rho^{\prime} dz \\ -\rho^{'} & = &- \alpha_{\theta}\rho_{0}\theta^{'} +\rho^{\prime} & = &- \alpha_{\theta}\rho_{0}\theta^{\prime} \\ {\cal F} |_{s} & = & \frac{\tau_{x}}{\rho_{0}\Delta z_{s}} \\ @@ -166,11 +166,14 @@ \noindent where $u$ and $v$ are the components of the horizontal flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). +The terms $H\hat{u}$ and $H\hat{v}$ are the components of the term +integrated in eqaution \ref{eq:free-surface}, as descirbed in section + The suffices ${s},{i}$ indicate surface and interior of the domain. The forcing $\cal F$ is only applied at the surface. -The pressure field $p^{'}$ is separated into a barotropic part +The pressure field, $p^{\prime}$, is separated into a barotropic part due to variations in sea-surface height, $\eta$, and a hydrostatic -part due to variations in density, $\rho^{'}$, over the water column. +part due to variations in density, $\rho^{\prime}$, over the water column. \subsection{Discrete Numerical Configuration} @@ -179,7 +182,7 @@ $\Delta \lambda=\Delta \varphi=1^{\circ}$, so that there are sixty grid cells in the zonal and meridional directions. Vertically the -model is configured with a four layers with constant depth, +model is configured with four layers with constant depth, $\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate variables $x$ and $y$ are initialised from the values of $\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in